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Abstract

We study the problem of distributed stochastic non-convex optimization with in-
termittent communication. We consider the full participation setting where M
machines work in parallel over R communication rounds and the partial participa-
tion setting where M machines are sampled independently every round from some
meta-distribution over machines. We propose and analyze a new algorithm that
improves existing methods by requiring fewer and lighter variance reduction opera-
tions. We also present lower bounds, showing our algorithm is either optimal or
almost optimal in most settings. Numerical experiments demonstrate the superior
performance of our algorithm.

1 Introduction

We consider the following distributed optimization problem with M machines:

min
x∈Rd

F (x) :=
1

M

M∑
m=1

Fm(x), (1.1)

where Fm, which denotes the objective on machine m, is a non-convex function for all m, as is the
average objective F . We want to solve this problem in the intermittent communication (IC) setting
[1, 2] where the machines work in parallel and are allowed to make K oracle calls between two
communication rounds for R consecutive rounds. The IC setting has been widely studied [3, 4, 5, 6,
7, 8, 9, 10, 11, 2, 12] over the past decade. Many recent works have focused on the problem with
non-convex and heterogeneous objectives [13, 14, 15] which are common in cross-device federated
learning (FL) [16, 17]. Towards this end, several algorithms [18, 19, 20, 21, 22, 23], all involving local
updates (à la local-SGD [3, 16]), have been proposed and analyzed under assumptions bounding the
heterogeneity of machines’ objectives. Although these algorithms demonstrate promising empirical
performances, it remains elusive whether these algorithms provably dominate the embarrassingly
parallelizable alternatives, i.e., mini-batch variants of the optimal sequential algorithms [24, 25, 26]
(a.k.a. centralized algorithms).

Until very recently, the situation was similar even in the simpler convex homogeneous setting where
Fm’s are all identical and convex, and Woodworth et al. [2] showed that the optimal algorithm
often does not require local updates at all. Even when Fm’s are not identical, for high levels of
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heterogeneity, accelerated mini-batch SGD [27] is optimal [28]. Should we expect something similar
in the non-convex setting? Or, can we prove that in some regime local-update algorithms improve
over the naive centralized baselines?

Method (Reference)
Convergence Rate, i.e. E ∥∇F (x̂)∥2 ⪯(Oracles used)

Full Participation Setting

SCAFFOLD†, MB-SGD† [18] ∆L
R +

(
σ2∆L
MKR

)1/2
(Stochastic)

MB-STORM (Thm. C.2, [26]) ∆L
R + σ2

MKR +
(

σ∆L
MKR

)2/3
(Stochastic)

Lower Bound (Centralized) ∆L
R + σ2

MKR +
(

σ∆L
MKR

)2/3
(Theorem 2.1)

STEM [20]
(∆L+ σ2 + ζ2)

(
1
R + 1

(MKR)2/3

)
(Stochastic)

BVR-L-SGD* [22]
∆τ
R + ∆L√

KR
+ σ2

MKR +
(

σ∆L
MKR

)2/3CE-LSGD (Thm. 3.1)
(Stochastic)

CE-LGD (Thm. 3.1) ∆τ
R + ∆L

KR(Exact)
Lower Bound

min
{

∆τ
R , ζ

2

R

}
+ ∆L

KR + σ2

MKR +
(

σ∆L
MKR

)2/3
(Theorem 3.2)

Partial Participation Setting

MB-STORM (Thm. D.4) ∆L
R + σ2

MKR +
(

σ∆L
m

√
KR

)2/3
+ ζ2

mR +
(

ζ∆L
mR

)2/3
(Stochastic)

Lower Bound (Centralized) ∆L
R + σ2

mKR +
(

σ∆L
mKR

)2/3
+ ζ2

mR +
(

ζ∆L
mR

)2/3
(Theorem D.2)

MIMELITEMVR[21] ∆τ
R + ∆L

KR + ζ2+σ2

R +
(

(ζ+σ)∆τ
R

)2/3
(Stochastic + Exact)
MIMEMVR [21] ∆τ

R + ∆L
KR + ζ2

mR +
(

ζ∆τ√
mR

)2/3
(Exact)

∆τ
R + ∆L√

KR
+ σ2

mKR +
(

σ∆L
mKR

)2/3
+
(

σ∆τ
m

√
KR

)2/3
+

ζ2

mR +
(

ζ∆τ
mR

)2/3
+
(

ζ∆L

m
√
KR

)2/3CE-LSGD (Thm. 3.3)
(Stochastic)

CE-LGD (Thm. 3.3) ∆τ
R + ∆L

KR + ζ2

mR +
(

ζ∆τ
mR

)2/3
(Exact)

min
{

∆τ
R , ζ

2

R

}
+ ∆L

KR + σ2

mKR +
(

σ∆L
mKR

)2/3
+ ζ2

mR +(
ζ∆L
mKR

)2/3Lower Bound
(Thm. 3.4)

Table 1: Comparison of convergence rate for different algorithms in the intermittent communication
setting. ζ and τ are the first and second-order heterogeneity (see Section 2) of the problem. Note that
τ ≤ 2L can be much smaller than L. *See Section 3 for a detailed comparison with BVR-L-SGD.
We expect the red and blue terms in the bounds to match by improving our bounds (c.f., Section 5).
†The variance term is optimal as the algorithms’ analyses don’t assume mean squared smoothness.

In this paper, we start by noting that in the absence of any heterogeneity assumption (c.f., Section
2), centralized algorithms already have the best worst-case convergence guarantee. Thus, only when
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the heterogeneity is low can the local-update algorithms potentially have an advantage. This was
the motivation behind some of the recent works [18, 21, 22]. However, in the absence of any lower
bound that explicitly depends on the heterogeneity parameter (such as in [15, 29]), it is not possible
to definitively claim such an improvement. To alleviate this, we provide new communication lower
bounds which explicitly depends on the heterogeneity parameter. In addition, we develop a novel
algorithm which can take advantage of low heterogeneity and is (almost) optimal.

Method (Reference) Communication Complexity (R) Oracle Complexity (N )

Full Participation Setting

SCAFFOLD†, MB-SGD†
∆L
ϵ

σ2∆L
ϵ2[18]

MB-STORM (Theorem C.2) ∆L
ϵ

σ∆L
ϵ3/2[26]

Lower Bound (Centralized) ∆L
ϵ

σ∆L
ϵ3/2(Theorem 2.1)

STEM ∆L+σ2+ζ2

ϵ
(∆L)3/2+σ3+ζ3

ϵ3/2[20]

BVR-LSGD* [22] ∆τ
ϵ

σ∆L
ϵ3/2CE-LSGD (Theorem 3.1)

Lower Bound
min

{
∆τ
ϵ ,

ζ2

ϵ

}
σ∆L
ϵ3/2(Theorem 3.2)

Partial Participation Setting

MB-STORM ζ∆L
mϵ3/2

σ∆L
ϵ3/2

·
(
1 + σ

ζ

)
(Theorem C.2)

Lower Bound (Centralized) ζ∆L
mϵ3/2

σ∆L
ϵ3/2(Theorem 2.1)

MIMEMVR ζ∆τ
m1/2ϵ3/2

Uses Exact Oracles[21]

MIMELITEMVR ζ2+σ2

ϵ + (ζ+σ)∆τ
ϵ3/2

Uses Exact Oracles[21]

CE-LSGD ζ∆τ
mϵ3/2

ζ∆L
ϵ3/2

· L
τ + σ∆L

ϵ3/2
·
(
1 + στ

ζL

)
(Theorem 3.3)

Lower Bound
min

{
∆τ
ϵ ,

ζ2

ϵ

}
+ ζ2

mϵ
ζ∆L
ϵ3/2

+ σ∆L
ϵ3/2(Theorem 3.4)

Table 2: Comparison of optimal communication and oracle complexity required by different algo-
rithms to attain E∥∇F (x̂)∥22 ≤ ϵ. ζ and τ are the heterogeneity (see Section 2) of the problem.
τ ≤ 2L and can be much smaller than L. The results suppress only numerical constants and assume
that ϵ1/2 ⪯ min{(σ/M) · (τ/L),∆L/σ,∆τ/ζ, ζ/m}, i.e., ϵ is small enough. The first inequality
ensures we are in the green regime described in Figure 1 and guarantees that ∆LM/ϵ ⪯ σ∆L/ϵ3/2;
the second inequality guarantees that σ2/ϵ ⪯ σ∆L/ϵ3/2; the third inequality guarantees that
ζ2/mϵ ⪯ ζ∆τ/mϵ3/2; and the fourth inequality guarantees that ∆L/ϵ ≤ ζ∆L/mϵ3/2. We ex-
pect the red, green, and blue terms in the upper and lower bounds to match by improving our bounds
(c.f., Section 5). *Although BVR-L-SGD and CE-LSGD have the same fast convergence rate in
the full participation setting, BVR-L-SGD requires each client to compute large batch gradients for
many rounds of communications and is thus less communication efficient in practice (see discussion
in Section 3). †Note that the oracle complexity is optimal for these algorithms, as they were analyzed
under the bounded variance assumption (see Section 2).
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We summarize the contributions of our work as follows:

• We provide novel communication complexity lower bounds, under the assumption that Fm’s
have bounded first-order or second-order heterogeneity (see Section 2). We show that centralized
algorithms [24, 25, 26] can never achieve this optimal communication complexity, and most of the
existing local-update algorithms cannot attain it either.

• We develop a new algorithm CE-LSGD that we show to be min-max optimal when equipped
with exact gradient oracles and near-optimal when provided with stochastic gradient oracles
(c.f., Section 2). Our algorithm, like many other local-update algorithms, uses variance reduction
techniques [24, 26] but requires both fewer and lighter “heavy-batch” operations compared to the
existing methods (see discussion in Section 3).

• We also study the partial client participation setting, which is of particular interest in cross-device
federated learning (FL) [17] where there is an extremely large number of clients. Not only does
CE-LSGD improve over the best-known communication complexity, but it is the only algorithm
that doesn’t require exact oracle queries for variance reduction and still manages to be nearly
optimal. Our analysis also provides a convergence guarantee for MB-STORM (a special case
of CE-LSGD) in this setting that wasn’t known before. Furthermore, if endowed with exact
oracles, CE-LGD is almost min-max optimal even in the partial participation setting. Thus,
our results demonstrate the optimality of local update methods, at least in some regimes. Even in
simpler convex settings, we don’t know of any local update method (exact or stochastic) known
to be min-max optimal in the heterogeneous setting [30, 15]. We summarize our results and the
comparison to important baselines in Tables 1 and 2.

• As an auxiliary contribution, we provide a variant of our algorithm which uses stochastic hessian
vector product oracles and is thus useful for settings where only a single copy of the model can
be stored on the edge device. We also empirically compare our method against centralized and
local-update algorithms, demonstrating faster convergence and better communication efficiency.

Notation. We use B to denote the index set and |B| to denote its cardinality. For x ∈ Rd, we use
∥x∥ to denote its ℓ2-norm. For A ∈ Rd×d, ∥A∥ denotes the operator norm. [n] denotes the set
{1, 2, . . . , n}. We use ≈,⪯,⪰ to denote equality and inequality up to numerical constants.

2 Our Setting and the Centralized Baselines

In this section, we introduce some definitions and assumptions that will be used in our analysis. Our
goal is to find an ϵ-approximate stationary point of F , i.e., a point x ∈ Rd such that E[∥∇F (x)∥2] ≤ ϵ,
where the expectation is w.r.t. any randomness in the choice of x. We consider client objectives in the
class F(L) of differentiable and L-smooth functions, i.e., for all G ∈ F(L), ∥∇G(x)−∇G(y)∥ ≤
L ∥x− y∥. We also make assumptions that relate the functions of different clients to one another.
These are typically known as assumptions on the “heterogeneity” of the problem, and we consider
two classes of problems.
Definition 1. Assume {Fm ∈ F(L)}Mm=1 are first-order ζ-heterogeneous, i.e.,
supx∈Rd

∑M
m=1 ∥∇Fm(x) − ∇F (x)∥2/M ≤ ζ2. And for all ∆ ≥ 0, F (0) − infx∈Rd F (x) ≤ ∆,

i.e., the average objective has bounded sub-optimality at zero. Then we say that
{Fm}m∈[M ] ∈ F1

M(L,∆, ζ).

Definition 2. Assume twice-differentiable {Fm ∈ F(L)}Mm=1 are second-order τ -heterogeneous,
i.e., supm∈[M ],x∈Rd ∥∇2Fm(x) − ∇2F (x)∥ ≤ τ . And for all ∆ ≥ 0, F (0) − infx∈Rd F (x) ≤
∆, i.e., the average objective has bounded sub-optimality at zero. Then we say that
{Fm}m∈[M ] ∈ F2

M(L,∆, τ ).

We assume that each machine has access to the following multi-point oracle [31] [Section 5.3, 2].

Definition 3. Given a function G ∈ F(L,∆), On,L,σ
G : (Rd)n × Z → (R)n × (Rd)n is a

multi-point stochastic first order oracle if for some distribution D on Z , and for all x1, . . . , xn ∈
Rd, the oracle samples a random seed z ∼ D and returns estimators On,L,σ

G (x1, . . . , xn, z) =
({f(xi; z)}i∈[n], {g(xi; z)}i∈[n]) such that ∀i ∈ [n], Ez∼D(f(xi; z), g(xi; z)) = (G(xi),∇G(xi))
and Ez∼D ∥g(xi; z)−∇G(xi)∥2 ≤ σ2. Furthermore, the unbiased gradients satisfy L-mean
smoothness, i.e., for all x, y ∈ Rd, Ez∼D [∥g(x; z)− g(y; z)∥] ≤ L ∥x− y∥.
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As we mentioned before, we want to solve the problem in equation 1.1 in the the intermittent
communication (IC) setting, i.e., M machines work in parallel and are allowed to make K oracle
calls between two communication rounds for R consecutive rounds (see [1, 2] for detailed definition).
Therefore, we consider a generalization of zero-respecting algorithms denoted by AZR (see Appendix
A) in the IC setting. This class captures various distributed optimization algorithms, including mini-
batch SGD, accelerated mini-batch SGD, local SGD, and all the variance-reduction algorithms.
Algorithms that are not distributed zero-respecting are those whose iterates have components in
directions about which the algorithm has no information, meaning that, in some sense, it is just “wild
guessing”. We also denote the class of centralized algorithms in AZR by Acent

ZR (see Appendix A).
These algorithms query the oracles at the same point within each communication round and use the
combined MK oracle queries each round to get a “mini-batch” estimate of the gradient. Thus, the
class Acent

ZR includes algorithms such as mini-batch SGD, mini-batch SARAH [24] and mini-batch
STORM [26], but doesn’t include local-update algorithms in AZR such as local-SGD. Furthermore,
these mini-batch algorithms can be naturally implemented in the IC setting.

We first present a lower bound result applicable to centralized algorithms.

Theorem 2.1 (Centralized Lower Bound). For all τ,∆, ζ, σ ≥ 0, and 2L ≥ τ , every algorithm
A ∈ Acent

ZR optimizing a problem in F1
M (L,∆, ζ) ∪ F2

M (L,∆, τ), with access to an oracle O2,L,σ
Fm

over R ⪰ 1 communication rounds must output xAR such that,

E
[∥∥∇F (xAR)∥∥2] ⪰ ∆L

R
+

σ2

MKR
+

(
σ∆L

MKR

)2/3

.

The proof of this theorem follows the known oracle complexity lower bounds [32, 31] and is
included in Appendix B. This theorem shows that, mini-batch SARAH/STORM which are centralized
algorithms, already achieve the optimal communication and oracle complexity (see Table 1) for
algorithms in Acent

ZR optimizing problems in F2
M (L,∆, τ). In fact most existing non-centralized

methods including FEDAVG[16], SCAFFOLD [18] and FEDPAGE [19] do not have any analysis
showing improvement over the centralized baselines for problems in F2

M (L,∆, τ). These analyses
do not improve with smaller heterogeneity τ , even for convex optimization problems. At the same
time, the lower bound result holds for all τ ≤ 2L, which highlights the limitation of the centralized
baselines, showing they can not improve with lower heterogeneity. Certain existing local-update
algorithms such as MIMEMVR [21] and BVR-L-SGD [22] can indeed improve upon centralized
algorithms in the low heterogeneity regime. In the next section, we quantify this improvement and
show that our algorithm strictly dominates the centralized baselines and almost matches our lower
bound for algorithms in AZR.

3 Our Algorithm and Min-max Optimality

In this section, we present our communication-efficient algorithm abbreviated CE-LSGD and
illustrate it in Algorithm 1. Note that for m ∈ [M ], we use the notation ∇Fm,Bm(x) :=∑

l∈Bm g(x; zl ∼ Dm)/|Bm| to denote the stochastic mini-batch gradient obtained by querying
O2,L,σ

Fm
for |Bm| many times.

At each iteration of Algorithm 1, we need two rounds of communication, i.e., two back and
forth communications between the server and all clients. Our method uses the extra round of
communication, i.e., line 4 to line 9, to update the variance-reduced gradient vr using the current and
previous server models xr, xr−1, respectively. In the following discussion, we will use the iteration
number R and communication complexity of Algorithm 1 interchangeably.

At the core of our proposed method is the variance reduction term vr and the local gradient es-
timator vmr,k (lines 9 and 15 in Algorithm 1). The construction of the local gradient estimator is
motivated by the variance reduction technique of SARAH [24, 25]. Intuitively, the estimation
error between the proposed local gradient estimator vmr,k and the full gradient ∇F (wm

r+1,k), i.e.,

E∥vmr,k −∇F (wm
r+1,k)∥, can be decomposed into two dominating terms: E∥vr −∇F (xr)∥2 and

τ2K
∑K

k=1 E∥wm
r+1,k − wm

r+1,k−1∥2 . The first term is the estimation error between the variance

reduction term vr and the full gradient ∇F (xr). Since vr is updated based on the momentum-based
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Algorithm 1 Communication Efficient Local Stochastic Gradient Descent (CE-LSGD)
input Initialization x0, iteration number R, step size η, parameters b0, b, T and β ∈ [0, 1]

1: Let x−1 = x0
2: for r = 0, 1, . . . , R− 1 do
3: if r = 0 set ρ = 1, Q = 1, B = b0 else set ρ = β, Q = T , B = Q
4: Communicate (send) (xr, xr−1) to clients
5: on client m ∈ [M ] do
6: Sample Bm

r ∼ D⊗B
m , get ∇Fm,Bm

r
(xr), ∇Fm,Bm

r
(xr−1), where |Bm

r | = B

7: Communicate (rec)
(
∇Fm,Bm

r
(xr),∇Fm,Bm

r
(xr−1)

)
to the server

8: end on client
9: vr = 1

M

∑M
m=1 ∇Fm,Bm

r
(xr) + (1− ρ)

(
vr−1 − 1

M

∑M
m=1 ∇Fm,Bm

r
(xr−1)

)
10: Communicate (send) (xr, vr) to client m̃r, where m̃r ∼ Unif ([M ])
11: on client m̃r do
12: wm̃r

r+1,1 := wm̃r
r+1,0 := xr, v

m̃r
r,0 := vr

13: for k = 1, . . . , Q do
14: Sample Bm̃

r,k ∼ D⊗b
m̃ , get ∇Fm̃,Bm̃

r,k
(wm̃r

r+1,k), ∇Fm̃,Bm̃
r,k

(wm̃r

r+1,k−1), where |Bm̃
r,k| = b

15: vm̃r

r,k = ∇Fm̃,Bm̃
r,k

(wm̃r

r+1,k) + vm̃r

r,k−1 −∇Fm̃,Bm̃
r,k

(wm̃r

r+1,k−1)

16: wm̃r

r+1,k+1 = wm̃r

r+1,k − ηvm̃r

r,k

17: end for
18: Communicate (rec)

(
wm̃r

r+1,Q+1

)
to the server

19: end on client
20: Let xr+1 = wm̃r

r+1,Q+1

21: end for
output Choose x̃ uniformly from {wm̃r

r,k }r∈[R],k∈[Q]

variance reduction technique [26], this estimation error is dominated by L2E∥xr − xr−1∥2 , which

approaches zero as the algorithm converges. Similarly, the second term E∥wm
r+1,k − wm

r+1,k−1∥2

approaches zero as the algorithm converges and the τ factor controls the benefit we can obtain from
small heterogeneity. Intuitively, we can make more local updates for smaller values of τ , and the
algorithm converges faster. Our method reduces to mini-batch STORM if we choose the number of
local updates Q to be one (see Appendix C.1).

As we mentioned before, we are considering the IC setting, and thus we want to implement Algorithm
1 in this setting. To this end, we can choose the input T = K and b = 1 (see line 14) in Algorithm 1,
and we present the convergence guarantees of our method in the IC setting in the following discussions.
Next we present the convergence guarantee of CE-LSGD in the intermittent communication:
Theorem 3.1. Suppose {Fm}m∈[M ] ∈ F2

M (L,∆, τ) for L,∆, τ ≥ 0, τ ≤ 2L then,

(a) if each client m ∈ [M ] has a stochastic oracle O2,L,σ
Fm

, and assuming ∆L
R ⪯ σ2

√
MK

, then

the output x̃ of Algorithm 1 using β = max
{

1
R ,

(∆L)2/3(MK)1/3

σ4/3R2/3

}
, b0 = KR, and η =

min
{

1
L ,

1
Kτ ,

(βM)1/2

LK1/2

}
satisfies

E∥∇F (x̃)∥2 ⪯ ∆τ

R
+

∆L√
KR

+
σ2

MKR
+

(
σ∆L

MKR

)2/3

;

(b) if each client m ∈ [M ] has a deterministic oracle O2,L,0
Fm

, then the output x̃ of Algorithm 1 using
β = 1 and η = min

{
1
L ,

1
Kτ

}
satisfies

E∥∇F (x̃)∥2 ⪯ ∆τ

R
+

∆L

KR
.

In Appendix C, we derive this result by carefully tuning β, b0. We show that the convergence rate
attained by our algorithm is almost optimal by proving the following lower bound result.
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Theorem 3.2. For all L, σ, τ,∆, ζ ≥ 0, τ ≤ 2L, ζ ≤
√
∆L, every algorithm A ∈ Azr, optimizing

a problem in F1
M (L,∆, ζ) ∪ F2

M (L,∆, τ) with K > 0 intermittent accesses to two-point first-order
oracles {O2,L,σ

Fm
}m∈[M ] on all the machines, outputs xAR after R ⪰ 1 rounds such that

E
[∥∥∇F (xAR)∥∥2] ⪰ min

{
ζ2

R
,
∆τ

R

}
+

∆L

KR
+

σ2

MKR
+

(
σ∆L

MKR

)2/3

.

We can make two observations by comparing the upper and lower bounds for problems in
F2

M (L,∆, τ). First, in the deterministic setting (σ = 0), our upper bound matches the lower
bound; hence CE-LGD is min-max optimal. Thus, our result improves over all the existing results
in this setting, including MIMEMVR [21]. Second, in the stochastic setting (σ > 0), our algorithm’s
upper bound is optimal except for the second term in Theorem 3.1, which has a ∆L/(

√
KR) factor

as opposed to the ∆L/(KR) term in the lower bound. We discuss this gap further in Section C.2.

Our construction for Theorem 3.2 uses the non-convex hard instance proposed by Carmon et al.
[32] and splits it across different machines to get a communication complexity lower bound. This
idea has been used previously to give lower bounds in the heterogeneous setting [33, 15, 34]. We
prove the result in Appendix B. From looking at Table 1, we can note that BVR-L-SGD [22] also
attains a similar upper bound as our method. In Appendix C.2, we show that with deterministic
oracle BVR-L-SGD also attains the min-max optimal rate. This is not surprising, knowing that
several variance-reduced algorithms [25, 26, 24] are simultaneously optimal even in the sequential
setting. Still, our method requires fewer and lighter variance reduction operations, which leads to
better scalability from the algorithmic design perspective. In the next section, we carefully examine
the difference between these methods.

3.1 The Perspective of Reducing Communication

Figure 1: Illustration of the best communication
complexity R and oracle complexity N that our
method can obtain for different ϵ and τ . Green
regime: Our method can obtain the optimal com-
munication and oracle complexity. Orange regime:
Our method can obtain the optimal communication
using a larger oracle complexity. Red regime: Our
method only needs one round of communication
using a larger oracle complexity.

So far, we have looked at convergence rates in
the intermittent communication model, where
K,R is fixed. However, another perspective is
reducing the communication complexity to the
minimum possible with the minimum required
oracle complexity. Both these complexities can
be expressed in terms of ϵ using the convergence
guarantees we showed, where we want to attain
an ϵ-approximate stationary point. This view is
often more useful when communication rounds
comprise the bulk of the required physical time.
This scenario is common in FL, where devices
become available intermittently, which delays
the synchronous updates. With this in mind,
we summarize the communication and oracle
complexities attained by both our method and
BVR-L-SGD [22] in Figure 1 when optimizing
with stochastic oracles. Notice that the figure
has three different regimes based on the relative
scaling of τ versus ϵ. We focus on the green
regime characterized by ϵ1/2 ∈ (0, τσ/(LM)].
This regime is of most practical interest in deep
learning, where modern over-parameterized models often drive ϵ to really small values. And when ϵ
is small enough, this regime covers a wide range of values of τ .3.

In the green regime, both CE-LSGD and BVR-L-SGD require K = σL/(τMϵ1/2) local steps
to achieve the optimal communication and oracle complexities. However, BVR-L-SGD requires
multiple heavy-batch stochastic gradient computations on each machine with batch size bmax. In
particular, for BVR-L-SGD, we have ρBVR = bmax/K = στ/(Lϵ1/2), which suggests that for
S = L∆/σ

√
ϵ communication rounds, it requires each machine to compute ρBVR times heavier

batch stochastic gradients compared to the other communication rounds. As for CE-LSGD, we have
3 We talk about the other regimes while giving the full statement of Theorem 3.1 in Appendix C
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Figure 2: Training loss of CE-LSGD and BVR-L-SGD on CIFAR-10 data-set versus the number
of communication rounds in the intermittent communication setting with different local-updates K.
We use M = 10 machines, and synthetically generate heterogeneous data-sets (see Section 4) with
q = 0.1. All oracle queries use a mini-batch of size b = 16, i.e., each machine has Kb oracle queries
between two communication rounds. We note that our method has a faster convergence in all the
settings, which highlights its communication efficiency. Fixed step-sizes η for both the methods were
tuned in {0.001, 0.005, 0.01, 0.05, 0.1, 0.5} (to obtain best loss) following [22], our method set the
momentum β = 0.3, bourmax = K, while bBV R

max = 5000 according to [22].

b0 = σ3/(L∆Mϵ1/2), which gives us ρour = b0/K = σ2τ/(L2∆). This suggests that our method
only requires each machine to compute ρour times larger batch stochastic gradient, and that too only
once. Furthermore, ρour/ρBVR = σϵ1/2/(L∆) ≤ 1. Thus, the size of our large batch gradient is
also smaller than the one for BVR-L-SGD, and our method has fewer and lighter heavy-batch
operations.

Suppose one implements both these methods in the intermittent communication model, i.e., by
breaking the large batch computation across multiple rounds, with local budget K = σL/(τMϵ1/2).
In that case, the effective communication complexity of both methods is ∆τ/ϵ, and this subtle
difference gets washed away. However, in Figure 2, we show that this equivalence up to numerical
constants doesn’t hold in practice, where our method converges faster than BVR-L-SGD. In Table 2,
we summarize the communication and oracle complexities attained by different algorithms in the
green regime.

3.2 The Partial Participation Setting

In settings such as cross-device federated learning [17], there are often millions of clients (think of
android mobile users), and it is not feasible to consider training on all of the clients synchronously.
It is more natural to consider a partial sampling of clients for each communication round. More
formally, we can re-state our distributed optimization problem as follows:

min
x∈Rd

F (x) := Em∼P [Fm(x)] , (3.1)

where P is a probability distribution on the clients, we assume at each communication round, we
can sample M clients independently from P . We also need to modify the IC setting: during each
communication round, Sr ∼ Pm clients participate, and each queries their oracle K times. This
setting has also been considered in Karimireddy et al. [21]. We consider the problem classes
F1

P(L,∆, ζ) and F2
P(L,∆, τ) that are natural generalizations of F1

M (L,∆, ζ) and F2
M (L,∆, τ) to

the partial participation setting as follows, formally defined in Appendix A.

We adapt Algorithm 1 to the partial participation setting in Algorithm 2 by communicating with only
M clients at each round and using M0 clients for the first round to initialize the variance reduction
term. We prove the following guarantee for Algorithm 2.
Theorem 3.3. Suppose for all m in support of P , Fm ∈ F1

P(L,∆, ζ) ∩ F2
P(L,∆, τ) then,

(a) if each client m has a stochastic oracle O2,L,σ
Fm

, and assuming that ∆τ
R + ∆L√

KR
⪯ σ2

√
MK

+ ζ2

√
M

,

the output x̃ of Algorithm 2 using b0 = K, M0 = MR, β = max

{
1
R ,
(

∆(τ+L/
√
K)

√
M

R(σ2/K+ζ2)

)2/3}
,
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and η = min
{

1
L ,

1
Kτ ,

1√
KL

,
√
βM√
KL

,
√
βM
τK

}
satisfies

E∥∇F (x̃)∥2 ⪯ ∆τ

R
+

∆L√
KR

+
σ2

MKR
+

(
σ∆L

MKR

)2/3

+
ζ2

MR
+

(
ζ∆τ

MR

)2/3

+

(
∆(στ + Lζ)

M
√
KR

)2/3

;

(b) if each client m has a deterministic oracle O2,L,0
Fm

, and assuming that ∆τ
R ⪯ ζ2

√
M

, then the output

x̃ of Algorithm 2 using M0 =MR, β = max

{
1
R ,
(

∆τ
√
M

ζ2R

)2/3}
, and η = min

{
1
L ,

1
Kτ ,

√
βM
τK

}
satisfies

E∥∇F (x̃)∥2 ⪯ ∆τ

R
+

∆L

KR
+

ζ2

MR
+

(
ζ∆τ

MR

)2/3

.

In Tables 1 and 2, we show that with an exact oracle (i.e., σ = 0), CE-LGD attains a strictly faster
convergence rate than the best-known algorithm MIMEMVR [21] that also uses an exact oracle. More
specifically, CE-LGD’s communication complexity ζ∆τ/Mϵ3/2, improves over the communication
complexity of ζ∆τ/

√
Mϵ3/2 for MIME-MVR. We can also recover the guarantee for MB-STORM

in the partial participation setting, noting that it is a special case of CE-LSGD (see Appendix C.1).
As far as we know, this guarantee isn’t known in the literature but straightforwardly follows from our
analysis. Furthermore, we prove the following lower bounds showing that the convergence rates of
CE-LSGD are almost optimal.

Theorem 3.4. For all L, σ, τ,∆, ζ ≥ 0, τ ≤ 2L, ζ ≤
√
∆L, every algorithm A ∈ Azr optimizing

a problem in F1
P(L,∆, ζ) ∪ F2

P(L,∆, τ) with K > 0 intermittent accesses to two-point first-order
oracles {O2,L,σ

Fm
}m∈support(P) on all the machines outputs xAR after R ⪰ 1 rounds such that

E
[∥∥∇F (xAR)∥∥2] ⪰ min

{
∆τ

R
,
ζ2

R

}
+

∆L

KR
+

σ2

MKR
+

(
σ∆L

MKR

)2/3

+
ζ2

MR
+

(
ζ∆L

MKR

)2/3

.

According to Theorem 3.3 and Theorem 3.4, in the deterministic setting (i.e., σ = 0), the only gap
between the rate for CE-LGD and the lower bound is in the last term of CE-LGD’s upper bound,
i.e., the blue term in Table 1. We conjecture that CE-LGD is optimal in the partial participation
setting, and our lower bound can be improved. This would also imply a gap between the optimal
communication complexity of the full and partial participation settings (O(1/ϵ) v/s O(1/ϵ3/2), see
Table 2). All of the known results with our partial participation setting [21] attain at best order 1/ϵ3/2
communication complexity, which is consistent with our conjecture. More discussions about the gaps
in this setting can be found in Appendix D.1.

4 Simulations

We evaluate the performance of our method by optimizing a two-layer fully connected network for
multi-class classification on the CIFAR-10 [35] data-set. Since we are in the heterogeneous setting,
we need to artificially generate a data-set. We follow the same data processing procedure as in [22].
We first make sure that all the ten classes in CIFAR-10 have the same number of samples (roughly
around 5000), and assign q × 100% of class m’s samples to client m ∈ [10] where q is chosen from
{0.1, 0.35, 0.6, 0.85}. For each class m, we evenly split the remaining (1− q)× 100% samples to
the other 9 clients except client m. Thus, q controls the heterogeneity of our data-set, with small q
corresponding to small heterogeneity.

We perform two different experiments. In the first experiment, we directly compare our method, i.e.,
CE-LSGD, with BVR-L-SGD in the intermittent communication setting (see Figure 2). We observe
that while both the methods converge to a similar quality of solution eventually, our method is more
communication efficient. In the second experiment, we compare our method with BVR-L-SGD [22]
as well as FEDAVG [16], SCAFFOLD [18], MB-SARAH [24] and MB-SGD [5] for the same
number of updates/iterations. The last two methods are centralized baselines, and we use the local
computation to compute a mini-batch stochastic gradient. We again observe that CE-LSGD and
BVR-L-SGD have comparable performance which is better than all the other methods.
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Figure 3: Comparing CE-LSGD to centralized and local-update methods, for fixed K = 32 and
varying heterogeneity controlled by q on CIFAR-10 [35] data-set. Like Figure 2 we use mini-batch
size b = 16 for each oracle query. Thus each method makes Kb oracle queries every round per
machine. All the methods for different q are tuned separately, following a similar hyper-parameter
search as in Figure 2.

5 Discussion and Open Problems

In this paper, we provide a new communication-efficient local update algorithm CE-LSGD and
analyze it in the full and partial client participation settings with intermittent communication. In
the deterministic setting, i.e., with access to exact oracles, our algorithm is optimal for the full
participation setting and almost optimal for the partial participation setting. Moreover, when equipped
with stochastic oracles, our algorithm attains the best-known convergence guarantees to our knowledge
in both participation models. Our lower bound results provide a much-needed baseline to measure
algorithmic developments in non-convex distributed optimization and help us characterize CE-LGD’s
optimality.

In Appendix E, we provide an extension of CE-LSGD which uses a stochastic Hessian vector
product oracle [12, 36] instead of a multi-point oracle, and recovers similar optimal communication
complexity. This is relevant for memory-constrained online settings where it might not be feasible to
preserve several copies of a model on the client device for making simultaneous queries for variance
reduction algorithms.

Our work leaves several open questions. We believe our lower bound is loose in the deterministic
partial participation setting. We expect a ζ∆τ/Mϵ3/2 term in the lower bound, just like our upper
bound in Theorem 3.3 (c.f., the blue terms in Tables 1 and 2). Thus, we conjecture that there is a gap
between the optimal communication complexities in the full and partial participation settings, order
1/ϵ versus 1/ϵ3/2. We hope to improve our lower bound in the future work.

We expect that CE-LSGD should attain the min-max optimal rate in the stochastic full participation
setting. There is a 1/

√
K gap in our optimization term for both participation models, which vanishes

in the deterministic setting (see Table 1). As discussed in Section C.2, it is unclear to us how to
remove this gap.

There are several gaps w.r.t. the lower bounds in the stochastic partial participation setting (c.f., the
blue, green, and red terms in Table 2). We believe some of these can be alleviated by improving
the deterministic lower bound, but others seem to imply that our analysis is loose. As we discussed
before, one indication that our upper bound is loose is the gap in the rate we obtain for MB-STORM
by adapting our analysis for Theorem 3.3 (c.f., the red term in Table 1, section D.1).
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A Additional Definitions

In this section, we present more detailed definitions of our oracle and algorithm classes.

Oracle Class

The oracle framework is a very common abstraction in optimization literature [37, 38, 1], and an
oracle call can be seen as a unit of information and/or computation. This is especially useful when
providing lower-bound results. Stochastic optimization often considers single-point oracles that return
unbiased function and gradient estimators. However, several studies ([31], c.f., Section 5.3, [2]) have
shown separations between algorithms that can query the oracle and obtain unbiased gradients just
once for each random seed versus multiple times for the same seed. The latter kind is a multi-point
stochastic oracle, formally defined as follows.

Definition 4. Given a function G ∈ F(L), On,L,σ
G : (Rd)n ×Z → (R)n × (Rd)n is a multi-point

stochastic first order oracle if for some distribution D on Z , and for all x1, . . . , xn ∈ Rd, the oracle
samples a random seed z ∼ D and returns estimators

On,L,σ
G (x1, . . . , xn, z) =

(
{f(xi; z)}i∈[n], {g(xi; z)}i∈[n]

)
,

such that ∀i ∈ [n],

Ez∼D [(f(xi; z), g(xi; z))] = (G(xi),∇G(xi)) and Ez∼D

[
∥g(xi; z)−∇G(xi)∥2

]
≤ σ2.

Furthermore, the unbiased gradients satisfy L-mean smoothness, i.e., for all x, y ∈ Rd,

Ez∼D [∥g(x; z)− g(y; z)∥] ≤ L ∥x− y∥ .

In this paper, we assume each client m ∈ [M ] has access to a two-point stochastic oracle O2,L,σ
Fm

,
which is sufficient to implement popular variance-reduced algorithms. All the random seeds are
sampled independently across machines and time steps.

Remark. For empirical risk minimization (ERM), querying multiple times at the same seed is easy.
The z ∼ D corresponds to sampling a data point, and one could just use the same data point multiple
times. So even though the multi-point oracle is more powerful, in machine learning applications, it is
equally practical. [31] prove all their results for an even stronger oracle, called an active oracle (see
section 5.2 in their paper), which better exploits the finite sum structure of ERM problems, but we
don’t consider active oracles in this paper.

Remark. The mean(-squared) smoothness property is necessary to obtain a O(1/ϵ3/2) oracle
complexity in the serial optimization (M = 1) setting [31] for obtaining an ϵ-stationary point.
Usually, different constants are used to demarcate the L̄-mean-smoothness from L-smoothness
because one is a property of the oracle while the other of the objective [31]. We do not make this
demarcation here to make the presentation simpler. In the setting of stochastic optimization, where
each machine’s objective is defined as Fm(·) := Ez∼Dm [f(·; z)] using L-smooth functions f(·; z),
these constants are the same, i.e., L̄ = L. Even though our results apply more broadly, we have the
distributed stochastic optimization problem in our minds throughout the paper.

Remark. [31] show that if a first-order oracle only satisfies the bounded variance assumption but
not the mean(-squared) smoothness assumption, Ω(1/ϵ2) queries must be made to such an oracle to
obtain an ϵ-stationary point. Distributed algorithms such as FEDAVG, SCAFFOLD and MB-SGD
only assume this weaker oracle, which explains the worse oracle complexity these algorithms attain
(c.f., Table 2).

Algorithm Class

We consider the problem of finding an approximate stationary point in the intermittent communication
setting, where M machines work in parallel and are allowed to make K oracle calls during each
communication for R consecutive rounds. We refer the reader to [1] for a formal description of this
setting in the graph oracle framework. Intermittent communication is motivated by the sizeable gap
between the wall-clock time C required for a single synchronous communication and the time required
per unit of computation T , say a single oracle call [16, 17]. For an efficient implementation, typically,
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we want our local computation budget K to be comparable to C/T , i.e., we want to increase our
computation load per communication to match the time required for a single communication round.
We consider a generalization of zero respecting algorithms [32] denoted by AZR in the intermittent
communication (IC) setting defined as follows.
Definition 5 (Distributed Zero-respecting Algorithms). Consider M machines in the IC setting, each
of which is endowed with an oracle Om : I × Z → V and a distribution Dm on Z . Let Imr,k denote
the input to the kth oracle call, leading up to the rth communication round on machine m. An
optimization algorithm initialized at 0 is distributed zero-respecting if:

1. for all r ∈ [R], k ∈ [K],m ∈ [M ], Imr,k is in ⋃
l∈[k−1]

suppOFm
(Imr,l; z

m
r,l ∼ Dm)

 ∪

 ⋃
n∈[M ],s∈[r−1],l∈[K]

suppOFn
(Ins,l; z

n
s,l ∼ Dn)

 ,

2. for all r ∈ [R], k ∈ [K],m ∈ [M ], Imr,k is a deterministic function (which is same across all the
machines) of ⋃

l∈[k−1]

OFm(Imr,l; z
m
r,l ∼ Dm)

 ∪

 ⋃
n∈[M ],s∈[r−1],l∈[K]

OFn(I
n
s,l; z

n
s,l ∼ Dn)

 ,

3. at the rth communication round the machines only communicate vectors in ⋃
n∈[M ],s∈[r],l∈[K]

suppOFn(I
n
s,l; z

n
s,l ∼ Dn)

 .

We denote this class of algorithms by AZR. Furthermore, if all the oracle inputs are the same
between two communication rounds, i.e., Imr,k = Ir ∈ I for all m ∈ [M ], k ∈ [K], r ∈ [R], then we
say that the algorithm is centralized, and denote this class of algorithms by Acent

ZR ⊂ AZR.

This class captures a very wide variety of distributed optimization algorithms, including mini-batch
SGD [5], accelerated mini-batch SGD [27], local SGD [16], as well as all the variance-reduced
algorithms [21, 19, 20]. Algorithms that are not distributed zero-respecting are those whose iterates
have components in directions about which the algorithm has no information, meaning that in some
sense, it is just “wild guessing”. We have also defined the smaller class of centralized algorithms
which includes algorithms such as mini-batch SARAH [24] and mini-batch STORM [26].

Additional Definitions for the Partial Participation Setting.

We define F1
P(L,∆, ζ) and F2

P(L,∆, τ) that are natural generalizations of F1
M (L,∆, ζ) and

F2
M (L,∆, τ) to the partial participation setting as follows.

Definition 6. Consider any ζ,∆, L ≥ 0. And for all m in the support of P , assume that Fm ∈ F(L),
supx∈Rd En∼P∥∇Fn(x) − ∇F (x)∥2 ≤ ζ2 and F (0)− infx∈Rd F (x) ≤ ∆. Then we say that our
problem is in F1

P(L,∆, ζ).

Definition 7. Consider any τ,∆, L ≥ 0 and τ ≤ 2L. And for all m in the support of P , assume
Fm ∈ F(L) are twice-differentiable, supm∈support(P),x∈Rd ∥∇2Fm(x)−∇2F (x)∥ ≤ τ , and F (0)−
infx∈Rd F (x) ≤ ∆. Then we say that our problem is in F2

P(L,∆, τ ).

B Proof of Lower Bounds

In this section we prove Theorems 2.1, 3.2, 3.4 and D.2. All of these results share the communication
complexity terms min{∆τ/ϵ, ζ2/ϵ}. We’d show that any algorithm in AZR no-matter whether it
uses an exact or stochastic oracle, with or without partial participation, and for any number of oracle
queries K between communication rounds must incur these many communication rounds. To do so,
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we’d use the non-convex hard instance proposed by [32] and split it across different machines similar
to [33, 15]. Specifically, we consider the following functions (where we assume for simplicity d is
even):

F (x) :=
F1(x) + F2(x)

2
, (B.1)

F1(x) := −ψ(x)ϕ(x1) +
d/2−1∑
i=1

[ψ(−x2i)ϕ(−x2i+1)− ψ(x2i)ϕ(x2i+1)] , (B.2)

F2(x) :=

d/2∑
i=1

[ψ(−x2i−1)ϕ(−x2i)− ψ(x2i−1)ϕ(x2i)] , (B.3)

where the component functions ψ(·) and ϕ(·) are defined as follows,

ψ(t) =

{
0, t ≤ 1/2,

exp
(
1− 1

(2t−1)2

)
, t > 1/2.

and ϕ(t) =
√
e

∫ t

−∞
e−

1
2 τ

2

dτ. (B.4)

The functions F1, F2 have the following interesting property: Let Ek be the span of first k basis
vectors, i.e., span(e1, . . . , ek). Note that when xk ∈ Ek and k is odd, we have

∇F1(xk) ∈ Ek and ∇F2(xk) ∈ Ek+1,

while when k is even,
∇F1(xk) ∈ Ek+1 and ∇F2(xk) ∈ Ek.

In our construction, half the machines will have the function F1, and the other half will have the
function F2 (assume M is even, we’d see later it only changes the lower bound by a factor of
M − 1/M ). First, we initialize all the M machines at 0 and optimize using any distributed zero-
respecting algorithm (see Definition 5). Then, the only way to access the next coordinate is to query
the gradient of one of two functions—F1 if the next coordinate is odd and F2 if the next coordinate
is even. This means that, between two rounds of communication, at least one set of machines can’t
make any progress, and the other set of machines only learns about at most one new coordinate. Thus,
the machines are forced to communicate at least d− 1 times to be able to span Rd. More formally,
we can prove the following lemma:
Lemma 1. For any vector v ∈ Rd, define supp(v) = {i ∈ [d] : vi ̸= 0}. Let xR be the output of
any algorithm A ∈ AZR equipped with oracles {OFm}m∈[M ] on each machine, initialized at 0 and
optimizing the problem with F1 on the first half machines and F2 on the secocnd half. Then after R
rounds of communication,

supp(xR) ∈ ER.

The proof of this lemma is identical to Lemma 9 in [15]. We’d use this observation along with
some properties of the hard instance to show our lower bound. In particular, we note the following
properties for the function F (·).
Lemma 2 (Lemma 3 in [32]). The function F satisfies the following:

i. We have F (0)− infx F (x) ≤ ∆0d, where ∆0 = 12.

ii. For all x ∈ Rd, ∥∇F (x)∥ ≤ 23
√
d.

iii. For every p ≥ 1, the p-th order derivatives of F are lp-Lipschitz continuous, where lp ≤
exp

(
5
2p log p+ cp

)
for an numerical constant c <∞. In particular l1 = 152 (c.f., Lemma

2.2 in [31]).

Note that these properties imply the following for F (c.f., Lemma 2 in [32].).
Lemma 3. For all x ∈ Ek, where k < d, ∥∇F (x)∥ ≥ 1.

In other words, if the model vector x doesn’t span Rd, it will be forced to have a large gradient. And
our distributed problem structure forces the iterates to lie in ER after R communication rounds, as
highlighted in Lemma 1. Formalizing this idea results in the following communication complexity
lower bound:

16



Theorem B.1 (Communication complexity second-order). Any algorithmA ∈ Azr optimizing a prob-
lem in F2

M (L,∆, τ), ∀ τ,∆ ≥ 0, 2L ≥ τ and with K > 0 intermittent accesses to {On,L,0
Fm

}m∈[M ]

on all the clients needs communication rounds,

R ≥ c1 ·
∆τ

ϵ

to output xAR such that E[
∥∥∇F (xAR)∥∥2] ≤ ϵ where ϵ < c2τ∆ and c1, c2 are numerical constants.

Proof. Let ∆0, l1 be the numerical constants as in Lemma 2. Given accuracy parameter 0 < ϵ <
τ∆

4∆0l1
we define the following functions defined on Rd+1 → R,

F ⋆
1 (x) :=

τλ2

4l1
F1

(x1:d
λ

)
+
L

4
x2d+1, F

⋆
2 (x) :=

τλ2

4l1
F2

(x1:d
λ

)
+
L

4
x2d+1,

where λ := 4l1
τ ·

√
ϵ, and x1:d ∈ Rd denotes x ∈ Rd+1 restricted to the first d dimensions. For

M > 2 we put F ⋆
1 on the first ⌊M/2⌋ machines, F ⋆

2 on the next ⌊M/2⌋ machines, and if M is odd
we put the zero function on the last machine. This only worsens the result by a factor of

(
M−1
M

)2
as

we’d see below, so we can assume without loss of generality that M is even. We define

F ⋆(x) :=
F ⋆
1 (x) + F ⋆

2 (x)

2
=
τλ2

4l1
F
(x1:d
λ

)
+
L

4
x2d+1

as the average objective of M machines. Further choosing d =
⌊

τ∆
4∆0l1ϵ

⌋
≥ 1 guarantees that (due to

Lemma 2),

F ⋆(0)− inf
x
F ⋆(x) = F (0)− inf

x∈Rd
F (x) ≤ τλ2∆0

l1
· d =

4l1ϵ∆0

τ

⌊
τ∆

4∆0l1ϵ

⌋
≤ ∆.

Also, each of our objectives is L smooth as τ ≤ L. The second order heterogeneity of our problem is
bounded by τ as for all x,

1

2

∥∥∇2F ⋆
1 (x)−∇2F ⋆

2 (x)
∥∥ =

τ

8l1

∥∥∥∇2F1

(x
λ

)
−∇2F2

(x
λ

)∥∥∥ ≤ τ.

Thus, F ⋆
1 , F

⋆
2 characterize a distributed optimization problem which satisfies all our assumptions.

Now, we initialize our algorithm at 0. Then using Lemma 1 we know that for all r ∈ [R], the output
of the algorithm after r communication rounds, i.e., xr ∈ Er. In particular for r ∈ [d − 1] using
Lemma 3 this implies that

E
[
∥∇F ⋆(xr)∥2

]
≥
(
τλ

4l1

)2

≥ ϵ.

Thus, if we want to achieve ϵ-stationarity, we need to communicate at least d − 1 times. In other
words,

R ≥ d− 1 ≥ 1

8∆0l1
· τ∆
ϵ
.

This concludes the proof of the theorem with c1 = 1
8∆0l1

and c2 = 1
4∆0l1

.

Similarly while optimizing problems in F1
M (L,∆, ζ) we can get the following communication lower

bound.

Theorem B.2 (Communication complexity first-order). Any algorithmA ∈ Azr optimizing a problem
in F1

M (L,∆, ζ), ∀ τ,∆ ≥ 0, ∆L ≥ ζ and with K > 0 intermittent accesses to {On,L,0
Fm

}m∈[M ] on
all the clients needs communication rounds,

R ≥ c1 ·
ζ2

ϵ

to output xAR such that E[
∥∥∇F (xAR)∥∥2] ≤ ϵ where ϵ < c2ζ

2 and c1, c2 are numerical constants.
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Proof. Let ∆0, l1 be the numerical constants as in Lemma 2. Given accuracy parameter 0 < ϵ < ζ2

∆0l1
we define the following functions,

F ⋆
1 (x) :=

ζ2λ2

∆l1
F1

(x
λ

)
, F ⋆

2 (x) :=
ζ2λ2

∆l1
F2

(x
λ

)
,

where λ := ∆l1
ζ2 ·

√
ϵ. For M > 2 we put F ⋆

1 on the first ⌊M/2⌋ machines, F ⋆
2 on the next ⌊M/2⌋

machines, and if M is odd we put the zero function on the last machine. This only worsens the result
by a factor of

(
M−1
M

)2
as we’d see below, so we can assume without loss of generality that M is

even. We define

F ⋆(x) :=
F ⋆
1 (x) + F ⋆

2 (x)

2

as the average objective of M machines. Further choosing d =
⌊

ecζ2

∆0l1ϵ

⌋
≥ 1 guarantees that (due to

Lemma 2),

F ⋆(0)− inf
x
F ⋆(x) ≤ ζ2λ2∆0

∆l1
· d =

∆l1ϵ∆0

ζ2

⌊
ζ2

∆0l1ϵ

⌋
≤ ∆.

Also, each of our objectives is L smooth as ζ2/∆ ≤ L. The first order heterogeneity of our problem
is bounded by ζ2 as for all x (upto numerical constants),

1

M

∑
m∈[M ]

∥∇Fm(x)− F (x)∥2 =
1

2
∥∇F ⋆

1 (x)−∇F ⋆
2 (x)∥

2
,

=
ϵ

2

∥∥∥∇F1

(x
λ

)
−∇F2

(x
λ

)∥∥∥2 ,
≤ (23)2ϵd,

= (23)2ϵ

⌊
ζ2

∆0l1ϵ

⌋
,

≤ (23)2

∆0l1
· ζ2 ≤ ζ2,

where the last step follows from noting that ∆0 = 12, l1 = 152.

Thus, F ⋆
1 , F

⋆
2 characterize a distributed optimization problem in F1

M (L,∆, ζ). Now, we initialize our
algorithm at 0. Then using Lemma 1 we know that for all r ∈ [R], the output of the algorithm after r
communication rounds, i.e., xr ∈ Er. In particular for r ∈ [d− 1] using Lemma 3 this implies that

E
[
∥∇F ⋆(xr)∥2

]
≥
(
ζ2λ

∆l1

)2

≥ ϵ.

Thus if we want to achieve, ϵ-stationarity we need to communicate at least d − 1 times. In other
words,

R ≥ d− 1 ≥ 1

2∆0l1
· ζ

2

ϵ
.

This concludes the proof of the theorem with c1 = 1
2∆0l1

and c2 = 1
∆0l1

Note that Theorems B.2 and B.1 imply a non-trivial lower bound even if the clients are allowed infinite
oracle accesses between two communication rounds, i.e., K → ∞ in the intermittent communication
setting. Next, we combine these results with known first-order oracle complexity lower bounds to get
the stated theorem statements. We begin by first re-stating theorem 3.2.
Theorem B.3 (General Lower Bound). For all L, σ,∆ ≥ 0, every algorithm A ∈ Azr, optimizing
a problem in F1

M (L,∆, ζ) ∪ F2
M (L,∆, τ) where τ/2, ζ2/∆ ≤ L, and with K > 0 intermittent

accesses to two-point first-order oracles {O2,L,σ
Fm

}m∈[M ] on all the machines, outputs xAR after
R ≥ c2 rounds such that,

E
[∥∥∇F (xAR)∥∥2] ≥ c1 ·

(
min

{
ζ2

R
,
∆τ

R

}
+

∆L

KR
+

σ2

MKR
+

(
σ∆L

MKR

)2/3
)
,

where c1, c2 are numerical constants.
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Proof. Note that using Theorems B.2 and B.1 for any problem in F1
M (L∆, ζ) ∪ F2

M (L,∆, τ) we’ve

proven that, the communication complexity is lower bounded by min
{

∆τ
ϵ ,

ζ2

ϵ

}
when τ/2, ζ2/∆ ≤

L and c2 · ϵ ≤ ·min{τ∆, ζ2} (where 1/c2 is the maximum of the numerical constants appearing in
B.2 and B.1). This implies the first two terms in the lower bound for R ≥ c1.

To get the second term, we put the function F on all the machines and endow the machines with exact
oracles, i.e., σ = 0. Since the oracle is queried at the same input on all the machines, as well as returns
the same fixed output, the M machines can be simulated by a single machine. Furthermore, a single
query to O2,L,0

F at two different points v, w ∈ Rd is equivalent to querying the oracle O1,L,0
F two

times at v, w. Thus, we can implement any algorithm A ∈ Acent
ZR which requires K total intermittent

accesses to O2,L,0
F for all m ∈ [M ], by instead considering a single machine with 2K intermittent

accesses to O1,L,0
F . Due to Carmon et al., we know that the latter problem requires at least ∆L/ϵ

oracle calls, which implies that our parallel problem requires at least ∆L/(Kϵ) communication
rounds. This gives the second term.

Finally, due to [31], any zero respecting algorithm optimizing F requires at least σ2/ϵ+ σ∆L/ϵ3/2

stochastic oracle calls to an active oracle (i.e., an oracle which takes as input both the query point and
the random seed, c.f., Section 5.2 in [31]) which is strictly more powerful than O2,L,σ

F . Thus, if we
put Fm = F on all machines, and give each machine active oracles, then the oracle queries must be
lower bounded by 2MKR ≥ σ2/ϵ+ σ∆L/ϵ3/2. This in turn proves a lower bound on the queries
to the weaker O2,L,σ

F oracles and proves the final two terms.

We choose c1 as the minimum of the numerical constants coming from Theorems B.2, B.1, [32] and
[31].

Similarly we can prove Theorem 2.1.
Theorem B.4 (Centralized Lower Bound). For all L,∆, σ ≥ 0, every algorithm A ∈ Acent

ZR
optimizing a problem in F1

M (L,∆, ζ) ∪ F2
M (L,∆, τ) where τ/2, ζ2/∆ ≤ L, and with access to an

oracle O2,L,σ
Fm

over R ≥ c1 communication rounds must output xAR such that

E
[∥∥∇F (xAR)∥∥2] ≥ c2 ·

(
∆L

R
+

σ2

MKR
+

(
σ∆L

MKR

)2/3
)
,

where c1, c2 are numerical constants.

Proof. The last two oracle complexity terms follow the same way as in Theorem 3.2 due to [31]. We
only need to show how to get the higher first term. For this we use the argument in [32]. We put the
function F on all the machines and endow the machines with exact oracles, i.e., σ = 0. Moreover,
since this a homogeneous problem, τ, ζ = 0 for this distributed problem. Furthermore, since the
oracle is queried at the same input on all the machines, as well as returns the same fixed output, the
M machines can be simulated by a single machine. A single query to O2,L,0

F at two different points
v, w ∈ Rd is equivalent to querying the oracle O1,L,0

F two times at v, w. Thus, we can implement
any algorithm A ∈ Acent

ZR which requires K total intermittent accesses to O2,L,0
F for all m ∈ [M ],

by instead considering a single machine with 2 intermittent accesses to O1,L,0
F . Due to Carmon

et al. we know that the latter problem requires at least ∆L/ϵ oracle calls, which implies that our
parallel problem requires at least ∆L/ϵ communication rounds. This gives the first term of the lower
bound.

Finally, for the partial participation case, we need to argue about one additional term. We first re-state
the formal result.
Theorem B.5 (Partial participation lower bound). For all L, σ,∆ ≥ 0 every algorithm A ∈ Azr

optimizing a problem in F1
P(L,∆, ζ) ∪ F2

P(L,∆, τ) where τ/2, ζ2/∆ ≤ L, and with K > 0

intermittent accesses to two-point first-order oracles {O2,L,σ
Fn

}n∈support(P) on all the machines outputs
xAR after R ≥ c1 rounds such that,

E
[∥∥∇F (xAR)∥∥2] ≥ c2·

(
min

{
ζ2

R
,
∆τ

R

}
+

∆L

KR
+

σ2

mKR
+

(
σ∆L

mKR

)2/3

+
ζ2

mR
+

(
ζ∆L

mKR

)2/3
)
,
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where c1, c2 are numerical constants.

Proof. Except for the last two terms, all the other terms follow from the full-participation case lower
bound, i.e., Theorem 3.2. To get these terms, we first put an exact two-point oracle on each machine
so σ = 0. Now note that the distributed optimization problem in the partial participation case is
just a stochastic optimization problem, where the randomness comes from sampling the machine
n ∼ P . Moreover, by sampling a machine n ∼ P , we can emulate a stochastic gradient oracle, with
variance bounded by ζ2, (due to the first-order heterogeneity condition) and where the stochastic
gradients satisfy the mean squared smoothness condition (because the functions on all the machines
are L-smooth). Thus for the last term we can simply use the lower bound of [31] for any zero
respecting first order algorithm that makes mKR active oracle calls, i.e., the same argument that
gave us the variance terms in the lower bound of theorem B.3. And the reason the second last term
doesn’t have a factor of K, is because we only see mR machines/samples, and through statistical
estimation results we know that the sample complexity lower bound (which is stronger than the lower
bound for an active oracle) should be ζ2

mR (c.f., Lemmas 10, 11 in [31]).

Finally, prove the centralized lower bound for the partial participation setting in theorem D.2.
Theorem B.6 (Centralized Partial Participation Lower Bound). For all L,∆, σ ≥ 0, every algorithm
A ∈ Acent

ZR optimizing a problem in F1
P(L,∆, ζ) ∪ F2

P(L,∆, τ) where τ/2, ζ2/∆ ≤ L, and with
access to an oracle O2,L,σ

Fm
over R ≥ c1 communication rounds must output xAR such that

E
[∥∥∇F (xAR)∥∥2] ≥ c2 ·

(
∆L

R
+

σ2

mKR
+

(
σ∆L

mKR

)2/3

+
ζ2

mR
+

(
ζ∆L

mR

)2/3
)
,

where c1, c2 are numerical constants.

Proof. The first three terms follow from the proof of theorem 2.1. For the last two terms, we consider
a similar argument as in the proof of theorem 3.4, i.e., we assume all machines have exact oracles,
and hence the only source of randomness is the sampling of machines from the distribution P .
The difference with respect to distributed zero respecting algorithms is that centralized algorithms
can be simulated by a single query K = 1, because they make queries at the same point within a
communication round and hence with exact oracles, only a single query is required per machine
per communication round. Thus, centralized algorithms can be simulated by mR queries to active
oracles with bounded variance ζ2 and L mean squared smoothness. Thus, the last two terms have a
factor of mR as opposed to mKR as in theorem 3.3. This completes the proof.

C Proof of Theorem 3.1

In this section, we provide the full statement of Theorem 3.1 and its corresponding proofs. More
specifically, we choose the input T = K in Algorithm 1 and present the results accordingly.

We first present the full theorem of Theorem 3.1.
Theorem C.1. Suppose {Fm}m∈[M ] ∈ F2

M (L,∆, τ) for L,∆, τ ≥ 0 then,

(a) if each client m ∈ [M ] has a stochastic oracle O2,L,σ
Fm

, and assuming ∆L
R ≤ σ2

√
MKb

, then the
output x̃ of Algorithm 1 using

β = max

{
1

R
,
(∆L)2/3(MKb)1/3

σ4/3R2/3

}
, b0 = KR, η = c1 ·min

{
1

L
,

1

Kτ
,

1√
KL

,
(βMK)1/2

LK

}
,

satisfies the following

E∥∇F (x̃)∥2 ≤ c2 ·
(
∆τ

R
+

∆L

KR
+

∆L

R
√
Kb

+

(
σ∆L

MKbR

)2/3

+
σ2

MKbR

)
.

(b) if each client m ∈ [M ] has a deterministic oracle O2,L,0
Fm

, then the output x̃ of Algorithm 1 using
β = 1 and η = min

{
1
L ,

1
Kτ

}
satisfies,

E∥∇F (x̃)∥2 ≤ c3 ·
(
∆τ

R
+

∆L

KR

)
,
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where c1, c2, c3 are numerical constants.

In addition, if we have ϵ1/2 ≤ στ/(LM), ϵσ2 ≤ (∆L)2, and Mϵ1/2 ≤ min{σ, σ3/(L∆)}, then
Algorithm 1 using K = σL/(Mτϵ1/2), b0 = σ3/(L∆Mϵ1/2), β = Lϵ1/2/(στ) can achieve the
ϵ-approximate stationary point with the following communication and gradient complexities

R ≤ c4
∆τ

ϵ
and N ≤ c5

∆Lσ

ϵ3/2
,

where c4, c5 are numerical constants.

Proof of Theorem C.1 and Three Regimes in Figure 1. In the following proof, we assume that each
client can use a mini-batch gradient with batch size b, which can give us a more general result. First
of all, we will bound the term ∥wj

r+1,k − xr∥2 for each client at local updates. Let’s consider the
local updates for client j. For k > 1, we have

∥wj
r+1,k − xr∥2 = ∥wj

r+1,k−1 − ηvjr,k−1 − xr∥2

≤
(
1 +

1

K

)
∥wj

r+1,k−1 − xr∥2 + (1 +K)η2∥vjr,k−1∥
2

≤
(
1 +

1

K

)
∥wj

r+1,k−1 − xr∥2 + 2(1 +K)η2∥vjr,k−1 −∇F (wj
r+1,k−1)∥

2

+ 2(1 +K)η2∥∇F (wj
r+1,k−1)∥

2.

Therefore, recursively using the above inequality and the fact that wj
r+1,1 = xr, we can obtain

∥wj
r+1,k − xr∥2 ≤ 2(1 +K)η2

k∑
l=2

(
1 +

1

K

)k−l

∥vjr,l−1 −∇F (wj
r+1,l−1)∥

2

+ 2(1 +K)η2
k∑

l=2

(
1 +

1

K

)k−l

∥∇F (wj
r+1,l−1)∥

2

≤ 2e(1 +K)η2
K∑

k=2

∥vjr,k−1 −∇F (wj
r+1,k−1)∥

2 + 2e(1 +K)η2
K∑

k=2

∥∇F (wj
r+1,k−1)∥

2

= 2e(1 +K)η2
K−1∑
k=1

∥vjr,k −∇F (wj
r+1,k)∥

2 + 2e(1 +K)η2
K−1∑
k=1

∥∇F (wj
r+1,k)∥

2.

(C.1)

Next, we will bound the estimation error between the local gradient estimator and the full gradi-
ent E∥vjr,k − ∇F (wj

r+1,k)∥2. According to the definition vjr,k = ∇Fj,Bj
r,k

(wj
r+1,k) + vjr,k−1 −

∇Fj,Bj
r,k

(wj
r+1,k−1), we have

E∥vjr,k −∇F (wj
r+1,k)∥

2

= E
∥∥(vjr,k−1 −∇F (wj

r+1,k−1)
)

+
(
∇Fj,Bj

r,k
(wj

r+1,k)−∇Fj,Bj
r,k

(wj
r+1,k−1)−∇Fj(w

j
r+1,k) +∇Fj(w

j
r+1,k−1)

)
+
(
∇Fj(w

j
r+1,k)−∇Fj(w

j
r+1,k−1) +∇F (wj

r+1,k−1)−∇F (wj
r+1,k)

)∥∥2
= E

∥∥∇Fj,Bj
r,k

(wj
r+1,k)−∇Fj,Bj

r,k
(wj

r+1,k−1)−∇Fj(w
j
r+1,k) +∇Fj(w

j
r+1,k−1)

∥∥2
+ E

∥∥(vjr,k−1 −∇F (wj
r+1,k−1)

)
+
(
∇Fj(w

j
r+1,k)−∇Fj(w

j
r+1,k−1) +∇F (wj

r+1,k−1)−∇F (wj
r+1,k)

)∥∥2
≤ L2

b
E∥wj

r+1,k − wj
r+1,k−1∥

2 +

(
1 +

1

K

)
E∥vjr,k−1 −∇F (wj

r+1,k−1)∥
2

+ (1 +K)E
∥∥∇Fj(w

j
r+1,k)−∇Fj(w

j
r+1,k−1) +∇F (wj

r+1,k−1)−∇F (wj
r+1,k)

∥∥2,
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where the second equality is due to the independence of the random variables, the inequality comes
from the fact that the mini-batch gradients consist of b i.i.d. samples, and each client m ∈ [M ] has
the stochastic oracle O2,L,σ

Fm
. Therefore, using the above inequality recursively, we can get

E∥vjr,k −∇F (wj
r+1,k)∥

2

≤ eE∥vjr,0 −∇F (wj
r+1,0)∥2 +

eL2

b

K∑
k=1

E∥wj
r+1,k − wj

r+1,k−1∥
2

+ e(1 +K)

K∑
k=1

E
∥∥∇Fj(w

j
r+1,k)−∇Fj(w

j
r+1,k−1) +∇F (wj

r+1,k−1)−∇F (wj
r+1,k)

∥∥2.
(C.2)

Since {Fm}m∈[M ] ∈ F2
M (L,∆, τ), by the second-order τ -heterogeneity and Lemma 3 in [21],

equation C.2 implies that

E∥vjr,k −∇F (wj
r+1,k)∥

2

≤ eE∥vjr,0 −∇F (wj
r+1,0)∥2 +

(
eL2

b
+ 8eKτ2

) K∑
k=1

E∥wj
r+1,k − wj

r+1,k−1∥
2

≤ eE∥vjr,0 −∇F (wj
r+1,0)∥2 + 2η2

(
eKL2

b
+ 8eK2τ2

)
1

K

K∑
k=1

E∥vjr,k−1 −∇F (wj
r+1,k−1)∥

2

+ 2η2
(
eKL2

b
+ 8eK2τ2

)
1

K

K∑
k=1

E∥∇F (wj
r+1,k−1)∥

2,

where the second inequality is due to the updating rule as well as adding and subtracting the term
∇F (wj

r+1,k−1). As a result, if we choose η ≤ 1/(CKτ) and η ≤
√
b/(C ′

√
KL), and the fact that

wj
r+1,0 = wj

r+1,1 = xr, we can obtain

1

K

K∑
k=1

E∥vjr,k −∇F (wj
r+1,k)∥

2 ≤ 2eE∥vr −∇F (xr)∥2 +
1

6K

K∑
k=1

E∥∇F (wj
r+1,k)∥

2. (C.3)

Given the above results, we are ready to establish the convergence guarantee of Algorithm 1. For
client m̃ sampled at t-th iteration for the local update, we have

F (wm̃
r+1,k+1) ≤ F (wm̃

r+1,k) + ⟨∇F (wm̃
r+1,k), w

m̃
r+1,k+1 − wm̃

r+1,k⟩+
L

2
∥wm̃

r+1,k+1 − wm̃
r+1,k∥2

= F (wm̃
r+1,k)− η⟨∇F (wm̃

r+1,k), v
m̃
r,k⟩+

η2L

2
∥vm̃r,k∥2

= F (wm̃
r+1,k)− η⟨∇F (wm̃

r+1,k), v
m̃
r,k −∇F (wm̃

r+1,k) +∇F (wm̃
r+1,k)⟩+

η2L

2
∥vm̃r,k∥2

≤ F (wm̃
r+1,k)− η∥∇F (wm̃

r+1,k)∥2 − η⟨∇F (wm̃
r+1,k), v

m̃
r,k −∇F (wm̃

r+1,k)⟩
+ η2L∥vm̃r,k −∇F (wm̃

r+1,k)∥2 + η2L∥∇F (wm̃
r+1,k)∥2

≤ F (wm̃
r+1,k)− η

(
3

4
− ηL

)
∥∇F (wm̃

r+1,k)∥2 + η(1 + ηL)∥vm̃r,k −∇F (wm̃
r+1,k)∥2

≤ F (wm̃
r+1,k)−

η

2
∥∇F (wm̃

r+1,k)∥2 +
5

4
η∥vm̃r,k −∇F (wm̃

r+1,k)∥2,

where the last inequality is due to the fact that η ≤ 1/(4L). Therefore, we can obtain that

∥∇F (wm̃
r+1,k)∥2 ≤ 2

η

(
F (wm̃

r+1,k)− F (wm̃
r+1,k+1)

)
+ 3∥vm̃r,k −∇F (wm̃

r+1,k)∥2.
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Recall that wm̃
r+1,1 = xr and wm̃

r+1,k+1 = xr+1, averaging from k = 1, . . .K, and taking expectation,
we can get

1

K

K∑
k=1

E∥∇F (wm̃
r+1,k)∥2 ≤ 2

Kη

(
EF (xr)− EF (xr+1)

)
+

3

K

K∑
k=1

E∥vm̃r,k −∇F (wm̃
r+1,k)∥2.

(C.4)

Combining equation C.3 and equation C.4, we can obtain

1

K

K∑
k=1

E∥∇F (wm̃
r+1,k)∥2 ≤ 2

Kη

(
EF (xr)− EF (xr+1)

)
+ 6eE∥vr −∇F (xr)∥2+

+
1

2K

K∑
k=1

E∥∇F (wm̃
r+1,k)∥2,

which implies that

1

K

K∑
k=1

E∥∇F (wm̃
r+1,k)∥2 ≤ 4

Kη

(
EF (xr)− EF (xr+1)

)
+ 12eE∥vr −∇F (xr)∥2. (C.5)

Averaging equation C.5 from t = 0, . . . , R− 1, we can obtain

1

RK

R−1∑
r=0

K∑
k=1

E∥∇F (wm̃
r+1,k)∥2 ≤ 4

RKη

(
EF (x0)− EF (xr)

)
+

12e

R

R−1∑
r=0

E∥vr −∇F (xr)∥2,

by the definition of x̃, we have

E∥∇F (x̃)∥2 ≤ 4

RKη

(
EF (x0)− EF (xR)

)
+

12e

R

R−1∑
r=0

E∥vr −∇F (xr)∥2. (C.6)

Next, we consider the estimation error between vr and ∇F (xr). Recall that we have

vr =
1

M

M∑
j=1

∇Fj,Bj
r
(xr) + (1− β)

(
vr−1 −

1

M

M∑
j=1

∇Fj,Bj
r
(xr−1)

)
,

thus we obtain that

vr −∇F (xr) = (1− β)
(
vr−1 −∇F (xr−1)

)
+ β

(
1

M

M∑
j=1

∇Fj,Bj
r
(xr)−∇F (xr)

)

+ (1− β)

(
1

M

M∑
j=1

∇Fj,Bj
r
(xr)−

1

M

M∑
j=1

∇Fj,Bj
r
(xr−1) +∇F (xr−1)−∇F (xr)

)
.

Therefore, consider the conditional expectation up to r-th iteration, we have

Er

∥∥vr −∇F (xr)
∥∥2 ≤ (1− β)2Er

∥∥vr−1 −∇F (xr−1)
∥∥2

+ 2β2Er

∥∥∥∥ 1

M

M∑
j=1

∇Fj,Bj
r
(xr)−

1

M

M∑
j=1

∇Fj(xr)

∥∥∥∥2
+ 2(1− β)2

L2

MKb
Er

∥∥xr − xr−1

∥∥2
≤ (1− β)2Er

∥∥vr−1 −∇F (xr−1)
∥∥2 + 2β2 σ2

MKb

+ 2(1− β)2
L2

MKb
Er

∥∥xr − xr−1

∥∥2, (C.7)
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where the first inequality is due to the fact that the mini-batch gradients consists of b i.i.d. samples
and each client has the stochastic oracle O2,L,σ

Fm
, and the last inequality is due to the stochastic oracle

O2,L,σ
Fm

. Therefore, taking expectations over all iterations for equation C.7, we can get

E
∥∥vr −∇F (xr)

∥∥2 ≤ (1− β)2E
∥∥vr−1 −∇F (xr−1)

∥∥2 + 2β2 σ2

MKb

+ 2(1− β)2
L2

MKb
E
∥∥xr − xr−1

∥∥2. (C.8)

Furthermore, we have

β

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2
=

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 − (1− β)

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2
=

R∑
r=1

E
∥∥vr −∇F (xr)

∥∥2 − (1− β)

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 − E
∥∥vR −∇F (xR)

∥∥2
+ E

∥∥v0 −∇F (x0)
∥∥2

≤
R∑

r=1

E
∥∥vr −∇F (xr)

∥∥2 − (1− β)2
R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 − E
∥∥vR −∇F (xR)

∥∥2
+ E

∥∥v0 −∇F (x0)
∥∥2

≤ 2(1− β)2
L2

MKb

R−1∑
r=0

E
∥∥xr+1 − xr

∥∥2 + 2β2R
σ2

MKb
+ E

∥∥v0 −∇F (x0)
∥∥2,

where the last inequality is due to equation C.8. Since we have

E
∥∥v0 −∇F (x0)

∥∥2 = E
∥∥∥∥ 1

M

M∑
j=1

∇Fj,Bj
0
(x0)−∇F (x0)

∥∥∥∥2 ≤ σ2

Mb0
.

Therefore, we have

β

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 ≤ 2(1− β)2L2

MKb

R−1∑
r=0

E
∥∥xr+1 − xr

∥∥2 + 2β2R
σ2

MKb
+

σ2

Mb0
.

This implies that that

1

R

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 ≤ 2(1− β)2L2

βMKbR

R−1∑
r=0

E
∥∥xr+1 − xr

∥∥2 + 2β
σ2

MKb
+

σ2

βRMb0
. (C.9)

In addition, combining equation C.1 and equation C.3, we can get

E∥wj
r+1,k − xr∥2 ≤ 8e2K2η2E∥vr −∇F (xr)∥2

+
2e(1 +K)η2

6

K∑
k=1

E∥∇F (wj
r+1,k)∥

2 + 2e(1 +K)η2
K−1∑
k=1

∥∇F (wj
r+1,k)∥

2

≤ 8e2K2η2E∥vr −∇F (xr)∥2 + 10eK2η2
1

K

K−1∑
k=1

E∥∇F (wj
r+1,k)∥

2. (C.10)

Therefore, we have

E∥xr+1 − xr∥2 = E∥wm̃
r+1,k+1 − xr∥2

≤ 8e2K2η2E∥vr −∇F (xr)∥2 + 10eK2η2
1

K

K−1∑
k=1

E∥∇F (wm̃
r+1,k)∥2. (C.11)
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Thus, plugging equation C.11 into equation C.9, we can get

1

R

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 ≤ 160L2K2η2

βMKb

1

R

R−1∑
r=0

(
E∥vr −∇F (xr)∥2 +

1

K

K−1∑
k=1

E∥∇F (wm̃
r+1,k)∥2

)
+ 2β

σ2

MKb
+

σ2

βRMb0

≤ 1

24e+ 1

1

R

R−1∑
r=0

(
E∥vr −∇F (xr)∥2 +

1

K

K−1∑
k=1

E∥∇F (wm̃
r+1,k)∥2

)
+ 2β

σ2

MKb
+

σ2

βRMb0
,

where the last inequality is due to the fact that η ≤
√
βMKb/(C ′′LK). Thus, we have

1

R

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 ≤ 1

24e

1

R

R−1∑
r=0

1

K

K−1∑
k=1

E∥∇F (wm̃
r+1,k)∥2 + 4β

σ2

MKb
+ 2

σ2

βRMb0
.

(C.12)

Combining equation C.6 and equation C.12, we can obtain

E∥∇F (x̃)∥2 ≤ 4

RKη

(
EF (x0)− EF (xR)

)
+

1

2
E∥∇F (x̃)∥2 + 48eβ

σ2

MKb
+ 24e

σ2

βRMb0
,

which implies

E∥∇F (x̃)∥2 ≤ 8

RKη

(
F (x0)− F (x∗)

)
+ 96eβ

σ2

MKb
+ 48e

σ2

βRMb0
. (C.13)

Note that we have the following requirements for the stepsize η: η ≤ 1/(4L), η ≤ 1/(CKτ),
η ≤

√
b/(C ′

√
KL), η ≤

√
βMKb/(C ′′LK). Plugging these requirements, we can get

E∥∇F (x̃)∥2 ≤ C1

(
∆τ

R
+

∆L

KR
+

∆L

R
√
Kb

+
∆L

R
√
βMKb

+ β
σ2

MKb
+

σ2

βRMb0

)
. (C.14)

Therefore, if we choose b0 = KR and

β = max

{
1

R
,
(∆L)2/3(MKb)1/3

σ4/3R2/3

}
=: max{β1, β2},

we can obtain,

E∥∇F (x̃)∥2 ≤ C1

(
∆τ

R
+

∆L

KR
+

∆L

R
√
Kb

+
∆L

R
√
β2MKb

+ (β1 + β2)
σ2

MKb
+

σ2

β1MKR2

)
.

which simplifies to,

E∥∇F (x̃)∥2 ≤ C1

(
∆τ

R
+

∆L

KR
+

∆L

R
√
Kb

+

(
σ∆L

MKbR

)2/3

+
σ2

MKbR

)
. (C.15)

Since we need to ensure that β ≤ 1, we require the following assumption for β2 ≤ 1 (R ≥ 1 w.l.o.g.),

∆L

R
≤ σ2

√
MKb

.

This concludes the proof of Theorem C.1 (a).

Deterministic case: Note that if each client m ∈ [M ] has a deterministic oracle O2,L,0
Fm

, we can
choose β = 1, and according to equation C.6, we can obtain

E∥∇F (x̃)∥2 ≤ 4

RKη

(
EF (x0)− EF (xR)

)
+

12e

R

R−1∑
r=0

E∥vr −∇F (xr)∥2, (C.16)
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where we have the following requirements of stepsize η: η ≤ 1/(4L), η ≤ 1/(CKτ). Furthermore,
we have vt = ∇F (xr), which implies that

E∥∇F (x̃)∥2 ≤ C4

(
∆τ

R
+

∆L

KR

)
.

This concludes the proof of Theorem C.1 (b).

In the following, we discuss how to obtain the result in Figure 1 when each client m ∈ [M ] has a
stochastic oracle O2,L,σ

Fm
. We always assume that τ ≤ L and without loss of the generality, we assume

b = 1, and ignore all the dependence on constants. According to equation C.14, if we choose β, b0
such that

β
σ2

MKb
≤ ϵ and

σ2

βRMϵ
≤ b0, (C.17)

we can obtain

E∥∇F (x̃)∥2 ≤ C5

(
∆τ

R
+

∆L

KR
+

∆L

R
√
Kb

+
∆L

R
√
βMKb

+ ϵ

)
. (C.18)

Therefore, to achieve E∥∇F (x̃)∥2 ≤ ϵ, we need the following communication complexity

R = C3

(
∆τ

ϵ
+

∆L

Kϵ
+

∆L

ϵ
√
Kb

+
∆L

ϵ
√
βMKb

)
.

Furthermore,the gradient complexity of Algorithm 1 is N =MbKR+ bK +Mb0. If we have

Mb0 ≤ N, (C.19)

we have the following gradient complexity:

N = C4MbKR = C4

(
MbK∆τ

ϵ
+
Mb∆L

ϵ
+
M∆L

√
Kb

ϵ
+

∆L
√
MKb

ϵ
√
β

)
.

Note that we want to keep the R = ∆τ/ϵ while minimizing N , i.e., to obtain N close to ∆Lσ/ϵ3/2.
Recall that we have

R =
∆τ

ϵ
+

∆L

ϵ
√
K

+
∆L

ϵ
√
βMK

and N =
MK∆τ

ϵ
+
M∆L

√
K

ϵ
+

∆L
√
MK

ϵ
√
β

.

To achieve R = ∆τ/ϵ, we need

K ≥ max

{
L2

τ2
,

L2

βMτ2

}
. (C.20)

Green regime: We want to achieve best of both worlds, i.e., R = ∆τ/ϵ and N = ∆Lσ/ϵ3/2.
According to N , we need to have

K ≤ max

{
L

τ
· σ

Mϵ1/2
,
σ2

M2ϵ
,
σ2β

Mϵ

}
. (C.21)

Therefore, combining equation C.20 and equation C.21, we can obtain

ϵ1/2 ≤ στ

LM
and β ≥ Lϵ1/2

στ
.

In addition, according to equation C.17, we have

β ≤ ϵMK

σ2
≤ ϵN

Rσ2
=
Lϵ1/2

στ
.

Therefore, we can choose β = Lϵ1/2/(στ), and this will lead to

K =
σL

Mτ
√
ϵ
.
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In addition, according to equation C.17 and equation C.19, we have

b0 =
σ3

∆LMϵ1/2
,

and we need
σ3

∆Lϵ1/2
≤ σ2

ϵ
≤ ∆Lσ

ϵ3/2
,

which will hold if we have ϵσ2 ≤ (∆L)2.
To summarize, if we have ϵ1/2 ≤ στ/(LM), Lϵ1/2 ≤ στ (ϵ ≤ σ2), and ϵσ2 ≤ (∆L)2, we have

R =
∆τ

ϵ
and N =

∆Lσ

ϵ3/2

if we choose K = σL/(Mτϵ1/2) ≥ 1 (Mϵ1/2 ≤ σ), b0 = σ3/(L∆Mϵ1/2), β = Lϵ1/2/(στ)
(always less than 1 in this regime). This gives us the green regime in Figure 1.
Orange regime: In this regime, we still want to keep the R = ∆τ/ϵ while minimizing N . Since
we have ϵ1/2 ≥ στ/(LM), we cannot make N = ∆σL/ϵ3/2. Thus, according to equation C.20, we
have

N =
ML∆

ϵ
· L
τ
+

√
ML∆√
βϵ

· L
τ
+
ML∆

ϵ
· L

τβM
.

By choosing β = 1/M , we can get

N =
ML∆

ϵ
· L
τ
.

And we have K = L2/τ2. Furthermore, according to equation C.17 and equation C.19, we have

σ2τ2

M2L2
≤ ϵ, b0 =

σ2

∆τ
,
Mσ2

∆τ
≤ ML∆

ϵ
· L
τ

where the first inequality holds due to ϵ1/2 ≥ στ/(LM) and the last one holds if we have ϵσ2 ≤
(L∆)2.
To summarize, if we have ϵ1/2 ≥ στ/(LM) and ϵσ2 ≤ (∆L)2, we have

R =
∆τ

ϵ
and N =

ML∆

ϵ
· L
τ
,

if we choose K = L2/τ2, b0 = σ2/(∆τ).
Red region: If we have ϵ ≥ ∆τ , then we only need R = 1, and thus we have N ≥ML2∆2/ϵ2.

C.1 Mini-batch STORM

In this section, we present the convergence guarantee of mini-batch STORM for completeness. More
specifically, if we choose the number of local update to be one in Algorithm 1, our method will
reduce to mini-batch STORM. As a result, we have the following convergence guarantee.
Theorem C.2. Suppose {Fm}m∈[M ] ∈ F2

M (L,∆, τ) for L,∆, τ ≥ 0 then, if each client m ∈ [M ]

has a stochastic oracle O2,L,σ
Fm

, then the output x̃ of mini-batch STORM using β = (∆L)2/3(MK)1/3

σ4/3R2/3 ≤
1, b0 = min

{
σ4/3(RK)2/3

(∆L)2/3M1/3 ,
σ8/3(KR)1/3

(∆L)4/3M2/3

}
, and η = min

{
1
L ,

(βM)1/2

LK1/2

}
satisfies

E∥∇F (x̃)∥2 ≤ c1 ·

(
∆L

R
+

σ2

MKR
+

(
∆σL

RMK

)2/3
)
,

where c1 is a numerical constant.

Proof of Theorem C.2. The proof of this result directly follows the proof of Theorem C.1. We can
just set K = 1, let τ = L, and ignoring the ∆L/(R

√
Kb) term (which appears when local updates

K > 1) in equation C.15 to get

E∥∇F (x̃)∥2 ≤ C1

(
∆L

R
+

σ2

MbR
+

(
σ∆L

MbR

)2/3)
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provided that

β =
(∆L)2/3(Mb)1/3

σ4/3R2/3
≤ 1.

Finally, if we choose the batch size to be the number of updates in the local update algorithms, i.e.,
b = K, we obtain that

E∥∇F (x̃)∥2 ≤ C1

(
∆L

R
+

σ2

MKR
+

(
∆σL

RMK

)2/3)
,

and we have

β =
(∆L)2/3(MK)1/3

σ4/3R2/3
≤ 1, b0 = min

{
σ4/3(RK)2/3

(∆L)2/3M1/3
,
σ8/3(KR)1/3

(∆L)4/3M2/3

}
.

Note that C1, C2 are numerical constants.

C.2 The Gap in the Stochastic Setting

According to the results in Table 1, there is a gap between the convergence rates of CE-LSGD and
CE-LGD, which doesn’t go away when σ = 0. In particular, the brown term in CE-LGD’s upper
bound, which doesn’t depend on σ, matches the corresponding term in the lower bound, but the
brown term in CE-LSGD’s upper bound is worse by a factor of 1/

√
K. This result comes from a

more pessimistic choice of step size in the stochastic setting.

To elucidate this further, consider a more general communication model. Recall that each machine
makes K queries in the IC setting between two communication rounds. We can instead consider
the model where each machine is allowed to make Kb queries but at most at K different inputs.
Centralized algorithms will make just Kb queries at the same input. For instance, in this model,
MB-SGD or MB-STORM will make R updates with batch size MKb. However, local update
algorithms can make K “mini-batch” style queries, i.e., make b repeated queries at the current local
iterate. This oracle model has been studied for hierarchical parallelism [39]. For instance, let’s say
each machine has access to a GPU. Then it is preferable that each local update uses the largest batch
size b = bmax that saturates the GPU’s capacity (such as its memory) without additional parallel
run-time when compared to b = 1. Modern specialized hardware for deep learning (including FPGAs,
TPUs, etc.) is designed with such parallelism, and bmax is usually much larger than 1 [40]. Thus,
if energy usage (i.e., more oracle queries) is a non-concern and getting to an accurate solution as
quickly as possible is most important, then it is useful to consider this hierarchical setting. In this
setting, we can attain the following convergence guarantee for CE-LSGD.
Theorem C.3. Suppose {Fm}m∈[M ] ∈ F2

M (L,∆, τ) for L,∆, τ ≥ 0, τ ≤ 2L, each client m ∈ [M ]

has a stochastic oracle O2,L,σ
Fm

which it uses through b-calls for every single query, and assume that
∆L
R ≤ σ2

√
MKb

. Then the output x̃ of Algorithm 1 using β = max
{

1
R ,

(∆L)2/3(MKb)1/3

σ4/3R2/3

}
, b0 = KbR

and η = min
{

1
L ,

1
Kτ ,

√
b√

KL
, (βMKb)1/2

LK

}
, satisfies the following

E∥∇F (x̃)∥2 ⪯ ∆τ

R
+

∆L

KR
+

∆L

R
√
Kb

+

(
σ∆L

MKbR

)2/3

+
σ2

MKbR
.

When b = 1, this reduces to Theorem 3.1 since the third term in the upper bound always dominates the
second term. In the exact setting as we show in Appendix C, the last three terms go away altogether.
Using arguments similar to the ones given in Appendix B (to prove Theorem 3.2), we can show that
every term except the third term is tight in Theorem C.3. We currently don’t know how to get rid of
the loose third term, but as apparent from the theorem, setting b = K suffices to recover the min-max
optimal guarantee even on the stochastic setting. This gap also appears in the partial participation
setting, which we study in the next section.

D Proof of Convergence for Algorithm 2

As we discussed before, we can adapt Algorithm 1 to the partial participation setting, and we detail
our method in Algorithm 2. Now, we provide the convergence guarantee of Algorithm 2. Same as
before, we choose the input T = K in Algorithm 3.3 and present the results accordingly.
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Algorithm 2 CE-LSGD for Partial Participation
input Initialization x0, communication round R, parameters b0, b, T , β ∈ [0, 1], M , and M0

1: Let x−1 = x0
2: for r = 0, 1, . . . , R− 1 do
3: if r = 0 set ρ = 1, Q = 1, B = b0, S =M0 else set ρ = β, Q = T , B = Q, S =M
4: Sample a subset Sr ∼ P⊗S of S clients
5: Communicate (send) (xr, xr−1) to clients m ∈ Sr

6: on client m ∈ Sr do
7: Compute ∇Fm,Bm

r
(xr) and ∇Fm,Bm

r
(xr−1), where |Bm

r | = B

8: Communicate (rec)
(
∇Fm,Bm

r
(xr),∇Fm,Bm

r
(xr−1)

)
to the server

9: end on client
10: vr = 1

|Sr|
∑

m∈Sr
∇Fm,Bm

r
(xr) + (1− ρ)

(
vr−1 − 1

|Sr|
∑

m∈Sr
∇Fm,Bm

r
(xr−1)

)
11: Communicate (send) (xr, vr) to client m̃r, where m̃r ∼ P
12: on client m̃ do
13: wm̃r

r+1,1 := wm̃r
r+1,0 := xr, v

m̃r
r,0 := vr

14: for k = 1, . . . , Q do
15: Sample Bm̃

r,k ∼ D⊗b
m̃ , get ∇Fm̃,Bm̃

r,k
(wm̃r

r+1,k), ∇Fm̃,Bm̃
r,k

(wm̃r

r+1,k−1), where |Bm̃
r,k| = b

16: vm̃r

r,k = ∇Fm̃,Bm̃
r,k

(wm̃r

r+1,k) + vm̃r

r,k−1 −∇Fm̃,Bm̃
r,k

(wm̃r

r+1,k−1)

17: wm̃r

r+1,k+1 = wm̃r

r+1,k − ηvm̃r

r,k

18: end for
19: Communicate (rec)

(
wm̃r

r+1,Q+1

)
to the server

20: end on client
21: Let xr+1 = wm̃r

r+1,Q+1

22: end for
output Choose x̃ uniformly from {wm̃r

r,k }r∈[R],k∈[Q]

Proof of Theorem 3.3. The proof of the theorem mainly follows the proof in Theorem C.1. As before,
we prove the result of using the mini-batch gradient with batch size b, which is a more general result.
More specifically, the proof for local updates will not change, and we can get the following result
according to equation C.6

E∥∇F (x̃)∥2 ≤ 4

RKη

(
EF (x0)− EF (xR)

)
+

12e

R

R−1∑
r=0

E∥vr −∇F (xr)∥2. (D.1)

For the variance reduction term vr, we have

vr =
1

|Sr|
∑
j∈Sr

∇Fj,Bj
r
(xr) + (1− β)

(
vr−1 −

1

|Sr|
∑
j∈Sr

∇Fj,Bj
r
(xr−1)

)
,

thus we obtain that

vr −∇F (xr) = (1− β)
(
vr−1 −∇F (xr−1)

)
+ β

(
1

|Sr|
∑
j∈Sr

∇Fj,Bj
r
(xr)−∇F (xr)

)

+ (1− β)

(
1

|Sr|
∑
j∈Sr

∇Fj,Bj
r
(xr)−

1

|Sr|
∑
j∈Sr

Fj,Bj
r
(xr−1) +∇F (xr−1)−∇F (xr)

)
.
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Therefore, consider the conditional expectation up to r, we have

Er

∥∥vr −∇F (xr)
∥∥2

≤ (1− β)2Er

∥∥vr−1 −∇F (xr−1)
∥∥2

+ 2β2Er

∥∥∥∥ 1

|Sr|
∑
j∈Sr

∇Fj,Bj
r
(xr)−∇F (xr)

∥∥∥∥2

+ 2(1− β)2Er

∥∥∥∥ 1

|Sr|
∑
j∈Sr

∇Fj,Bj
r
(xr)−

1

|Sr|
∑
j∈Sr

Fj,Bj
r
(xr−1) +∇F (xr−1)−∇F (xr)

∥∥∥∥2
≤ (1− β)2Er

∥∥vr−1 −∇F (xr−1)
∥∥2 + 2β2

(
2σ2

MKb
+

2ζ2

M

)
+ 4(1− β)2

(
L2

MKb
+
τ2

M

)
Er

∥∥xr − xr−1

∥∥2, (D.2)

where the last inequality is due to the following results. First of all, we have

Er

∥∥∥∥ 1

|Sr|
∑
j∈Sr

∇Fj,Bj
r
(xr)−∇F (xr)

∥∥∥∥2 = Er

∥∥∥∥ 1

|Sr|
∑
j∈Sr

∇Fj,Bj
r
(xr)−

1

|Sr|
∑
j∈Sr

∇Fj(xr)

+
1

|Sr|
∑
j∈Sr

∇Fj(xr)−∇F (xr)
∥∥∥∥2

≤ 2Er

∥∥∥∥ 1

|Sr|
∑
j∈Sr

∇Fj,Bj
r
(xr)−

1

|Sr|
∑
j∈Sr

∇Fj(xr)

∥∥∥∥2

+ 2Er

∥∥∥∥ 1

|Sr|
∑
j∈Sr

∇Fj(xr)−∇F (xr)
∥∥∥∥2

≤ 2
σ2

MKb
+ 2

ζ2

M
, (D.3)

where the last inequality is due to the independence between j ∈ Sr with |Sr| = m, each client j has
the stochastic oracle O2,L,σ

Fj
, and Fj ∈ F1

P(L,∆, ζ) with ζ first-order heterogeneity.

In addition, we have

Er

∥∥∥∥ 1

|Sr|
∑
j∈Sr

∇Fj,Bj
r
(xr)−

1

|Sr|
∑
j∈Sr

∇Fj,Bj
r
(xr−1) +∇F (xr−1)−∇F (xr)

∥∥∥∥2

= Er

∥∥∥∥ 1

|Sr|
∑
j∈Sr

(
∇Fj,Bj

r
(xr)−∇Fj,Bj

r
(xr−1) +∇Fj(xr−1)−∇Fj(xr)

)∥∥∥∥2

+ Er

∥∥∥∥ 1

|Sr|
∑
j∈Sr

(
∇Fj(xr−1)−∇Fj(xr)

)
−∇F (xr−1) +∇F (xr)

∥∥∥∥2
≤
(

2L2

MKb
+

2τ2

M

)
Er

∥∥xr − xr−1

∥∥2,
where the first equality is due to the independence of the random variables, and the last inequality
comes from the following two derivations:

Er

∥∥∥∥ 1

|Sr|
∑
j∈Sr

(
∇Fj,Bj

r
(xr)−∇Fj,Bj

r
(xr−1) +∇Fj(xr−1)−∇Fj(xr)

)∥∥∥∥2

=
1

|Sr|2
Er

∑
j∈Sr

∥∥∥∥∇Fj,Bj
r
(xr)−∇Fj,Bj

r
(xr−1) +∇Fj(xr−1)−∇Fj(xr)

∥∥∥∥2
≤ 2L2

MKb
Er

∥∥xr − xr−1

∥∥2,
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where the equality comes from the independence of each random variable, the inequality is due to the
fact Kb samples are i.i.d. and smoothness assumption. On the other hand, we have

Er

∥∥∥∥ 1

|Sr|
∑
j∈Sr

(
∇Fj(xr−1)−∇Fj(xr)

)
−∇F (xr−1) +∇F (xr)

∥∥∥∥2
≤ 2τ2

M
Er

∥∥xr − xr−1

∥∥2,
where the inequality is due to the independence between j ∈ Sr, and the second-order τ -heterogeneity.

Therefore, taking expectations over all iterations for equation D.2, we can get

E
∥∥vr −∇F (xr)

∥∥2 ≤ (1− β)2E
∥∥vr−1 −∇F (xr−1)

∥∥2 + 2β2

(
2σ2

MKb
+

2ζ2

M

)
+ 4(1− β)2

(
L2

MKb
+
τ2

M

)
E
∥∥xr − xr−1

∥∥2. (D.4)

Furthermore, we have

β

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2
=

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 − (1− β)

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2
=

R∑
r=1

E
∥∥vr −∇F (xr)

∥∥2 − (1− β)

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 − E
∥∥vR −∇F (xR)

∥∥2
+ E

∥∥v0 −∇F (x0)
∥∥2

≤
R∑

r=1

E
∥∥vr −∇F (xR)

∥∥2 − (1− β)2
R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 − E
∥∥vr −∇F (xR)

∥∥2
+ E

∥∥v0 −∇F (x0)
∥∥2

≤ 4(1− β)2
(

L2

MKb
+
τ2

M

)R−1∑
r=0

E
∥∥xr+1 − xr

∥∥2 + 2β2R

(
2σ2

MKb
+

2ζ2

M

)
+ E

∥∥v0 −∇F (x0)
∥∥2,

where the last inequality is due to equation D.4. Furthermore, according to equation D.3, we have

E
∥∥v0 −∇F (x0)

∥∥2 = E
∥∥∥∥ 1

M0

∑
j∈S0

∇Fj,Bj
0
(x0)−∇F (x0)

∥∥∥∥2 ≤ 2ζ2

M0
+

2σ2

M0b0
.

Therefore, we have

β

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 ≤ 4(1− β)2
(

L2

MKb
+
τ2

M

)R−1∑
r=0

E
∥∥xr+1 − xr

∥∥2
+ 2β2R

(
2σ2

MKb
+

2ζ2

M

)
+

2ζ2

M0
+

2σ2

M0b0
.

This implies that that

1

R

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 ≤ 4(1− β)2
(

L2

βMKb
+

τ2

βM

)
1

R

R−1∑
r=0

E
∥∥xr+1 − xr

∥∥2
+ 2β

(
2σ2

MKb
+

2ζ2

M

)
+

2ζ2

βRM0
+

2σ2

βRM0b0
. (D.5)
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In addition, according to equation C.11, we have

E∥xr+1 − xr∥2 ≤ 8e2K2η2E∥vr −∇F (xr)∥2 + 10eK2η2
1

K

K−1∑
k=1

E∥∇F (wm̃
r+1,k)∥2. (D.6)

Thus, plugging equation D.6 into equation D.5, we can get

1

R

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 ≤ 160K2η2

β

(
L2

MKb
+
τ2

M

)
1

R

R−1∑
r=0

(
E∥vr −∇F (xr)∥2 +

1

K

K−1∑
k=1

E∥∇F (wm̃
r+1,k)∥2

)
+ 2β

(
2σ2

MKb
+

2ζ2

M

)
+

2ζ2

βRM0
+

2σ2

βRM0b0

≤ 1

24e+ 1

1

R

R−1∑
r=0

(
E∥vr −∇F (xr)∥2 +

1

K

K−1∑
k=1

E∥∇F (wM̃
r+1,k)∥2

)
+ 2β

(
2σ2

MKb
+

2ζ2

M

)
+

2ζ2

βRM0
+

2σ2

βRM0b0

where the last inequality is due to the fact that η ≤
√
βMKb/(C ′′LK) and η ≤

√
βM/(C ′′τK).

Thus, we have

1

R

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 ≤ 1

24e

1

R

R−1∑
r=0

1

K

K−1∑
k=1

E∥∇F (wm̃
r+1,k)∥2

+ 4β

(
2σ2

MKb
+

2ζ2

M

)
+

4ζ2

βRM0
+

4σ2

βRM0b0
. (D.7)

Combining equation D.1 and equation D.7, we can obtain

E∥∇F (x̃)∥2 ≤ 4

RKη

(
EF (x0)− EF (xR)

)
+

1

2
E∥∇F (x̃)∥2

+ 48eβ

(
2σ2

MKb
+

2ζ2

M

)
+ 48e

(
ζ2

βRM0
+

σ2

βRM0b0

)
,

which implies

E∥∇F (x̃)∥2 ≤ 8

RKη

(
F (x0)− F (x∗)

)
+ 96eβ

(
2σ2

MKb
+

2ζ2

M

)
+ 96e

(
ζ2

βRM0
+

σ2

βRM0b0

)
. (D.8)

Note that we have the following requirement for the stepsize η: η ≤ 1/(4L), η ≤ 1/(CKτ),
η ≤

√
b/(C ′

√
KL), η ≤

√
βMKb/(C ′′LK), η ≤

√
βM/(C ′′τK). Plugging the requirement of

the step-size η, we get (ignoring constants)

E∥∇F (x̃)∥2 ≤ ∆τ

R
+

∆τ

R
√
βM

+
∆L

KR
+

∆L

R
√
Kb

+
∆L

R
√
βMKb

+ β
σ2

MKb
+

σ2

βRM0b0
+ β

ζ2

M
+

ζ2

βRM0

=
∆τ

R
+

∆

R
√
βM

(
τ +

L√
Kb

)
+

∆L

KR
+

∆L

R
√
Kb

+ β
σ2

MKb
+

σ2

βRM0b0
+ β

ζ2

M
+

ζ2

βRM0

Let M0 = MR and b0 = K, so that M0b0 = MKR (i.e., we can implement the algorithm in the
intermittent communication setting) and β be set as follows,

β = max

 1

R
,

(
∆(τ + L/

√
Kb)

√
M

R(σ2/Kb+ ζ2)

)2/3
 =: max{β1, β2}.

then we have (ignoring numerical constants),

E∥∇F (x̃)∥2 ≤ ∆τ

R
+

∆L

KR
+

∆L

R
√
Kb

+
∆

R
√
β2M

(
τ +

L√
Kb

)
+ (β1 + β2)

(
σ2

MKb
+
ζ2

m

)
+

σ2

β1MKR2
+

ζ2

β1MR2
,

≤ ∆τ

R
+

∆L√
KbR

+
σ2

MKbR
+

(
σ∆L

MKbR

)2/3

+
ζ2

MR
+

(
ζ∆τ

MR

)2/3

+

(
∆(στ + Lζ)

M
√
KbR

)2/3

.
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Further note that to get the theorem statement in Theorem 3.3, we need to ensure β2 ≤ 1 (R > 1
w.l.o.g.) which gives the following condition that we state in Theorem 3.3,

∆(τ + L/
√
Kb)

√
M

R
≤ σ2

Kb
+ ζ2.

Mini-batch STORM: As before, we can get the convergence of mini-batch STORM by setting local
update steps to be 1, τ = L, ignoring the

√
K dependence term, and choosing a mini-batch size of

bK compared with the local update algorithm. Therefore, the mini-batch STORM has the following
convergence guarantee for partial participation

E∥∇F (x̃)∥2 ≤ ∆L

R
+

σ2

MKR
+

(
σ∆L

M
√
KbR

)2/3

+
ζ2

MR
+

(
ζ∆L

MR

)2/3

.

Theorem D.1. Suppose for all m in support of P , Fm ∈ F1
P(L,∆, ζ) ∩ F2

P(L,∆, τ), if each client
m has a stochastic oracle O2,L,σ

Fm
, and assuming that ∆L

R ⪯ σ2
√
MK

+ ζ2

√
M

, then the output x̃ of

MB-STORM using b0 = K, M0 = MR, β = max

{
1
R ,
(

∆L
√
M

R(σ2/K+ζ2)

)2/3}
, and η = 1

KL ·

min
{
1,
√
βM

}
satisfies

E∥∇F (x̃)∥2 ⪯ ∆L

R
+

σ2

MKR
+

(
σ∆L

M
√
KR

)2/3

+
ζ2

MR
+

(
ζ∆L

MR

)2/3

.

Furthermore, we prove the following lower bound showing that the convergence rate of MB-STORM
is almost optimal.

Theorem D.2. For all L, σ, τ,∆, ζ ≥ 0, τ ≤ 2L, ζ ≤
√
∆L, every algorithmA ∈ Acent

ZR optimizing
a problem in F1

P(L,∆, ζ) ∪ F2
P(L,∆, τ) with K > 0 intermittent accesses to two-point first-order

oracles {O2,L,σ
Fm

}m∈support(P) on all the machines outputs xAR after R ⪰ 1 rounds such that,

E
[∥∥∇F (xAR)∥∥2] ⪰ ∆L

R
+

σ2

MKR
+

(
σ∆L

MKR

)2/3

+
ζ2

MR
+

(
ζ∆L

MR

)2/3

.

Deterministic case: Note that if each client m has a deterministic oracle O2,L,0
Fm

, suppose b = b0 = 1,
we can choose

β = max

 1

R
,

(
∆τ

√
M

ζ2R

)2/3
 , M0 =MR, η = min

{
1

L
,

1

Kτ
,

√
βM

τK

}
,

and we can get (ignoring the dependence on some numerical constants)

E∥∇F (x̃)∥2 ≤ ∆τ

R
+

∆L

KR
+

ζ2

MR
+

(
ζ∆τ

MR

)2/3

.

Oracle complexity in Table 2 for mini-batch STORM.
We need following many communication rounds to achieve ϵ stationarity:

∆L

ϵ
+

σ2

MKϵ
+

σ∆L

MK1/2ϵ3/2
+

ζ2

Mϵ
+

ζ∆L

Mϵ3/2
.

Recalling the assumptions for table 2, since ϵ1/2 ⪯ ζ/m we can ignore the first term, since ϵ1/2 ⪯
∆L/σ we can ignore the second term, and since ϵ1/2 ⪯ ∆τ/ζ ⪯ ∆L/ζ we can also ignore the fourth
term. This leaves us the following communication complexity,

σ∆L

MK1/2ϵ3/2
+

ζ∆L

Mϵ3/2
.

Thus to get the best communication complexity of order 1/ϵ3/2 we choose K ∼= max{1, σ2/ζ2}
which simplifies to,

R ∼=
(σ + ζ)∆L

Mϵ3/2

33



Then the oracle complexity is of the order

M · σ∆L
Mϵ3/2

+M
σ2

ζ2
· ∆Lζ

Mϵ3/2
,

where we chose K ∼= 1 for the first term and K ∼= σ2/ζ2 for the second term. This simplifies to,

N ∼=
σ2∆L

ζϵ3/2
+
σ∆L

ϵ3/2
∼=
σ∆L

ϵ3/2
·
(
1 +

σ

ζ

)
.

Oracle complexity in Table 2 for CE-LSGD.
We need the following many communication rounds to achieve ϵ stationarity:

∆τ

ϵ
+

∆L√
Kϵ

+
σ2

MKϵ
+

σ∆L

MKϵ3/2
+

ζ2

Mϵ
+

ζ∆τ

Mϵ3/2
+

∆(ζL+ στ)

M
√
Kϵ3/2

.

Recalling the assumptions for table 2, since ϵ1/2 ⪯ ζ/m we can ignore the first and second terms,
since ϵ1/2 ⪯ ∆L/σ we can ignore the third term, and since ϵ1/2 ⪯ ∆τ/ζ ⪯ ∆L/ζ we can also
ignore the fifth term. This gives us the following simplified communication complexity,

σ∆L

MKϵ3/2
+

ζ∆τ

Mϵ3/2
+

∆(ζL+ στ)

M
√
Kϵ3/2

.

Note that because of the second term we are bound to have a communication complexity of order
1/ϵ3/2, just like MB-STORM. What needs to be figured out, is how to correctly balance the K in
other terms. If we choose K ∼= 1, we will get both communication and oracle complexity of the
order 1/ϵ3/2. All we need to do is account for the relative scaling of the problem parameters now. In
particular we choose K such that

ζ∆τ

Mϵ3/2
∼=

σ∆L

MKϵ3/2
,
ζ∆τ

mϵ3/2
∼=

∆(ζL+ στ)

M
√
Kϵ3/2

,

Then we need to ensure

K ∼= max

{
σL

ζτ
,
L2

τ2
,
σ2

ζ2

}
.

This ensures that,

R ∼=
ζ∆τ

Mϵ3/2
,

and the oracle complexity is upper bounded by,

N ∼=MK
ζ∆τ

Mϵ3/2
⪯ σ∆L

ϵ3/2
+
ζ∆L

ϵ3/2
· L
τ
+
σ∆τ

ϵ3/2
· σ
ζ
,

∼=
ζ∆L

ϵ3/2
· L
τ
+
σ∆L

ϵ3/2
·
(
1 +

στ

ζL

)
,

which recovers the oracle complexity in Table 2.

D.1 The Gap in the Partial Participation Setting

Accroding to the discussion in Section 3.2, we can most likely improve our upper bound for CE-
LSGD as well. For instance, note that the guarantee for MB-STORM, which follows from our
general analysis for CE-LSGD, has a gap w.r.t. the centralized lower bound in the third term, i.e.,
the red term in Table 1. This gap is most likely a result of our analysis and can be seen in the rate
for CE-LSGD (red terms in Table 1). However, if we consider the hierarchical setting described in
Section C.2, where each oracle query is made b-times to get a gradient estimate, then we can recover
the following guarantees for CE-LSGD and MB-STORM.
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Theorem D.3. Suppose for all m in support of P , Fm ∈ F1
P(L,∆, ζ) ∩ F2

P(L,∆, τ), each client
m ∈ [M ] has a stochastic oracle O2,L,σ

Fm
which it uses through b-calls for every single query, and

assume that ∆τ
R + ∆L√

KbR
⪯ σ2

√
MKb

+ ζ2

√
M

. Then the output x̃ of Algorithm 2 using b0 = Kb,

M0 =MR, β = max

{
1
R ,
(

∆(τ+L/
√
Kb)

√
M

R(σ2/Kb+ζ2)

)2/3}
, and η = min

{
1
L ,

1
Kτ ,

√
b√

KL
,

√
βM√
KbL

,
√
βM
τK

}
satisfies

E ∥∇F (x̃)∥2 ⪯ ∆τ

R
+
∆L

KR
+

∆L√
KbR

+
σ2

MKR
+

(
σ∆L

MKR

)2/3

+
ζ2

MR
+

(
ζ∆τ

MR

)2/3

+

(
∆(στ + Lζ)

M
√
KbR

)2/3

.

Theorem D.4. Suppose for all m in support of P , Fm ∈ F1
P(L,∆, ζ) ∩ F2

P(L,∆, τ), if each
client m has a stochastic oracle O2,L,σ

Fm
which it uses through b-calls for every single query, and

assume that ∆L
R ⪯ σ2

√
MKb

+ ζ2

√
M

. Then the output x̃ of MB-STORM using b0 = Kb, M0 =MR,

β = max

{
1
R ,
(

∆L
√
M

R(σ2/Kb+ζ2)

)2/3}
, and η = min

{
1

KL ,
√
βM
KL

}
satisfies

E∥∇F (x̃)∥2 ⪯ ∆L

R
+

σ2

MKbR
+

(
σ∆L

M
√
KbR

)2/3

+
ζ2

MR
+

(
ζ∆L

MR

)2/3

.

If we use similar arguments as in Appendix B (for proving Theorem D.2), we can then show that
the upper bound for MB-STORM in Theorem D.4 is optimal except for the third term. As for
CE-LSGD, by choosing b = K, the gap in the optimization term (brown term in Table 1) goes away,
just like the full-participation setting.

E CE-LSGD with HvP

In this section we present a version of our algorithm 1 for the online setting. A motivating example
for this discussion is the distributed stochastic optimization (DSO) problem, where for each client
m ∈ [M ], Fm(·) := Ez∼Dm

[f(·; z)] and only client m can sample from Dm. In this model,
if for all z ∼ supp(Dm), f(·; z) ∈ F(L,∆) and Ez∼Dm [∥∇f(·; z)−∇F (·; z)∥2] ≤ σ2, then
we can implement O2,L,σ

Fm
at points x, y ∈ Rd by first sampling z ∼ Dm and then returning

(f(x; z), f(y; z),∇f(x; z),∇f(y; z)). DSO captures problems in cross-device Federated learning
(FL) [16, 17] where the functions f(·; z) are loss functions and z denoting a data-sample is observed
in an online fashion. The devices don’t store the data for future queries so all the queries must be
made as soon as f(·; z) becomes available. Most variance-reduced algorithms only require access to
f(·; z) at the current and previous models. Thus, the two-point oracle can be implemented even in
the online setting by always storing two models on memory. In certain settings, though, this is not
possible as the model sizes are too big, and two different models can not be stored on the device. To
alleviate this, we propose an extension of our Algorithm 1, which uses a stochastic Hessian vector
product oracle instead of the multi-point oracle to implement variance reduction [36].

For ease of presentation, we first introduce some definitions. We assume that for all m ∈ [M ],

Fm ∈ F(L,L2,∆) :=

{
G ∈ F(L)s.t. G is twice-differentiable, G(0)− inf

x∈RRd
G(x) ≤ ∆

and sup
x,y∈Rd

∥∇2G(x)−∇2G(y)∥ ≤ L2∥x− y∥

}
.

Similarly, we denote F ∈ F(L,L2,∆) and define the problem class F2
M(L,L2,∆, τ ) for

{Fm}m∈[M ] with bounded second-order τ -heterogeneity.

Definition 8 (Stochastic Hessian-vector Product Oracle). Given a function G ∈ F(L,L2,∆),
QL,σ

G : (Rd)2 × Z → R × (Rd)2 is a stochastic Hessian-vector Product oracle if for some
distribution D on Z , and for any x, v ∈ Rd, the oracle samples a random seed z ∼ D and returns
QL,σ

G (x, v, z) = (f(x; z), g(x; z), h(x; z)v) such that:
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(a) Ez∈D[(f(x; z), g(x; z), h(x; z)v)] = (G(x),∇G(x),∇2G(x)v)

(b) Ez∼D

[
∥g(x; z)−∇G(x)∥2

]
≤ σ2,

(c) for all x, y ∈ Rd, Ez∼D [∥g(x; z)− g(y; z)∥] ≤ L ∥x− y∥,

(d) Ez∼D

[∥∥h(x; z)v −∇2G(x)v
∥∥2] ≤ L2 ∥v∥2.

Note that this stochastic oracle doesn’t require simultaneous queries at the same z. We state the result
of our algorithm with HvP below. Same as before, we choose the input T = K in Algorithm 3
Theorem E.1. Suppose {Fm}m∈[M ] ∈ F2

M (L,L2,∆, τ), and each client m ∈ [M ] has a stochastic
HvP oracle QL,σ

Fm
, then Algorithm 3 using η = c1 ·min{1/L, 1/(Kτ)} satisfies

E∥∇F (x̃)∥2 ≤ c2

(
L∆

RK
+
τ∆

R
+ ϵ

)
.

Furthermore, if we choose 1/R ≤ β = ηK
√
ϵ · max{M1/2ϵ1/4L

1/2
2 /σ, L/σ} ≤ 1 and assume

ϵ1/2M ≤ L2/L2, with probability at least 7/8, Algorithm 3 uses the following number of oracle
calls to achieve ϵ-approximate stationary point

N = c3

(
∆σL

ϵ3/2
+
η∆L2K2

ϵ
+
Mη∆L2K

ϵ
+
M∆L

ϵ
+
M∆Kτ

ϵ

)
,

where c1, c2, c3 are numerical constants. In addition, if we have ϵ1/4M ≤ σ1/2, ϵ1/4L ≤ τσ1/2,
and ϵ ≤ σ2, then Algorithm 3 using K = σ1/2/ϵ1/4 can achieve the ϵ-approximate stationary point
with the following communication and oracle complexities

R ≤ c4
∆τ

ϵ
and N = c5

∆Lσ

ϵ3/2
,

where c4, c5 are numerical constants.

To interpret this result we can consider the simpler distributed stochastic optimization setting, where
Fm = Ez∼Dm [f(x; z)] and f(·; z) is L-Lipschitz. In this setting, we can easily implement the HvP
oracle. Then, Algorithm 3 attains the same order of communication and oracle complexities as
Algorithm 1 (see Theorem C.1) without the requirement of simultaneous queries.

In this section, we provide the proof of Theorem E.1.

Proof of Theorem E.1. In the following discussion, we use {Ci}16i=1 to denote numerical constants.
First of all, we will bound the estimation error E

∥∥vjr,k −∇F (wj
r+1,k)

∥∥2. Consider the local updates
for client j. We have

vjr,k = vjr,k−1 +

br,k∑
l=1

∇2fj(w
j,l−1
r+1,k, zl)(w

j,l
r+1,k − wj,l−1

r+1,k),

where wj,l
r+1,k is defined as

wj,l
r+1,k =

l

br,k
wj

r+1,k +

(
1− l

br,k

)
wj

r+1,k−1 for l ∈ {0, . . . , br,k}.

Therefore, we can get

vjr,k −∇F (wj
r+1,k) = vjr,k−1 +

br,k∑
l=1

∇2fj(w
j,l−1
r+1,k, zl)(w

j,l
r+1,k − wj,l−1

r+1,k)−∇F (wj
r+1,k)

= vjr,k−1 −∇F (wj
r+1,k−1)

+

br,k∑
l=1

(
∇2fj(w

j,l−1
r+1,k, zl)−∇2Fj(w

j,l−1
r+1,k)

)
(wj,l

r+1,k − wj,l−1
r+1,k)

+

br,k∑
l=1

∇2Fj(w
j,l−1
r+1,k)(w

j,l
r+1,k − wj,l−1

r+1,k) +∇F (wj
r+1,k−1)−∇F (wj

r+1,k).
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Algorithm 3 CE-LSGD with Hessian-vector Product
input Initialization x0, iteration number R, step size η, parameters T , B0, β ∈ [0, 1]

1: Let x−1 = x0
2: for r = 0, 1, . . . , R− 1 do
3: if r = 0 set ρ = 1, Q = 1, B = B0 else set ρ = β, Q = T and B = Br, where

Br = C1 max
{
L2∥xr − xr−1∥2/(Mβϵ), L2∥xr − xr−1∥2/(β

√
ϵ), σ2β/(Mϵ)

}
4: Communicate (send) (xr, xr−1) to clients
5: on client m ∈ [M ] do
6: Compute ∇Fm,Bm

r
(xr), where |Bm

r | = B, and Hm
r = HV P (xr, xr−1, B,m)

7: Communicate (rec)
(
∇Fm,Bm

r
(xr), H

m
r

)
to the server

8: end on client
9: vr = β

M

∑M
m=1 ∇Fm,Bm

r
(xr) + (1− β)

(
vr−1 − 1

M

∑M
m=1H

m
r

)
10: Communicate (send) (xr, vr) to client m̃r, where m̃r ∼ Unif ([M ])
11: on client m̃ do
12: wm̃r

r+1,1 := wm̃r
r+1,0 := xr, v

m̃r
r,0 := vr

13: for k = 1, . . . , Q do
14: Let br,k = C2K ·max

{
η2L2K,L2∥wm̃r

r+1,k − wm̃r

r+1,k−1∥2/
√
ϵ
}

when k > 1

15: vm̃r

r,k = vm̃r

r,k−1 +HV P (wm̃r

r+1,k, w
m̃r

r+1,k−1, br,k, m̃)

16: wm̃r

r+1,k+1 = wm̃r

r+1,k − ηvm̃r

r,k

17: end for
18: Communicate (rec)

(
wm̃r

r+1,Q+1

)
to the server

19: end on client
20: Let xr+1 = wm̃r

r+1,Q+1

21: end for
output Choose x̃ uniformly from {wm̃r

r,k }r∈[R],k∈[Q]

Algorithm 4 Hessian-vector Products (HVP) Estimator
input Parameters x, xprev, batch size b0, client index j

1: Let b = ⌈b0⌉
2: Let xl = l

bx+
(
1− l

b

)
xprev for l ∈ {0, . . . , b}

3: H =
∑b

l=1 ∇2f(xl−1; zl)(x
l − xl−1), where zl ∼i.i.d. Dj

output H

Thus we can obtain that

E
∥∥vjr,k −∇F (wj

r+1,k)

∥∥∥∥2
≤ E

∥∥vjr,k−1 −∇F (wj
r+1,k−1)

+

br,k∑
l=1

∇2Fj(w
j,l−1
r+1,k)(w

j,l
r+1,k − wj,l−1

r+1,k) +∇F (wj
r+1,k−1)−∇F (wj

r+1,k)

∥∥∥∥2

+ E
∥∥∥∥ br,k∑

l=1

(
∇2fj(w

j,l−1
r+1,k, zl)−∇2Fj(w

j,l−1
r+1,k)

)
(wj,l

r+1,k − wj,l−1
r+1,k)

∥∥∥∥2
≤
(
1 +

1

K

)
E
∥∥vjr,k−1 −∇F (wj

r+1,k−1)
∥∥2

+ (1 +K)E
∥∥∥∥ br,k∑

l=1

∇2Fj(w
j,l−1
r+1,k)(w

j,l
r+1,k − wj,l−1

r+1,k) +∇F (wj
r+1,k−1)−∇F (wj

r+1,k)

∥∥∥∥2

+ E
∥∥∥∥ br,k∑

l=1

(
∇2fj(w

j,l−1
r+1,k, zl)−∇2Fj(w

j,l−1
r+1,k)

)
(wj,l

r+1,k − wj,l−1
r+1,k)

∥∥∥∥2.
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In addition, we have

E
∥∥∥∥ br,k∑

l=1

∇2Fj(w
j,l−1
r+1,k)(w

j,l
r+1,k − wj,l−1

r+1,k) +∇F (wj
r+1,k−1)−∇F (wj

r+1,k)

∥∥∥∥2

= E
∥∥∥∥ br,k∑

l=1

∇2Fj(w
j,l−1
r+1,k)(w

j,l
r+1,k − wj,l−1

r+1,k) +

br,k∑
l=1

(
∇Fj(w

j,l−1
r+1,k−1)−∇Fj(w

j,l
r+1,k)

)
+

br,k∑
l=1

(
∇F (wj,l−1

r+1,k−1)−∇F (wj,l
r+1,k)−∇Fj(w

j,l−1
r+1,k−1) +∇Fj(w

j,l
r+1,k)

)∥∥∥∥2

≤ b2r,k
L2
2∥w

j
r+1,k − wj

r+1,k−1∥4

2b4r,k
+ 2τ2∥wj

r+1,k − wj
r+1,k−1∥

2

=
L2
2

2b2r,k
∥wj

r+1,k − wj
r+1,k−1∥

4 + 2τ2∥wj
r+1,k − wj

r+1,k−1∥
2,

where the inequality is due to each client m ∈ [M ] has a stochastic HvP oracle QL,σ
Fm

and
{Fm}m∈[M ] ∈ F2

M (L,L2,∆, τ). On the other hand, we have

E
∥∥∥∥ br,k∑

l=1

(
∇2fj(w

j,l−1
r+1,k, zl)−∇2Fj(w

j,l−1
r+1,k)

)
(wj,l

r+1,k − wj,l−1
r+1,k)

∥∥2
=

1

b2r,k

br,k∑
l=1

E
∥∥(∇2fj(w

j,l−1
r+1,k, zl)−∇2Fj(w

j,l−1
r+1,k)

)
(wj

r+1,k − wj
r+1,k−1)

∥∥∥∥2
≤ L2

br,k

∥∥wj
r+1,k − wj

r+1,k−1

∥∥2,
where the equality is due to the independence of random variables and the definition of wj,l

r+1,k, and
the inequality comes from the stochastic HvP oracle QL,σ

Fm
. Combining these results, we can obtain

E
∥∥vjr,k −∇F (wj

r+1,k)
∥∥2 ≤

(
1 +

1

K

)
E
∥∥vjr,k−1 −∇F (wj

r+1,k−1)
∥∥2 + 2(1 +K)τ2∥wj

r+1,k − wj
r+1,k−1∥

2

+ (1 +K)
L2
2

2b2r,k
∥wj

r+1,k − wj
r+1,k−1∥

4 +
L2

br,k

∥∥wj
r+1,k − wj

r+1,k−1

∥∥2.
Therefore, using the above inequality recursively, we can obtain

E
∥∥vjr,k −∇F (wj

r+1,k)
∥∥2 ≤ eE

∥∥vjr,0 −∇F (wj
r+1,0)

∥∥2 + K∑
k=1

eL2

br,k
E
∥∥wj

r+1,k − wj
r+1,k−1

∥∥2
+

K∑
k=1

eKL2
2

b2r,k

∥∥wj
r+1,k − wj

r+1,k−1

∥∥4 + 4eKτ2
K∑

k=1

∥∥wj
r+1,k − wj

r+1,k−1

∥∥2.
(E.1)

Next, let’s consider the global variance reduction term vr. Recall that, we have

vr = β
1

M

M∑
j=1

∇Fj,Bj
r
(xr) + (1− β)vr−1 + (1− β)

1

M

M∑
j=1

Br∑
l=1

∇2fj(x
l−1
r , zjl )(x

l
r − xl−1

r ),

where xlr is defined as

xlr =
l

Br
xr +

(
1− l

Br

)
xr−1 for l ∈ {0, . . . , Br}.
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Therefore, we have

vr −∇F (xr) = (1− β)
(
vr−1 −∇F (xr−1)

)
+ β

(
1

M

M∑
j=1

∇Fj,Bj
r
(xr)−∇F (xr)

)

+ (1− β)
( 1

M

M∑
j=1

Br∑
l=1

(
∇2fj(x

l−1
r , zjl )−∇2Fj(x

l−1
r )

)
(xlr − xl−1

r )
)

+ (1− β)
( 1

M

M∑
j=1

Br∑
l=1

∇2Fj(x
l−1
r )(xlr − xl−1

r ) +∇F (xr−1)−∇F (xr)
)
.

Thus we can obtain

E
∥∥vr −∇F (xr)

∥∥2 ≤ (1− β)2
(
1 +

β

2

)
E
∥∥vr−1 −∇F (xr−1)

∥∥2 + β2 σ2

MBr

+

(
1 +

2

β

)
(1− β)2

L2
2

4Br
2 ∥xr − xr−1∥4 + (1− β)2

L2

MBr
∥xr − xr−1∥2.

(E.2)

Suppose we choose br,k as follows (here j is random sampled as in line 10 of Algorithm 3):

br,k = C1K ·max

{
η2L2K,

L2

∥∥wj
r+1,k − wj

r+1,k−1

∥∥2
√
ϵ

}
.

Therefore, plugging br,k into equation E.1, we can obtain

E
∥∥vjr,k −∇F (wj

r+1,k)
∥∥2 (E.3)

≤ eE
∥∥vjr,0 −∇F (wj

r+1,0)
∥∥2 + K∑

k=1

eL2

br,k

∥∥wj
r+1,k − wj

r+1,k−1

∥∥2
+

K∑
k=1

eKL2
2

b2r,k

∥∥wj
r+1,k − wj

r+1,k−1

∥∥4 + 4eKτ2
K∑

k=1

∥∥wj
r+1,k − wj

r+1,k−1

∥∥2
≤ eE

∥∥vjr,0 −∇F (wj
r+1,0)

∥∥2 + (4eK2τ2η2 + 1/24)
1

K

K∑
k=1

E∥vjr,k−1∥
2 + ϵ

≤ eE
∥∥vjr,0 −∇F (wj

r+1,0)
∥∥2 + (8eK2τ2η2 + 1/12)

1

K

K∑
k=1

E∥vjr,k−1 −∇F (wj
r+1,k)∥

2

+ (8eK2τ2η2 + 1/12)
1

K

K∑
k=1

E∥∇F (wj
r+1,k)∥

2 + ϵ. (E.4)

If we choose η ≤ C2/(Kτ) and use the fact that wj
r+1,0 = wj

r+1,1 = xr, we can obtain

1

K

K∑
k=1

E∥vjr,k −∇F (wj
r+1,k)∥

2 ≤ 2eE∥vr −∇F (xr)∥2 +
1

6K

K∑
k=1

E∥∇F (wj
r+1,k)∥

2 + ϵ.

(E.5)

Thus, according to equation C.4, and plugging the result in equation E.5, we can get

1

K

K∑
k=1

E∥∇F (wj
r+1,k)∥

2 ≤ 2

Kη

(
EF (xr)− EF (xjr+1,K+1)

)
+

3

K

K∑
k=1

E∥vjr,k −∇F (wj
r+1,k)∥

2

≤ 2

Kη

(
EF (xr)− EF (xjr+1,K+1)

)
+ 6eE

∥∥vjr,0 −∇F (wj
r+1,0)

∥∥2 + 3ϵ

+
1

2K

K∑
k=1

E∥∇F (wj
r+1,k)∥

2.
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Therefore, we can get

1

K

K∑
k=1

E∥∇F (wj
r+1,k)∥

2 ≤ 4

Kη

(
EF (xr)− EF (xr+1)

)
+ 12eE∥vr −∇F (xr)∥2 + 6ϵ. (E.6)

Averaging equation E.6 from t = 0, . . . , R− 1, we can obtain

1

RK

R−1∑
r=0

K∑
k=1

E∥∇F (wj
r+1,k)∥

2 ≤ 4

RKη

(
EF (x0)− EF (xR)

)
+

6e

R

R−1∑
r=0

E∥vr −∇F (xr)∥2 + 6ϵ,

by the definition of x̃, we have

E∥∇F (x̃)∥2 ≤ 4

RKη

(
EF (x0)− EF (xR)

)
+

6e

R

R−1∑
r=0

E∥vr −∇F (xr)∥2 + 6ϵ. (E.7)

Suppose we choose Br as follows:

Br = C3 ·max

{
L2
∥∥xr − xr−1

∥∥2
Mβϵ

,
L2

∥∥xr − xr−1

∥∥2
β
√
ϵ

}
, (E.8)

Therefore, plugging Br into equation E.2, we have

E
∥∥vr −∇F (xr)

∥∥2 ≤ (1− β/2)2E
∥∥vr−1 −∇F (xr−1)

∥∥2 + 2β2 σ2

MBr
+ 2βϵ,

Furthermore, we have

β

2

t−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2
=

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 − (1− β/2)

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2
=

R∑
r=1

E
∥∥vr −∇F (xr)

∥∥2 − (1− β/2)

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 − E
∥∥vR −∇F (xR)

∥∥2
+ E

∥∥v0 −∇F (x0)
∥∥2

≤
R∑

r=1

E
∥∥vr −∇F (xr)

∥∥2 − (1− β/2)2
R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 − E
∥∥vR −∇F (xR)

∥∥2
+ E

∥∥v0 −∇F (x0)
∥∥2

≤ 2β2
R−1∑
r=0

σ2

MBr
+ 2Rβϵ+

σ2

MB0
,

which implies

1

R

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 ≤ 2β
1

R

R−1∑
r=0

σ2

MBr
+ 2ϵ+

σ2

RβMB0
. (E.9)

Finally combining equation E.7 and equation E.9, we have

E∥∇F (x̃)∥2 ≤ 4

RKη

(
EF (x0)− EF (xr)

)
+

6e

R

R−1∑
r=0

E∥vr −∇F (xr)∥2 + 6ϵ

≤ 4

RKη

(
EF (x0)− EF (xr)

)
+ 12eβ

1

R

R−1∑
r=0

σ2

MBr
+ 12eϵ+

6eσ2

RβMB0
.
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If we have the following

Br =
σ2β

Mϵ
and B0 =

σ2

RβMϵ
, (E.10)

we can obtain

E∥∇F (x̃)∥2 ≤ 4

RKη

(
EF (x0)− EF (xr)

)
+ 30eϵ.

Note that we have η ≤ 1/(4L) and η ≤ C2/(Kτ). Therefore, we have

E∥∇F (x̃)∥2 ≤ C4

(
L∆

RK
+
τ∆

R
+ ϵ

)
, (E.11)

where ∆ = F (x0)−F (x∗). Therefore, to achieve ϵ accuracy, we have R ≤ C5

(
∆L/(Kϵ)+∆τ/ϵ

)
,

where {Ci}5i=1 are numerical constants.

Next, we are going to derive the number of oracle calls, i.e., gradient complexity and the number
Hessian-vector product queries. According to Algorithm 3, the number of Hessian-vector product
queries will be at the same order of the number of stochastic gradient evaluations. Therefore, we only
need to determine the gradient complexity of Algorithm 3.

First of all, according to the requirement in equation E.10, we have the following gradient complexity
per client on the global updates

R∑
r=1

Br +B0 = R
σ2β

Mϵ
+

σ2

RβMϵ
≤ C6

∆σ2β

MKηϵ2
, (E.12)

where the last inequality comes from that β ≥ 1/R and R ≤ C7∆/(Kηϵ). In addition, according to
equation E.8, we have

Br = C3 ·max

{
L2
∥∥xr − xr−1

∥∥2
Mβϵ

,
L2

∥∥xr − xr−1

∥∥2
β
√
ϵ

}
.

Furthermore, we have

E
∥∥xr − xr−1

∥∥2 = E∥xjr,K+1 − xr−1∥2

≤ 4eKη2
K−1∑
k=1

E∥vjr−1,k −∇F (wj
r,k)∥

2 + 4eKη2
K−1∑
k=1

E∥∇F (wj
r,k)∥

2

≤ 4eKη2
K−1∑
k=1

(
2eE

∥∥vr−1 −∇F (xr−1)
∥∥2 + 1

6K

K∑
k=1

E∥∇F (wj
r,k)∥

2 + ϵ
)

+ 4eKη2
K−1∑
k=1

E∥∇F (wj
r,k)∥

2

≤ 4e2K2η2E
∥∥vr−1 −∇F (xr−1)

∥∥2 + 4eK2η2ϵ

+
(
4eK2η2 + eKη2

) 1
K

K∑
k=1

E∥∇F (wj
r,k)∥

2,

where the first inequality is due to equation C.1 and the second one comes from equation E.5.
Therefore, averaging over R, by equation E.9 and equation E.11, we can obtain that

1

R

R∑
r=1

E
∥∥xr − xr−1

∥∥2 ≤ 13e2K2η2ϵ.
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Therefore, we have (the extra gradient complexity is due to line 1 in Algorithm 4)

E

[
R∑

r=1

(Br + 1)

]
≤ C3

(
L2

Mβϵ
+

L2

β
√
ϵ

) R∑
r=1

E
∥∥xr − xr−1

∥∥2 +R

≤ 13eC3

(
L2

Mβϵ
+

L2

β
√
ϵ

)
RK2η2ϵ+R

≤ C8η

(
∆L2K

Mβϵ
+

∆L2K

β
√
ϵ

)
+ C8

∆L

Kϵ
+ C8

∆τ

ϵ
. (E.13)

To choose the optimal value of β, let’s consider equation E.12 and equation E.13. Note that given
equation E.13, we can use Markov’s inequality to show that (we will specify the probability later)

R∑
r=1

(Br + 1) ≤ C8η

(
∆L2K

Mβϵ
+

∆L2K

β
√
ϵ

)
+ C8

∆L

Kϵ
+ C8

∆τ

ϵ
. (E.14)

Therefore, combining equation E.12 and equation E.14, we have the following gradient complexity
for global updates

R∑
r=1

(Br + 1) +B0 = C9

(
∆σ2β

MKηϵ2
+ η

∆L2K

Mϵβ
+ η

∆L2K

β
√
ϵ

+
∆L

Kϵ
+

∆τ

ϵ

)
.

Solving for the β to achieve the smallest gradient complexity in terms of the dependence of ϵ, we can
get β = ηK

√
ϵ ·max{M1/2ϵ1/4L

1/2
2 /σ, L/σ}. Therefore, equation E.12 implies that

R∑
r=1

Br +B0 ≤ C6

(
∆σL

Mϵ3/2
+

∆σL
1/2
2

M1/2ϵ5/4

)
, (E.15)

and equation E.13 implies that

E

[
R∑

r=1

(Br + 1)

]
≤ C8

(
∆σL

Mϵ3/2
+

∆σL
1/2
2

M1/2ϵ5/4
+

∆L

Kϵ
+

∆τ

ϵ

)
(E.16)

In addition, if we have M ≤ L2/(ϵ1/2L2), we will have

E

[
R∑

r=0

(Br + 1)

]
≤ C10

(
∆σL

Mϵ3/2
+

∆L

Kϵ
+

∆τ

ϵ

)
. (E.17)

Next, let’s consider the local updates, we have

bjr,k = C1K ·max

{
η2L2,

L2

∥∥wj
r+1,k − wj

r+1,k−1

∥∥2
√
ϵ

}
.

Therefore, we have
R∑

r=1

K∑
k=1

(br,k + 1) = η2L2K2R ≤ C11
∆ηKL2

ϵ
,

where the inequality comes from the fact that R ≤ C7∆/(Kηϵ). In addition, we have∥∥wj
r+1,k − wj

r+1,k−1

∥∥2 = η2∥vjr,k−1∥
2

≤ η2
(∥∥vjr,k−1 −∇F (wj

r+1,k−1) +∇F (wj
r+1,k−1)

∥∥2)
≤ 2η2

∥∥vjr,k−1 −∇F (wj
r+1,k−1)

∥∥2 + 2η2
∥∥∇F (wj

r+1,k−1)
∥∥2

≤ 2Kη2
∥∥vr−1 −∇F (xr−1)

∥∥2 + 2Kη2
1

K

K∑
k=1

∥∇F (wj
r+1,k)∥

2.
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Therefore, averaging over R, by equation E.9 and equation E.11, we can obtain that (recall that we
have η = min{1/(4L), C2/(Kτ)})

1

R

R∑
r=1

K∑
k=1

E
∥∥wj

r+1,k − wj
r+1,k−1

∥∥2 ≤ 2K2η2ϵ+ 2K2η2ϵ ≤ 4K2η2ϵ.

Thus, we have

E

[
R∑

r=1

K∑
k=1

(br,k + 1)

]
≤ C1

L2√
ϵ
RK3η2ϵ+RK ≤ C12

(
η∆L2K

2

√
ϵ

+
∆L

ϵ
+

∆Kτ

ϵ

)
.

Hence, the local updates will contribute to the following gradient complexity per client in expectation:

E

[
R∑

r=1

K∑
k=1

(br,k + 1)

]
= C13

(
∆ηKL2

ϵ
+
η∆L2K

2

√
ϵ

+
∆L

ϵ
+

∆Kτ

ϵ

)
≤ C13

(
∆ηKL2

ϵ
+
η∆L2K2

Mϵ
+

∆L

ϵ
+

∆Kτ

ϵ

)
, (E.18)

where the inequality comes from the requirement that M ≤ L2/(ϵ1/2L2). As a result, let G denote
the total number of gradient complexity, combining equation E.15, equation E.16 and equation E.18,
we have

E[G] = C14

(
∆σL

Mϵ3/2
+

∆ηKL2

ϵ
+
η∆L2K2

Mϵ
+

∆L

ϵ
+

∆Kτ

ϵ

)
.

Therefore, we have

E[N ] = C15

(
∆σL

ϵ3/2
+
η∆L2K2

ϵ
+
Mη∆L2K

ϵ
+
M∆L

ϵ
+
M∆Kτ

ϵ

)
.

Therefore, using Markov’s inequality, we have with probability at least 7/8,

N = C16

(
∆σL

ϵ3/2
+
η∆L2K2

ϵ
+
Mη∆L2K

ϵ
+
M∆L

ϵ
+
M∆Kτ

ϵ

)
.

Note that we require β ≤ 1, which implies that

M1/2ϵ3/4K ≤ σL

L
1/2
2

and ϵ1/2K ≤ σ.

Since we have M ≤ L2/(ϵ1/2L2), we can reduce to the following requirement

ϵ1/2K ≤ σ. (E.19)

Next, we are going to show that under certain conditions, CE-LSGD-HvP is able to achieve the
optimal communication complexity. In the following discussion, we ignore the dependence on the
numerical constants for simplicity. Recall that, we have the following communication complexity:

R =
∆L

Kϵ
+

∆τ

ϵ
.

If we want to achieve N = ∆σL/ϵ3/2 gradient complexities, we need to have

K ≤ Lσ

MLϵ1/2
and K ≤ (σL)1/2

L1/2ϵ1/4
.

Recall that we have the following requirements M ≤ L2/(ϵ1/2L2) and ϵ1/2K ≤ σ.
Case 1: if we have

M ≥ σ1/2

ϵ1/4
,
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we can get

K =
σ

Mϵ1/2
.

We still need the requirement M ≤ L2/(ϵ1/2L2). Furthermore, we can get

R =
∆ML

σϵ1/2
+

∆τ

ϵ
.

And we have

N =
∆σL

ϵ3/2
+
M∆L

ϵ
+

∆Lστ

Lϵ3/2
.

If we further have M ≤ σL/(Lϵ1/2), we can get

N =
∆σL

ϵ3/2
+

∆Lστ

Lϵ3/2
.

Note that we also need R ≥ 1/β, which implies ∆L ≥ σϵ1/2.
Case 2: if we have

M ≤ σ1/2

ϵ1/4
,

we can get

K =
σ1/2

ϵ1/4
.

We still need the requirements M ≤ L2/(ϵ1/2L2) and ϵ1/2 ≤ σ. Furthermore, we can get

R =
∆L

ϵ3/4σ1/2
+

∆τ

ϵ
.

And we have

N =
∆σL

ϵ3/2
+
M∆L

ϵ
+
M∆σ1/2τ

ϵ5/4
.

If we further have M ≤ σ/ϵ1/2, we can get

N =
∆σL

ϵ3/2
+

∆στ

ϵ3/2
.
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