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ABSTRACT

The out-of-distribution (OOD) problem generally arises when neural networks
encounter data that significantly deviates from the training data distribution, i.e.,
in-distribution (InD). In this paper, we study the OOD problem from a neuron
activation view. We first formulate neuron activation states by considering both
the neuron output and its influence on model decisions. Then, to characterize the
relationship between neurons and OOD issues, we introduce the neuron activa-
tion coverage (NAC) – a simple measure for neuron behaviors under InD data.
Leveraging our NAC, we show that 1) InD and OOD inputs can be largely sepa-
rated based on the neuron behavior, which significantly eases the OOD detection
problem and beats the 21 previous methods over three benchmarks (CIFAR-10,
CIFAR-100, and ImageNet-1K). 2) a positive correlation between NAC and model
generalization ability consistently holds across architectures and datasets, which
enables a NAC-based criterion for evaluating model robustness. Compared to
prevalent InD validation criteria, we show that NAC not only can select more ro-
bust models, but also has a stronger correlation with OOD test performance. Our
code is available at: https://github.com/BierOne/ood coverage.

1 INTRODUCTION

Recent advances in machine learning systems hinge on an implicit assumption that the training
and test data share the same distribution, known as in-distribution (InD) (Dosovitskiy et al., 2021;
Szegedy et al., 2015; He et al., 2016; Simonyan & Zisserman, 2015). However, this assumption
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Figure 1: OOD detection perfor-
mance on CIFAR-100 and ImageNet.
AUROC scores (%) are averaged over
the OOD datasets and backbones.

rarely holds in real-world scenarios due to the presence
of out-of-distribution (OOD) data, e.g., samples from un-
seen classes (Blanchard et al., 2011). Such distribution
shifts between OOD and InD often drastically challenge
well-trained models, leading to significant performance
drops (Recht et al., 2019; D’Amour et al., 2020).

Prior efforts tackling this OOD problem mainly arise from
two avenues: 1) OOD detection and 2) OOD generaliza-
tion. The former one targets at designing tools that differ-
entiate between InD and OOD data inputs, thereby refrain-
ing from using unreliable model predictions (Hendrycks &
Gimpel, 2017; Liang et al., 2018; Liu et al., 2020; Huang
et al., 2021b). In contrast, OOD generalization focuses on
developing robust networks to generalize unseen OOD data,
relying solely on InD data for training (Blanchard et al.,
2011; Sun & Saenko, 2016; Sagawa et al., 2020; Kim et al.,
2021; Shi et al., 2022). Despite the emergence of numerous
studies, it is shown that existing approaches are still arguable to provide insights into the fundamen-
tal cause and mitigation of OOD issues (Sun et al., 2021; Gulrajani & Lopez-Paz, 2021).

As suggested by Sun et al. (2021); Ahn et al. (2023), neurons could exhibit distinct activation pat-
terns when exposed to data inputs from InD and OOD (See Figure 4). This reveals the potential of
leveraging neuron behavior to characterize model status in terms of the OOD problem. Yet, though
several studies recognize this significance, they either choose to modify neural networks (Sun et al.,
2021), or lack the suitable definition of neuron activation states (Ahn et al., 2023; Tian et al., 2023).

∗Corresponding author.
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For instance, Sun et al. (2021) proposes a neuron truncation strategy that clips neuron output to
separate the InD and OOD data, improving OOD detection. However, such truncation unexpectedly
decrease the model classification ability (Djurisic et al., 2023)1. More recently, Ahn et al. (2023) and
Tian et al. (2023) employ a threshold to characterize neurons into binary states (i.e., activated or not)
based on the neuron output. This characterization, however, discards valuable neuron distribution
details. Unlike them, in this paper, we show that by leveraging natural neuron activation states, a
simple statistical property of neuron distribution could effectively facilitate the OOD solutions.

We first propose to formulate the neuron activation state by considering both the neuron output and
its influence on model decisions. Specifically, inspired by Huang et al. (2021b), we model neuron
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Figure 2: NAC models coverage
area in neuron activation space using
InD training data. Upon receiving
OOD data, neurons tend to behave
outside the expected coverage area,
thus with lower coverage scores.

influence as the gradients derived from Kullback-Leibler
(KL) divergence (Kullback & Leibler, 1951) between net-
work output and a uniform vector. Then, to characterize the
relationship between neuron behavior and OOD issues, we
draw insights from coverage analysis in system testing (Pei
et al., 2017; Ma et al., 2018), which reveals that rarely-
activated (covered) neurons by a training set can potentially
trigger undetected bugs, such as misclassifications, during
the test stage. In this sense, we introduce the concept of neu-
ron activation coverage (NAC), which quantifies the cover-
age degree of neuron states under InD training data (See Fig-
ure 2). In particular, if a neuron state is frequently activated
by InD training inputs, NAC would assign it with a higher
coverage score, indicating fewer underlying defects in this
state. This paper applies NAC to two OOD tasks:

OOD detection. Since OOD data potentially trigger abnormal neuron activations, they should
present smaller coverage scores compared to the InD test data (Figure 2). As such, we present
NAC for Uncertainty Estimation (NAC-UE), which directly averages coverage scores over all neu-
rons as data uncertainty. We evaluate NAC-UE over three benchmarks (CIFAR-10, CIFAR-100, and
ImageNet-1k), establishing new state-of-the-art performance over the 21 previous best OOD detec-
tion methods. Notably, our NAC-UE achieves a 10.60% improvement on FPR95 (with a 4.58% gain
on AUROC) over CIFAR-100 compared to the competitive ViM (Wang et al., 2022) (See Figure 1).

OOD generalization. Given that underlying defects can exist outside the coverage area (Pei et al.,
2017), we hypothesize that the robustness of the network increases with a larger coverage area. To
this end, we employ NAC for Model Evaluation (NAC-ME), which measures model robustness by
integrating the coverage distribution of all neurons. Through experiments on DomainBed (Gulra-
jani & Lopez-Paz, 2021), we find that a positive correlation between NAC and model generalization
ability consistently holds across architectures and datasets. Moreover, compared to InD validation
criteria, NAC-ME not only selects more robust models, but also exhibits stronger correlation with
OOD test performance. For instance, on the Vit-b16 (Dosovitskiy et al., 2021), NAC-ME outper-
forms validation criteria by 11.61% in terms of rank correlation with OOD test accuracy.

2 NAC: NEURON ACTIVATION COVERAGE

This paper studies OOD problems in multi-class classification, where D = Rd denotes the input
space and Y = {1, 2, ..., C} is the output space. Let X = {(xi, yi)}ni=1 be the training set, com-
prising i.i.d. samples from the joint distribution P = X ×Y . A neural network parameterized by θ,
F (x; θ) : X → R|Y|, is trained on samples drawn from P , producing a logit vector for classification.
We illustrate our NAC-based approaches in Figure 3. In the following, we first formulate the neuron
activation state (Section 2.1), and then introduce the details of our NAC (Section 2.2). We finally
show how to apply NAC to two OOD problems (Section 2.3): OOD detection and generalization.

2.1 FORMULATION OF NEURON ACTIVATION STATE

Neuron outputs generally depend on the propagation from network input to the layer where the
neuron resides. However, this does not consider the neuron influence in subsequent propagations.

1While it may be argued that maintaining neuron outputs for double-propagation preserves InD accuracy
with low computational cost, it relies on the assumption that only later layers are utilized in neuron pruning,
thus undermining the potential of these neuron-based methods.
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Figure 3: Illustration of our NAC-based methods. NAC is derived from the probability density
function (PDF), which quantifies the coverage degree of neuron states under the InD training set
X . Building upon NAC, we devise two approaches for tackling different OOD problems: OOD
Detection (NAC-UE) and OOD Generalization (NAC-ME).

As such, we introduce gradients backpropagated from the KL divergence between network output
and a uniform vector (Huang et al., 2021b), to model the neuron influence. Formally, we denote
by f(x) = z ∈ RN the output vector of a specific layer (Section 3.1 discusses this layer choice),
where N is the number of neurons and zi is the raw output of i-th neuron in this layer. By setting
the uniform vector u = [1/C, 1/C, ..., 1/C] ∈ RC , the desired KL divergence can be given as:

DKL(u||p) =
C∑
i=1

ui log
ui

pi
= −

C∑
i=1

ui log pi −H(u), (1)

where p = softmax(F (x)), and pi denotes i-element in p. H(u) = −
∑C

i=1 ui log ui is a constant.
By combining the KL gradient with neuron output, we then formulate neuron activation state as,

ẑ = σ(z⊙ ∂DKL(u||p)
∂z

), (2)

where σ(x) = 1/(1+ e−αx) is the sigmoid function with a steepness controller α. In the rest of this
paper, we will also use the notation f̂(x) := ẑ to represent the neuron state function.

Rationale of ẑ. Here, we further analyze the gradients from KL divergence to show how this part
contributes to the neuron activation state ẑ. Without loss of generality, let the network be F = f ◦ g,
where g(·) is the predictor following z. Since ∂DKL/∂g(z) = p− u, we can rewrite the Eq. (2) as
follows (more details are provided in Appendix B):

ẑ = σ(z⊙ ∂DKL

∂z
) = σ(z⊙ (

∂g(z)

∂z
· ∂DKL

∂g(z)
)) = σ

( C∑
i=1

(z⊙ ∂g(z)i
∂z

) · (pi − ui)
)
, (3)

where (1) z ⊙ (∂g(z)i/∂z) corresponds the simple explanation method known as Input ⊙ Gradi-
ent (Ancona et al., 2018), which quantifies the contribution of neurons to the model prediction g(z)i.
It is also the general form of many prevalent explanation methods, such as ϵ-LRP (Bach et al., 2015),
DeepLIFT (Shrikumar et al., 2017), and IG (Sundararajan et al., 2017); (2) pi − ui measures the
deviation of model predictions from a uniform distribution, thus denoting sample confidence (Huang
et al., 2021b). In this way, we builds ẑ by considering both the significance of neurons on model
predictions, and model confidence in input data. Intuitively, if a neuron contributes less to the output
(or the model lacks confidence in input data), the neuron would be considered less active.

2.2 NEURON ACTIVATION COVERAGE (NAC)

With the formulation of neuron activation state, we now introduce the neuron activation coverage
(NAC) to characterize neuron behaviors under InD and OOD data. Inspired by system testing (Pei
et al., 2017; Ma et al., 2018; Xie et al., 2019), NAC aims to quantify the coverage degree of neuron
states under InD training data. The intuition is that if a neuron state is rarely activated (covered) by
any InD input, the chances of triggering bugs (e.g., misclassification) under this state would be high.
Since NAC directly measures the statistical property (i.e., coverage) over neuron state distribution,
we derive the NAC function from the probability density function (PDF). Formally, given a state ẑi
of i-th neuron, and its PDF κi

X(·) over an InD set X , the function for NAC can be given as:

Φi
X(ẑi; r) =

1

r
min(κi

X(ẑi), r), (4)
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where κi
X(ẑi) is the probability density of ẑi over the set X , and r denotes the lower bound for

achieving full coverage w.r.t. state ẑi. In cases where the neuron state ẑi is frequently activated
by InD training data, the coverage score Φi

X(ẑi; r) would be 1, denoting fewer underlying defects
in this state. Notably, if r is too low, noisy activations would dominate the coverage, reducing the
significance of coverage scores. Conversely, an excessively large value of r also makes the NAC
function vulnerable to data biases. For example, given a homogeneous dataset comprising numerous
similar samples, the coverage score of a neuron state ẑi can be mischaracterized as abnormally high,
marginalizing the effects of other meaningful states. We analyze the effect of r in Section 3.1.

2.3 APPLICATIONS

After modeling the NAC function over InD training data, we can directly apply it to tackle existing
OOD problems. In the following, we illustrate two application scenarios.

Uncertainty estimation for OOD detection. Since OOD data often trigger abnormal neuron be-
haviors (See Figure 4), we employ NAC for Uncertainty Estimation (NAC-UE), which directly
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Figure 4: OOD vs. InD neuron acti-
vation states. We employ PACS (Li
et al., 2017) Photo domain as InD
and Sketch as OOD. All neurons
stem from the layer4 of ResNet-50.

averages coverage scores over all neurons as the uncertainty
of test samples. Formally, given a test data x∗, the function
for NAC-UE can be given as,

S(x∗; f̂ , X) =
1

N

N∑
i=1

Φi
X(f̂(x∗)i; r), (5)

where N is the number of neurons; f̂(x∗)i := ẑi denotes the
state of i-th neuron; r is the controller of NAC function. If the
neuron states triggered by x∗ are frequently activated by InD
training samples, the coverage score S(x∗; f̂ , X) would be
high, suggesting that x∗ is likely to come from InD distribu-
tion. By considering multiple layers in the network, we pro-
pose using NAC-UE for OOD detection following Liu et al.
(2020); Huang et al. (2021b); Sun et al. (2021):

D(x∗) =

{
InD if

∑
l S(x

∗; f̂l, X) ≥ λ;

OOD if
∑

l S(x
∗; f̂l, X) < λ,

(6)

where λ is a threshold, and f̂l denotes the neuron state function of layer l. The test sample with an
uncertainty score

∑
l S(x

∗; f̂l, X) less than λ would be categorized as OOD; otherwise, InD.

Model evaluation for OOD generalization. OOD data potentially trigger neuron states beyond
the coverage area of InD data (Figure 2 and Figure 4), thus leading to misclassifications. From this
perspective, we hypothesize that the robustness of networks could positively correlate with the size
of coverage area. For instance, as coverage area narrows, larger inactive space would remain, in-
creasing the chances of triggering underlying bugs. Hence, we propose NAC for Model Evaluation
(NAC-ME), which characterizes model generalization ability based on the integral of neuron cover-
age distribution. Formally, given an InD training set X , NAC-MEmeasures the generalization ability
of a model (parameterized by θ) as the average of integral w.r.t. NAC distribution:

G(X, θ) =
1

N

N∑
i=1

∫ 1

ξ=0

Φi
X(ξ; r) dξ, (7)

where N is the number of neurons, and r is the controller of NAC function. Given the training set X ,
if a neuron is consistently active throughout the activation space, we consider it to be well exercised
by InD training data, thus with a lower probability of triggering bugs, i.e., favorable robustness.

Approximation. To enable efficient processing of large-scale datasets, we adopt a simple histogram-
based approach for modeling the probability density function (PDF) function. This approach divides
the neuron activation space into M intervals, and naturally supports mini-batch approximation. We
provide more details in Appendix C. In addition, we efficiently calculate G(X, θ) using the Riem-
man approximation (Krantz, 2005),

G(X, θ) =
1

MN

N∑
i=1

M∑
k=1

Φi
X(

k

M
; r). (8)
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Method
MINIST SVHN Textures Places365 Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
CIFAR-10 Benchmark

OpenMax 23.33±4.67 90.50±0.44 25.40±1.47 89.77±0.45 31.50±4.05 89.58±0.60 38.52±2.27 88.63±0.28 29.69±1.21 89.62±0.19

ODIN 23.83±12.34 95.24±1.96 68.61±0.52 84.58±0.77 67.70±11.06 86.94±2.26 70.36±6.96 85.07±1.24 57.62±4.24 87.96±0.61

MDS 27.30±3.55 90.10±2.41 25.96±2.52 91.18±0.47 27.94±4.20 92.69±1.06 47.67±4.54 84.90±2.54 32.22±3.40 89.72±1.36

MDSEns 1.30±0.51 99.17±0.41 74.34±1.04 66.56±0.58 76.07±0.17 77.40±0.28 94.16±0.33 52.47±0.15 61.47±0.48 73.90±0.27

RMDS 21.49±2.32 93.22±0.80 23.46±1.48 91.84±0.26 25.25±0.53 92.23±0.23 31.20±0.28 91.51±0.11 25.35±0.73 92.20±0.21

Gram 70.30±8.96 72.64±2.34 33.91±17.35 91.52±4.45 94.64±2.71 62.34±8.27 90.49±1.93 60.44±3.41 72.34±6.73 71.73±3.20

ReAct 33.77±18.00 92.81±3.03 50.23±15.98 89.12±3.19 51.42±11.42 89.38±1.49 44.20±3.35 90.35±0.78 44.90±8.37 90.42±1.41

VIM 18.36±1.42 94.76±0.38 19.29±0.41 94.50±0.48 21.14±1.83 95.15±0.34 41.43±2.17 89.49±0.39 25.05±0.52 93.48±0.24

KNN 20.05±1.36 94.26±0.38 22.60±1.26 92.67±0.30 24.06±0.55 93.16±0.24 30.38±0.63 91.77±0.23 24.27±0.40 92.96±0.14

ASH 70.00±10.56 83.16±4.66 83.64±6.48 73.46±6.41 84.59±1.74 77.45±2.39 77.89±7.28 79.89±3.69 79.03±4.22 78.49±2.58

SHE 42.22±20.59 90.43±4.76 62.74±4.01 86.38±1.32 84.60±5.30 81.57±1.21 76.36±5.32 82.89±1.22 66.48±5.98 85.32±1.43

GEN 23.00±7.75 93.83±2.14 28.14±2.59 91.97±0.66 40.74±6.61 90.14±0.76 47.03±3.22 89.46±0.65 34.73±1.58 91.35±0.69

NAC-UE 15.14±2.60 94.86±1.36 14.33±1.24 96.05±0.47 17.03±0.59 95.64±0.44 26.73±0.80 91.85±0.28 18.31±0.92 94.60±0.50

CIFAR-100 Benchmark
OpenMax 53.82±4.74 76.01±1.39 53.20±1.78 82.07±1.53 56.12±1.91 80.56±0.09 54.85±1.42 79.29±0.40 54.50±0.68 79.48±0.41

ODIN 45.94±3.29 83.79±1.31 67.41±3.88 74.54±0.76 62.37±2.96 79.33±1.08 59.71±0.92 79.45±0.26 58.86±0.79 79.28±0.21

MDS 71.72±2.94 67.47±0.81 67.21±6.09 70.68±6.40 70.49±2.48 76.26±0.69 79.61±0.34 63.15±0.49 72.26±1.56 69.39±1.39

MDSEns 2.83±0.86 98.21±0.78 82.57±2.58 53.76±1.63 84.94±0.83 69.75±1.14 96.61±0.17 42.27±0.73 66.74±1.04 66.00±0.69

RMDS 52.05±6.28 79.74±2.49 51.65±3.68 84.89±1.10 53.99±1.06 83.65±0.51 53.57±0.43 83.40±0.46 52.81±0.63 82.92±0.42

Gram 53.53±7.45 80.71±4.15 20.06±1.96 95.55±0.60 89.51±2.54 70.79±1.32 94.67±0.60 46.38±1.21 64.44±2.37 73.36±1.08

ReAct 56.04±5.66 78.37±1.59 50.41±2.02 83.01±0.97 55.04±0.82 80.15±0.46 55.30±0.41 80.03±0.11 54.20±1.56 80.39±0.49

VIM 48.32±1.07 81.89±1.02 46.22±5.46 83.14±3.71 46.86±2.29 85.91±0.78 61.57±0.77 75.85±0.37 50.74±1.00 81.70±0.62

KNN 48.58±4.67 82.36±1.52 51.75±3.12 84.15±1.09 53.56±2.32 83.66±0.83 60.70±1.03 79.43±0.47 53.65±0.28 82.40±0.17

ASH 66.58±3.88 77.23±0.46 46.00±2.67 85.60±1.40 61.27±2.74 80.72±0.70 62.95±0.99 78.76±0.16 59.20±2.46 80.58±0.66

SHE 58.78±2.70 76.76±1.07 59.15±7.61 80.97±3.98 73.29±3.22 73.64±1.28 65.24±0.98 76.30±0.51 64.12±2.70 76.92±1.16

GEN 53.92±5.71 78.29±2.05 55.45±2.76 81.41±1.50 61.23±1.40 78.74±0.81 56.25±1.01 80.28±0.27 56.71±1.59 79.68±0.75

NAC-UE 21.97±6.62 93.15±1.63 24.39±4.66 92.40±1.26 40.65±1.94 89.32±0.55 73.57±1.16 73.05±0.68 40.14±1.86 86.98±0.37

Table 1: OOD detection performance on CIFAR-10 and CIFAR-100 benchmarks. We format first,
second, and third results. Full results for all baselines are provided in Table 20 and Table 21.

3 EXPERIMENTS

3.1 CASE STUDY 1: OOD DETECTION

Setup. Our experimental settings align with the latest version of OpenOOD2 (Yang et al., 2022;
Zhang et al., 2023a). We evaluate our NAC-UE on three benchmarks: CIFAR-10, CIFAR-100, and
ImageNet-1k. For CIFAR-10 and CIFAR-100, InD dataset corresponds to the respective CIFAR, and
4 OOD datasets are included: MNIST (Deng, 2012), SVHN (Netzer et al., 2011), Textures (Cim-
poi et al., 2014), and Places365 (Zhou et al., 2018). For ImageNet experiments, ImageNet-1k
serves as InD, along with 3 OOD datasets: iNaturalist (Horn et al., 2018), Textures (Cim-
poi et al., 2014), and OpenImage-O (Wang et al., 2022). We use pretrained ResNet-50 and Vit-b16
for ImageNet experiments, and ResNet-18 for CIFAR. For all employed benchmarks, we compare
our NAC-UE with 21 SoTA OOD detection methods. We provide more details in Appendix D.

Metrics. We utilize two threshold-free metrics in our evaluation: 1) FPR95: the false-positive-rate
of OOD samples when the true positive rate of ID samples is at 95%; 2) AUROC: the area under the
receiver operating characteristic curve. Throughout our implementations, all pretrained models are
left unmodified, preserving their classification ability during the OOD detection phase.

Implementation details. We first build the NAC function using InD training data, utilizing 1,000
training images for ResNet-18 and ResNet-50, and 50,000 images for Vit-b16. Note that in this
stage, we merely use training samples less than 5% of the training set (See Appendix G.1 for more
analysis). Next, we employ NAC-UE to calculate uncertainty scores during the test phase. Following
OpenOOD, we use the validation set to select hyperparameters and evaluate NAC-UE on the test set.

Results. Table 1 and Table 2 mainly illustrate our results on CIFAR and ImageNet benchmarks,
where we compare NAC-UE with 21 SoTA methods. As can be seen, our NAC-UE consistently
outperforms all of the SoTA methods on average performance, establishing record-breaking perfor-
mance over 3 benchmarks. Specifically, NAC-UE reduces the FPR95 by 10.60% and 5.96% over
the most competitive rival (Wang et al., 2022; Sun et al., 2022) on CIFAR-100 and CIFAR-10, re-
spectively. On the large-scale ImageNet benchmark, NAC-UE also consistently improves AUROC
scores across backbones and OOD datasets. Besides, since NAC-UE performs in a post-hoc fashion,
it preserves model classification ability (i.e., InD accuracy) during the OOD detection phase. In
contrast, advanced methods such as ReAct (Sun et al., 2021) and ASH (Djurisic et al., 2023) exhibit
promising OOD detection results at the expense of InD performance (Djurisic et al., 2023).

2https://github.com/Jingkang50/OpenOOD.
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Dataset Backbone OpenMax MDS RMDS ReAct VIM KNN ASH SHE GEN NAC-UE

iNaturalist
ResNet-50 92.05 63.67 87.24 96.34 89.56 86.41 97.07 92.65 92.44 96.52

Vit-b16 94.93 96.01 96.10 86.11 95.72 91.46 50.62 93.57 93.54 93.72
Average 93.49 79.84 91.67 91.23 92.64 88.94 73.85 93.11 92.99 95.12

OpenImage-O
ResNet-50 87.62 69.27 85.84 91.87 90.50 87.04 93.26 86.52 89.26 91.45

Vit-b16 87.36 92.38 92.32 84.29 92.18 89.86 55.51 91.04 90.27 91.58
Average 87.49 80.83 89.08 88.08 91.34 88.45 74.39 88.78 89.77 91.52

Textures
ResNet-50 88.10 89.80 86.08 92.79 97.97 97.09 96.90 93.60 87.59 97.9

Vit-b16 85.52 89.41 89.38 86.66 90.61 91.12 48.53 92.65 90.23 94.17
Average 86.81 89.61 87.73 89.73 94.29 94.11 72.72 93.13 88.91 96.04

Table 2: OOD detection performance (AUROC↑) on ImageNet. See Table 22 for full results.

NAC-UE with training methods. Training-time regularization is one of the potential directions in

Training Method FPR95↓ AUROC↑

ConfBranch Baseline 50.98 83.94
NAC-UE 31.04 93.90

RotPred Baseline 36.67 90.00
NAC-UE 30.24 93.28

GODIN Baseline 50.87 85.51
NAC-UE 26.86 94.61

Table 3: ImageNet results of NAC-UE
with different training methods.

OOD detection. Here, we further show that NAC-UE
is pluggable to existing training methods. Table 3 il-
lustrates our results using three training schemes: Conf-
Branch (DeVries & Taylor, 2018), RotPred (Hendrycks
et al., 2019b), and GODIN (Hsu et al., 2020), where
we compare NAC-UE with the detection method em-
ployed in the original paper, i.e., Baseline in Table 3.
Notably, NAC-UE significantly improves upon the base-
line method across all three training approaches, which
highlights its effectiveness for OOD detection again.

Where to apply NAC-UE? Since NAC-UE performs based on neurons in a network, we further
investigate its effect when using neurons from different layers. Table 4 exhibits the results, where
the ResNet is utilized as the backbone for analysis. It can be drawn that (1) the performance of
NAC-UE positively correlates with the number of employed layers. This is intuitive, as including
more layers enables a greater number of neurons to be considered, thereby enhancing the accuracy
of NAC-UE in estimating the model status; (2) even with a single layer of neurons, NAC-UE is able
to achieve favorable performance. For instance, by employing layer4, NAC-UE already achieves
23.50% FPR95, which outperforms the previous best method KNN on CIFAR-10.

Layer Combinations CIFAR-10 CIFAR-100 ImageNet

Layer4 Layer3 Layer2 Layer1 FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
✓ 23.50 93.21 85.84 58.37 26.89 94.57
✓ ✓ 21.32 94.35 44.92 85.25 23.51 95.05
✓ ✓ ✓ 18.50 94.46 39.96 86.94 22.69 95.23
✓ ✓ ✓ ✓ 18.31 94.60 40.14 86.98 22.49 95.29

Table 4: Performance of NAC-UE with different layer choices.

The superiority of neuron activation state ẑ. Section 2.1 formulates the neuron activation state ẑ
by combining the neuron output z with its KL gradients ∂DKL/∂z. Here, we ablate this formulation
to examine the superiority of ẑ. In particular, we analyze the neuron behaviors w.r.t. 1) raw neuron
output: z, 2) KL gradients of neuron output: ∂DKL/∂z, and 3) ours neuron state: z⊙ ∂DKL/∂z.

Figure 5 illustrates the results, where we visualize the InD and OOD distribution of different neu-
rons in the ImageNet benchmark. As can be seen, under the form of z⊙ ∂DKL/∂z, neurons tend to
present distinct activation patterns when exposed to InD and OOD data. This distinctiveness greatly
facilitates the separability between InD and OOD, thereby leading to the best OOD detection per-
formance with NAC-UE, e.g., 16.58% FPR95 (z ⊙ ∂DKL/∂z) vs. 35.72% FPR95 (z) on layer4.
Contrary to that, when considering the vanilla form of z and ∂DKL/∂z, the neuron behaviors under
InD and OOD are largely overlapped, which further spotlights the unique characteristic of our ẑ.
More detailed analysis can be found in Appendix G.2.

Paramter analysis. Table 5-7 presents a systematically analysis of the effect of sigmoid steepness
(α), lower bound (r) for full coverage, and the number of intervals (M ) for PDF approximation. The
following observations can be noted: 1) A relatively steep sigmoid function could make NAC-UE
perform better. We conjecture this is due to that neuron activation states often distribute in a small
range, thus requiring a steeper function to distinguish their finer variations; 2) NAC-UE is sensitive
to the choice of r. As previously discussed, a small r would allows noisy activations to dominate
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(a) InD and OOD distributions w.r.t. layer3 unit-238
Neuron Output Ours Neuron StateNeuron Gradients

FPR95 of NAC-UE: 55.37 FPR95 of NAC-UE: 61.63 FPR95 of NAC-UE: 35.38

Neuron Gradients
(b) InD and OOD distributions w.r.t. layer4 unit-894

Neuron Output Ours Neuron State

FPR95 of NAC-UE: 35.72 FPR95 of NAC-UE: 33.57 FPR95 of NAC-UE: 16.58

Figure 5: Ablation studies on the neuron activation state. We visualize InD (ImageNet) and OOD
(iNaturalist) distributions w.r.t. (a) neuron output, z; (b) KL gradients of neuron output, ∂DKL/∂z;
(c) our defined neuron state, z⊙ ∂DKL/∂z. All states are normalized via the sigmoid function.

Sigmoid
Steepness (α) FPR95↓ AUROC↑

α = 1 40.07 85.48
α = 10 25.64 92.11
α = 100 23.50 93.21
α = 500 48.99 86.00
α = 1000 92.69 54.69

Table 5: NAC-UE w.r.t different
α over CIFAR-10.

Lower
Bound (r) FPR95↓ AUROC↑

r = 0.1 27.10 91.51
r = 0.5 24.16 92.79
r = 1 23.50 93.21
r = 5 28.35 92.17
r = 50 36.70 90.38

Table 6: NAC-UE w.r.t differ-
ent r over CIFAR-10.

No. of
Intervals (M ) FPR95↓ AUROC↑

M = 10 25.19 91.80
M = 50 23.50 93.21
M = 100 24.23 93.09
M = 500 33.87 91.11
M = 1000 40.36 89.69

Table 7: NAC-UE w.r.t different
M over CIFAR-10.

NAC, thus diminishing the effect of coverage scores. Also, a large r makes the NAC vulnerable
to data biases, e.g., in datasets with numerous similar samples, a neuron state can be inaccurately
characterized with a high coverage score, disregarding other meaningful neuron states. 3) NAC-UE
works better with a moderate M . This is intuitive as a lower M may not sufficiently approximate
the PDF function, while a higher M can easily lead to overfitting on the utilized training samples.

3.2 CASE STUDY 2: OOD GENERALIZATION

Setup. Our experimental settings follow the Domainbed benchmark (Gulrajani & Lopez-Paz, 2021).
Without employing digital images, we adopt four datasets: VLCS (Fang et al., 2013) (4 domains,
10,729 images) , PACS (Li et al., 2017) (4 domains, 9,991 images), OfficeHome (Venkateswara
et al., 2017) (4 domains, 15,588 images), and TerraInc (Beery et al., 2018) (4 domains, 24,788
images). For all datasets, we report the leave-one-out test accuracy following (Gulrajani & Lopez-
Paz, 2021), whereby results are averaged over cases that use a single domain for test and the others
for training. For all employed backbones, we utilize the hyperparameters suggested by (Cha et al.,
2021) to fine-tune them. The training strategy is ERM (Vapnik, 1999), unless stated otherwise. We
set the total training steps as 5000, and the evaluation frequency as 300 steps for all models. We use
the validation set to select hyperparameters of NAC-ME. See Appendix E for more details.

Model evaluation criteria. Since OOD data is assumed unavailable during model training, existing
methods commonly resort to InD validation accuracy to evaluate a model (Ramé et al., 2022; Yao
et al., 2022; Shi et al., 2022; Kim et al., 2021). Thus, we mainly compare NAC-MEwith the prevalent
validation criterion (Gulrajani & Lopez-Paz, 2021). We also leverage the oracle criterion (Gulrajani
& Lopez-Paz, 2021) as the upper bound, which directly utilizes OOD test data for model evaluation.

Metrics. Here, we utilize two metrics: 1) Spearman Rank Correlation (RC) between OOD test
accuracy and the model evaluation scores (i.e., InD validation accuracy or NAC-ME scores), which
are sampled at regular evaluation intervals (i.e., every 300 steps) during the training process; 2) OOD
Test Accuracy (ACC) of the best model selected by the criterion within a single run of training.
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Bakbone Method
VLCS PACS OfficeHome TerraInc Average

RC ACC RC ACC RC ACC RC ACC RC ACC

Oracle - 77.67 - 80.51 - 56.18 - 44.51 - 64.72

Validation 34.27 75.12 68.71 79.01 83.50 55.60 39.58 37.36 56.52 61.77
NAC-ME 50.29 75.83 74.16 78.85 84.91 55.76 40.42 39.45 62.45 62.47ResNet-18

∆ (+16.02) (+0.71) (+5.45) (-0.16) (+1.41) (+0.16) (+0.84) (+2.09) (+5.93) (+0.70)

Oracle - 79.79 - 86.10 - 65.95 - 50.76 - 70.65

Validation 31.43 77.70 58.54 84.57 67.93 65.04 37.07 46.07 48.74 68.34
NAC-ME 28.68 76.41 62.07 85.28 69.16 65.23 40.16 47.10 50.02 68.51

ResNet-50

∆ (-2.75) (-1.29) (+3.53) (+0.71) (+1.23) (+0.19) (+3.09) (+1.03) (+1.28) (+0.17)

Oracle - 79.11 - 71.99 - 61.44 - 41.29 - 63.46

Validation 37.95 77.43 89.34 69.83 98.71 61.22 22.71 36.28 62.18 61.19
NAC-ME 49.59 77.97 90.67 70.99 99.14 61.26 23.26 36.69 65.67 61.73

Vit-t16

∆ (+11.64) (+0.54) (+1.33) (+1.16) (+0.43) (+0.04) (+0.55) (+0.41) (+3.49) (+0.54)

Oracle - 80.96 - 90.23 - 81.23 - 52.23 - 76.16

Validation 18.81 78.70 41.38 87.80 58.29 80.11 0.92 45.49 29.85 73.03
NAC-ME 37.42 79.20 45.04 88.83 63.17 80.52 20.22 47.86 41.46 74.10

Vit-b16

∆ (+18.61) (+0.50) (+3.66) (+1.03) (+4.88) (+0.41) (+19.30) (+2.37) (+11.61) (+1.07)

Table 8: OOD generalization results on DomainBed. Oracle denotes the upper bound, which uses
OOD test data to evaluate models. ∆ denotes the improvement of NAC-ME over the validation
criterion. All scores are averaged over 3 random trials. Full results are provided in Appendix K.

Results. As illustrated in Table 8, we mainly compare our NAC-ME with the typical validation
criterion over four backbones: ResNet-18, ResNet-50, Vit-t16, and Vit-b16. We provide the main
observations in the following: 1) The positive correlation (i.e., RC > 0) between the NAC-ME and
OOD test performance consistently holds across architectures and datasets; 2) By comparison with
the validation criterion, NAC-ME not only selects more robust models (with higher OOD accuracy),
but also exhibits stronger correlation with OOD test performance. For instance, on the TerraInc
dataset, NAC-ME achieves a rank correlation of 20.22% with OOD test accuracy, surpassing valida-
tion criterion by 19.30% on Vit-b16. Similarly, on the VLCS dataset, NAC-ME also shows a rank
correlation of 52.29%, outperforming the validation criterion by 16.02% on ResNet-18. Such results
highlight the potential of NAC-ME in evaluating model generalization ability.

Algorithm Method RC ACC

Validation 61.76 80.66
NAC-ME 66.85 80.92SelfReg

∆ (+5.09) (+0.26)

Validation 70.06 80.68
NAC-ME 76.55 81.54CORAL

∆ (+6.49) (+0.86)

Table 9: OOD generalization results
on PACS (Li et al., 2017), averaged
over 3 trials. Backbone: ResNet-18.

NAC-ME can co-work with SoTA learning algorithms.
Recent literature has suggested numerous learning algo-
rithms to enhance the model robustness (Ganin et al., 2016;
Shi et al., 2022; Ramé et al., 2022). In this sense, we fur-
ther investigate the potential of NAC-ME by implementing it
with two recent SoTA algorithms: CORAL (Sun & Saenko,
2016) and SelfReg (Kim et al., 2021). The results are shown
in Table 9. We can see that NAC-ME as an evaluation cri-
terion still presents better performance compared with the
validation criterion, which spotlights its effectiveness again.
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Figure 6: The positive relationship
between RC and the volume of OOD
test data. Dataset: iWildCAM (Koh
et al., 2021). Backbone: ResNet-50.

Does the volume of OOD test data hinder the Rank Cor-
relation (RC)? As illustrated in Table 8, while in most cases
NAC-ME outperforms the validation criterion on model se-
lection, we can find that the Rank Correlation (RC) still falls
short of its maximum value, e.g., on the VLCS dataset us-
ing ResNet-18, RC only reaches 50% compared to the maxi-
mum of 100%. Given that Domainbed only provides 6 OOD
domains at most, we hypothesize that the volume/variance
of OOD test data may be the reason: insufficient OOD test
data may be unreliable to reflect model generalization ability,
thereby hindering the validity of RC. To this end, we conduct
additional experiments on the iWildCam dataset (Koh et al.,
2021), which includes 323 domains and 203,029 images in
total. Figure 6 illustrates the results, where we analyze the
relationship between RC and the volume of OOD test data
by randomly sampling different ratios of OOD data for RC calculation. As can be seen, an increase
in the ratio of test data also leads to an improvement in the RC, which confirms our hypothesis re-
garding the effect of OOD data. Furthermore, we can observe that in most cases, NAC-ME could still
outperform the validation criterion. These observations spotlight the capability of our NAC again.
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4 RELATED WORK

Neuron coverage in system testing. Traditional system testing commonly leverages coverage cri-
teria to uncover defects in software programs (Ammann & Offutt, 2008). These criteria measure the
degree to which certain codes or components have been exercised, thereby revealing areas with po-
tential defects. To simulate such program testing in neural networks, Pei et al. (2017) first introduced
neuron coverage, which measures the proportion of activated neurons within a given input set. The
underlying idea is that if a network performs with larger neuron coverage during testing, it is likely
to have fewer undetected bugs, e.g., misclassification. In line with this, Ma et al. (2018) extended
neuron coverage with fine-grained criteria by considering the neuron outputs from training data.
Yuan et al. (2023) introduced layer-wise neuron coverage, focusing on interactions between neurons
within the same layer. The most recent work related to our paper is Tian et al. (2023), where they
proposed to improve model generalization ability by maximizing neuron coverage during training.
However, these existing definitions of neuron coverage still focus on the proportion of activated neu-
rons in the entire network, which disregards the activation details of individual neurons. Contrary to
that, in this paper, we specifically define neuron activation coverage (NAC) for individual neurons,
which characterizes the coverage degree of each neuron state under InD data. This provides a more
comprehensive perspective on understanding neuron behaviors under InD and OOD scenarios.

OOD detection. The goal of OOD detection is to distinguish between InD and OOD data inputs,
thereby refraining from using unreliable model predictions during deployment. Existing detection
methods can be broadly categorized into three groups: 1) confidence-based (Bendale & Boult,
2016; Hendrycks & Gimpel, 2017; Huang & Li, 2021), 2) distance-based (Huang et al., 2021a;
Chen et al., 2020; van Amersfoort et al., 2020), and 3) density-based (Zisselman & Tamar, 2020;
Jiang et al., 2022; Kirichenko et al., 2020) approaches. Confidence-based methods commonly resort
to the confidence level of model outputs to detect OOD samples, e.g., maximum softmax proba-
bility (Hendrycks & Gimpel, 2017). In contrast, distance-based approaches identify OOD samples
by measuring the distance (e.g., Mahalanobis distance (Lee et al., 2018)) between input sample and
typical InD centroids or prototypes. Likewise, density-based methods employ probabilistic models
to explicitly model InD distribution and classify test data located in low-density regions as OOD.

Specific to neuron behaviors, ReAct (Sun et al., 2021) recently proposes the truncation of neuron
activations to separate the InD and OOD data. However, such truncation can lead to a decrease in
model classification ability (Djurisic et al., 2023). Similarly, LINe (Ahn et al., 2023) seeks to find
important neurons using the Shapley value (Shapley, 1997) and then performs activation clipping.
Yet, this approach relies on a threshold-based strategy that categorizes neurons into binary states,
disregarding valuable neuron distribution details. Unlike them, in this work, we show that by using
natural neuron states, a distribution property (i.e., coverage) greatly facilitates the OOD detection.

OOD generalization. OOD generalization aims to train models that can overcome distribution shifts
between InD and OOD data. While a myriad of studies has emerged to tackle this problem (Li et al.,
2018b; Sun & Saenko, 2016; Sagawa et al., 2020; Parascandolo et al., 2021; Arjovsky et al., 2019;
Ganin et al., 2016; Li et al., 2018a; Krueger et al., 2021), Gulrajani & Lopez-Paz (2021) recently put
forth the importance of model evaluation criterion, and demonstrated that a vanilla ERM (Vapnik,
1999) along with a proper criterion could outperform most state-of-the-art methods. In line with
this, Arpit et al. (2022) discovered that using validation accuracy as the evaluation criterion could
be unstable for model selection, and thus proposed moving average to stabilize model training.
Contrary to that, this work sheds light on the potential of neuron activation coverage for model
evaluation, showing that it outperforms the validation criterion in various cases.

5 CONCLUSION

In this work, we have presented a neuron activation view to reflect the OOD problem. We have
shown that through our formulated neuron activation states, the concept of neuron activation cov-
erage (NAC) could effectively facilitate two OOD tasks: OOD detection and OOD generalization.
Specifically, we have demonstrated that 1) InD and OOD inputs can be more separable based on
the neuron activation coverage, yielding substantially improved OOD detection performance; 2) a
positive correlation between NAC and model generalization ability consistently holds across archi-
tectures and datasets, which highlights the potential of NAC-based criterion for model evaluation.
Along these lines, we hope this paper has further motivated the community to consider neuron be-
havior in the OOD problem. This is also the most considerable benefit eventually lies.
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A POTENTIAL SOCIAL IMPACT

This study introduces neuron activation coverage (NAC) as an efficient tool for facilitating out-of-
distribution (OOD) solutions. By improving OOD detection and generalization, NAC has the poten-
tial to significantly enhance the dependability and safety of modern machine learning models. Thus,
the social impact of this research can be far-reaching, spanning consumer and business applications
in digital content understanding, transportation systems including driver assistance and autonomous
vehicles, as well as healthcare applications such as identifying unseen diseases. Moreover, by openly
sharing our code, we strive to offer machine learning practitioners a readily available resource for
responsible AI development, ultimately benefiting society as a whole. Although we anticipate no
negative repercussions, we are committed to expanding upon our framework in future endeavors.

B ADDITIONAL THEORETICAL DETAILS

In this section, we present additional theoretical details for Eq. (3) in the main paper. Concretely,
we first elaborate on the calculation of gradients w.r.t. the sample confidence, i.e., ∂DKL/∂g(z) =
p− u. Then, we show the detailed derivation of Eq. (3).

Derivation of sample confidence. As a reminder, in the main paper, we introduce the Kullback-
Leibler (KL) divergence (Kullback & Leibler, 1951) between the network output and a uniform
vector u = [1/C, 1/C, ..., 1/C] ∈ RC as follows:

DKL(u||p) =
C∑
i=1

ui log
ui

pi

= −
C∑
i=1

ui log pi +

C∑
i=1

ui log ui

= − 1

C

C∑
i=1

log pi −H(u),

where p = softmax(F (x)), and pi denotes i-element in p. H(u) = −
∑C

i=1 ui log ui is a constant.
Let F (x)i indicates i-th element in F (x), we have pi = eF (x)i/

∑C
j=1 e

F (x)j . Then, by substituting
the expression of pi, we can rewrite KL divergence as:

DKL(u||softmax(F (x))) = − 1

C

C∑
i=1

log
eF (x)i∑C
j=1 e

F (x)j
−H(u)

= − 1

C

 C∑
i=1

F (x)i − C · log
C∑

j=1

eF (x)j

−H(u).

Subsequently, we can derive the gradients of KL divergence w.r.t. the output logit F (x)i as:

∂DKL

∂F (x)i
= − 1

C

(
1− C ·

∂ log
∑C

j=1 e
F (x)j

∂F (x)i

)

= − 1

C

(
1− C · eF (x)i∑C

j=1 e
F (x)j

)

= − 1

C
+

eF (x)i∑C
j=1 e

F (x)j

= pi − ui.

Since F (x) = g(f(x)) = g(z), we finally have:

∂DKL

∂g(z)
=

∂DKL

∂F (x)
= [p1 − u1, ..., pc − uc]

T
= p− u (9)
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Derivation of Eq.(3). As shown above, we have ∂DKL/∂g(z) = p − u. By substituting this
expression, we can rewrite the formulation of neuron activation state ẑ as:

ẑ = σ(z⊙ ∂DKL

∂z
) = σ(z⊙ (

∂g(z)

∂z
· ∂DKL

∂g(z)
)) = σ(z⊙ (

∂g(z)

∂z
· (p− u))). (10)

By expanding the expression of ∂g(z)/∂z, we have:

∂g(z)

∂z
= [

∂g(z)1
∂z

,
∂g(z)2
∂z

, ...,
∂g(z)C
∂z

] ∈ RN×C , (11)

where ∂g(z)i/∂z ∈ RN denotes the gradients of i-th element in the logit output g(z). N is the
number of neurons in z, and C is the number of classes. In this way, we can reorganize Eq.(10) as:

ẑ = σ
(
z⊙ (

C∑
i=1

∂g(z)i
∂z

· (pi − ui))
)
= σ

( C∑
i=1

(z⊙ ∂g(z)i
∂z

) · (pi − ui)
)
. (12)

C APPROXIMATION DETAILS

In this section, we demonstrate details for the approximation of PDF function, and further show the
insights for the choice of r in our NAC function.

C.1 PRELIMINARIES

Probability density function (PDF). The Probability Density Function (PDF), denoted by κ(x),
measures the probability of a continuous random variable taking on a specific value within a given
range. Accordingly, κ(x) should possess the following key properties:

(1) Non-Negativity: κ(x) ≥ 0, for all x ∈ R;
(2) Normalization:

∫∞
−∞ κ(x)dx = 1;

(3) Probability Interpretation: P (a ≤ µ ≤ b) =
∫ b

a
κ(x)dx,

where P (a ≤ µ ≤ b) denotes the probability that random variable µ has values within range [a, b].

Cumulative distribution function (CDF). In line with PDF, the Cumulative Distribution Function
(CDF), denoted by K(x), calculates the cumulative probability for a given x-value. Formally, K(x)
gives the area under the probability density function up to the specified x,

K(x) = P (µ ≤ x) =

∫ x

−∞
κ(t)dt. (13)

By the Fundamental Theorem of Calculus, we can rewrite the function κ(x) as,

κ(x) = K ′(x) = lim
h→0

K(x+ h)−K(x)

h
. (14)

Note that in the main paper, we denote by κi
X(·) the PDF, and Φi

X(·) the NAC function of i-th
neuron over the training dataset X . In this appendix, we will omit the superscript i and subscript X
for simplicity.

C.2 APPROXIMATION

In line with the main paper, we approximate the PDF of neuron states following a simple histogram-
based approach, where the neuron activation space is partitioned into M intervals/bins with loga-
rithmic scales. Formally, suppose the width of a bin is h, we can rewrite the PDF function as,

κ(ẑ) ≈ K(ẑ + h)−K(ẑ)

h
=

P (ẑ < µ ≤ ẑ + h)

h
≈ O(ẑ)

|X|
· 1
h
, (15)

where ẑ is the neuron activation state, and O(ẑ) is the number of samples in the bin activating ẑ.
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During the PDF modeling process, we iteratively take a random batch of neuron states as input and
assign them corresponding bins.

The choice of r. With the approximation of PDF, we can rewrite the NAC function as,

Φ(ẑ; r) =
1

r
min(κ(ẑ), r) = min(

κ(ẑ)

r
, 1) ≈ min(

O(ẑ)

|X|h
· 1
r
, 1), (16)

where r denotes the lower bound for achieving full coverage w.r.t. state ẑ. However, for the above
formulation, it could be challenging to search for a suitable r, since various factors (e.g., InD dataset
size |X|) could affect the significance of NAC scores Φ(ẑ; r). In this sense, to further simplify this
formulation in the practical deployment, we set r = O∗

|X|h , such that

Φ(ẑ; r) ≈ min(
O(ẑ)

|X|h
· 1
r
, 1) = min(

O(ẑ)

O∗ , 1), (17)

where O∗ represents the minimum number of samples required for bin filling, and O(ẑ) is the
number of samples activating the neuron state ẑ in the bin. In this way, we can directly manipulate
O∗ to control the NAC function in the practical deployment.

D EXPERIMENTAL DETAILS FOR OOD DETECTION

We conduct experiments following the latest version of OpenOOD3 (Yang et al., 2022; Zhang et al.,
2023a). In this section, we first provide more details for the utilized baselines (Section D.1), datasets
and evaluation protocol (Section D.2), and model architectures (Section D.3). Then, we demonstrate
the hyperparameters of NAC-UE, and the corresponding search space (Section D.4).

D.1 BASELINE METHODS

Since NAC-UE performs in a post-hoc fashion, we mainly compare our approach on three bech-
marks with the 21 post-hoc OOD detection methods, including OpenMax (Bendale & Boult, 2016),
MSP (Hendrycks & Gimpel, 2017), TempScale (Guo et al., 2017), ODIN (Liang et al., 2018),
MDS (Lee et al., 2018), MDSEns (Lee et al., 2018), RMDS (Ren et al., 2021), Gram (Sastry &
Oore, 2020), EBO (Liu et al., 2020), OpenGAN (Kong & Ramanan, 2021), GradNorm (Huang
et al., 2021b), ReAct (Sun et al., 2021), MLS (Hendrycks et al., 2022), KLM (Hendrycks et al.,
2022), VIM (Wang et al., 2022), KNN (Sun et al., 2022), DICE (Sun & Li, 2022), RankFeat (Song
et al., 2022), ASH (Djurisic et al., 2023), SHE (Zhang et al., 2023b), GEN (Liu et al., 2023). In par-
ticular, ReAct and ASH are neuron-based methods, which modify the neuron activations for OOD
detection. The results presented in Table 20-22 are from the OpenOOD implementations.

D.2 OOD BENCHMARKS

We mainly utilize the Far-OOD track of OpenOOD for the evaluation, as it is well defined and
supported by many existing studies, e.g., Wang et al. (2022) and Bitterwolf et al. (2023).

CIFAR benchmarks CIFAR-10 and CIFAR-100 are widely employed as in-distribution (InD)
datasets in existing studies. CIFAR-10 consists of 10 classes, while CIFAR-100 contains 100 classes.
In line with OpenOOD, we adopt the same split setup for CIFAR-10 and CIFAR-100 benchmarks.
Specifically, for both CIFAR-10 and CIFAR-100, we utilize the official train set with 50,000 training
images, and hold out 1,000 samples from the test set as InD validation set. The remaining 9,000 test
images are employed as InD test set. The 1,000 images covering 20 categories are held out from
Tiny ImageNet (Le & Yang, 2015), serving as the OOD validation set. To assess the performance
of OOD detection methods, we employ four commonly adopted datasets for OOD test, which are
disjoint with the OOD validation set. The details of them are provided below:

1. MNIST (Deng, 2012): This is a 10-class handwriting digital dataset, contains 60,000 im-
ages for training and 10,000 for test. We utilize the entire test set for OOD detection.

3https://github.com/Jingkang50/OpenOOD.
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Architecture Parameter Denotation Values

ResNet-18

- layer choice layer4 / layer3 / layer2 / layer1
M number of bins for PDF estimation 50 / 500 / 50 / 500
α sigmoid steepness 100 / 1000 / 0.001 / 0.001
O∗ number of samples required for bin filling 50 / 100 / 5 / 100

Table 10: Hyperparameters and their default values on the CIFAR-10 benchmark. Note that r can
be computed based on O∗, as illustrated in Appendix C.2

Architecture Parameter Denotation Values

ResNet-18

- layer choice layer4 / layer3 / layer2 / layer1
M number of bins for PDF estimation 50 / 1000 / 50 / 50
α sigmoid steepness 50 / 10 / 1 / 0.005
O∗ number of samples required for bin filling 50 / 500 / 500 / 5

Table 11: Hyperparameters and their default values on the CIFAR-100 benchmark. Note that r can
be computed based on O∗, as illustrated in Appendix C.2

2. SVHN (Netzer et al., 2011): This dataset consists of color images depicting house numbers,
encompassing ten classes representing digits 0 to 9. We utilize the entire test set, containing
26,032 images.

3. Textures (Cimpoi et al., 2014): The Textures dataset comprises 5,640 real-world texture
images classified into 47 categories. We employ the entire dataset for evaluation purposes.

4. Places365 (Zhou et al., 2018): Places365 contains a vast collection of photographs de-
picting scenes, classified into 365 scene categories. The test set consists of 900 images per
category. For OOD detection, we utilize the entire test dataset with 1,305 images removed
due to the semantic overlap following (Yang et al., 2022).

Large-scale ImageNet benchmark We employ ImageNet-1k (Deng et al., 2009) as the in-
distribution dataset, which contains about 1.2M training images. Following OpenOOD, we utilize
45,000 images from the ImageNet validation set as InD test set, and the remaining 5,000 samples
as InD validation set. To search hyperparameters, 1,763 images from OpenImage-O (Wang et al.,
2022) are picked out for OOD validation. Finally, we leverage three commonly adopted datasets as
OOD test for evaluations:

1. iNaturalist (Horn et al., 2018): This dataset consists of 859,000 images of plants
and animals, covering over 5,000 different species. Each image is resized to a maximum
dimension of 800 pixels. Following (Huang & Li, 2021; Yang et al., 2022), we evaluate our
method on a randomly selected subset of 10,000 images, which are drawn from 110 classes
that do not overlap with ImageNet-1k.

2. Textures (Cimpoi et al., 2014): This dataset contains 5,640 real-world texture images
categorized into 47 classes. We utilize the entire dataset for evaluation purposes.

3. OpenImage-O (Wang et al., 2022): This dataset is curated based on the test set of
OpenImage-v3, thereby enjoying natural class statistics to avoid initial design biases. It
contains 17,632 images with large scale. Following OpenOOD, we utilize the entire dataset
for OOD detection, except the images selected for OOD validation.

D.3 MODEL ARCHITECTURE

For CIFAR-10 and CIFAR-100 benchmarks, we employ the powerful ResNet-18 (He et al.,
2016) architecture. In line with the OpenOOD (Yang et al., 2022; Zhang et al., 2023a), we train
ResNet-18 for 100 epochs and evaluate OOD detection methods over three checkpoints. Pleas
refer to OpenOOD for more training details.

Following OpenOOD, our experiments for ImageNet benchmark employ two model architectures:
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Architecture Parameter Denotation Values

Vit-b16

- layer choice before head / block11 /
block10 / block9

M number of bins for PDF estimation 50 / 500 / 500 / 1000
α sigmoid steepness 100 / 1 / 10 / 1
O∗ number of samples required for bin filling 500 / 50 / 10 / 10

ResNet-50

- layer choice layer4 / layer3 / layer2 / layer1
M number of bins for PDF estimation 50 / 50 / 500 / 1000
α sigmoid steepness 3000 / 300 / 0.01 / 1
O∗ number of samples required for bin filling 10 / 500 / 50 / 5000

Table 12: Hyperparameters and their default values on the ImageNet benchmark. Note that r can be
computed based on O∗, as illustrated in Appendix C.2

• ResNet-50 (He et al., 2016) is pretrained on ImageNet-1k. For this model, all images
are resized to 224 × 224 at the test phase. We use the official checkpoints from Pytorch.

• Vit-b16 (Dosovitskiy et al., 2021) is also pretrained on ImageNet-1k. Similar to ResNet-
50, test images are resized to 224 × 224. The checkpoints from Pytorch are employed.

D.4 HYPERPARAMETERS

In all of our experiments, we utilize the InD and OOD validation sets to search for the best hyperpa-
rameters. In general, we search M in [50, 500, 1000], and O∗ in [5, 10, 50, 100, 500, 5000] across
architectures and benchmarks. Since neurons in deeper network layers (e.g., layer4) often varies in
a smaller range (See z in Figure 5 for an example), we search α in [50, 100, 300, 1000, 3000] for
steeper sigmoid function. Otherwise, we search α in [0,001, 0.005, 0.01, 0.1, 1, 10].

In Table 10-12, we list the values of selected hyperparameters for different model architectures over
CIFAR-10, CIFAR-100, and ImageNet benchmarks. As suggested in Table 4, we use layer4, layer3,
layer2, and layer1 together for OOD detection regrading the ResNet architectures. For Vit-b16, we
use the attention layer in block11, block10, block9, and the neurons before the head layer.

E EXPERIMENTAL DETAILS FOR OOD GENERALIZATION

E.1 DOMAINBED BENCHMARK

Datasets We conduct experiments on the DomainBed (Gulrajani & Lopez-Paz, 2021) benchmark,
which is an arguably fairer benchmark in OOD generalization4. Without utilizing digital images, we
utilize four datasets:

1. VLCS (Fang et al., 2013) is composed of photographic domains, namely Caltech101,
LabelMe, SUN09, and VOC2007. This dataset consists of 10,729 examples with dimen-
sions (3, 224, 224) and 5 classes.

2. PACS dataset (Li et al., 2017) consists of four domains: art, cartoons, photos, and
sketches. It comprises a total of 9,991 examples with dimensions (3, 224, 224) and 7
classes.

3. OfficeHome (Venkateswara et al., 2017) includes domains: art, clipart, product,
real. This dataset contains 15,588 examples of dimension (3, 224, 224) and 65 classes.

4. TerraInc (Beery et al., 2018) is a collection of wildlife photographs captured by camera
traps at various locations: L100, L38, L43, and L46. Our version of this dataset contains
24,788 examples of dimension (3, 224, 224) and 10 classes.

Settings To ensure the reliability of final results, the data from each domain is partitioned into two
parts: 80% for training or testing, and 20% for validation. This process is repeated three times with

4https://github.com/facebookresearch/DomainBed.
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different seeds, such that reported numbers represent the mean and standard errors across these three
runs. In our experiments, we report leave-one-out test accuracy scores, whereby results are averaged
over cases that uses a single domain for test and the others for training. Besides, we set the total
training steps as 5000, and the evaluation frequency as 300 steps for all runs.

Model evaluation criteria For model evaluation, we mainly compare our method with the valida-
tion criterion, which measures model accuracy over 20% source-domain (i.e., InD) validation data.
In addition, we also employ the oracle criterion as the upper bound, which directly utilizes the accu-
racy over 20% test-domain data for model evaluation. For more details, we suggest to refer Gulrajani
& Lopez-Paz (2021).

E.2 METRIC: RANK CORRELATION

Rank correlation metrics are widely utilized to measure the relationship between two random vari-
ables. The purpose of these metrics is to provide a quantitative way to assess the similarity in
rankings of observations across the variables. Following Arpit et al. (2022), we utilize the Spearman
Rank Correlation (RC) for assessing the relationship between OOD test accuracy and the model
evaluation scores, i.e., InD validation accuracy or InD NAC-ME scores.

The rationale behind this choice is that during the training phase, the selection of the optimal model
is frequently based on the ranking of model performance, such as validation accuracy. Therefore,
utilizing the RC score enables us to directly measure the effectiveness of evaluation criteria in model
selection (which naturally translates to early stopping). The value of RC ranges between -1 and 1,
where a value of -1 signifies that the rankings of two random variables are exactly opposite to each
other; whereas, a value of +1 indicates that the rankings are exactly the same. Furthermore, a RC
score of 0 indicates no linear relationship between the two variables.

E.3 MODEL ARCHITECTURE

In our experiments, we employ four model architectures: ResNet-18 (He et al., 2016), ResNet-
50 (He et al., 2016), Vit-t16 (Dosovitskiy et al., 2021), and Vit-b16 (Dosovitskiy et al., 2021). All of
them are pretrained on the ImageNet dataset, and are employed as the initial weight. For parameter
choices, we suggest to refer Cha et al. (2021).

E.4 HYPERPARAMETERS

In the case of ResNet architectures, NAC-ME computation is performed by using the neurons in
layer-4. For ResNet-50, layer-4 consists of 2048 neurons, while ResNet-18 has 512 neurons. As
for vision transformers, NAC-ME computation utilizes the neurons in the attention layer of block-
11. In the case of Vit-b16, we utilize 768 neurons, while for Vit-t16, we employ 192 neurons.
During this series of experiments, we employ the source-domain training data to formulate the NAC
function. Besides, to mitigate the noises in training samples, we merely utilize training data that can
be correctly classified to build the NAC function.

In order to determine the best hyperparameters of NAC-ME for all models, we utilize the InD vali-
dation data for parameter search based on the distribution outlined in Table 13. Specifically, given
the unavailability of OOD data in this context, we select NAC-ME hyperparameters based on the
rank correlation with the InD validation accuracy. This is motivated by the fact that the validation
accuracy can provide some insights into the model learning progress.

Dataset No. of bins M Sigmoid steepness α No. of samples for bin filling O∗

VLCS /

[50, 1000]

[1, 500, 5000] /
[1, 500, 5000, 10000] if not Ter-
raInc else [5, 10, 30, 50]

PACS / [0.01, 0.1, 0.5] /
OfficeHome / [0.01, 1, 100] /
TerraInc [0.01, 0.1]

Table 13: Hyperparameters of our NAC-ME and their distributions for random search. Note that r
can be computed based on O∗, as illustrated in Appendix C.2
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Figure 7: Ablation studies on the number of training samples for building NAC. NAC-UE achieves
promising performance though only 1% of the training data are utilized, demonstrating the efficiency
of our NAC-based approaches.

F REPRODUCIBILITY

We will publicly release our code with detailed instructions.

F.1 SOFTWARE AND HARDWARE

All experiments are performed on a single NVIDIA GeForce RTX 3090 GPU, with Python version
3.8.11. The deep learning framework used is PyTorch 1.10.0, and Torchvision version 0.11.1 is
utilized for image processing. We leverage CUDA 11.3 for GPU acceleration.

F.2 RUNTIME ANALYSIS

The total runtime of the experiments varies depending on the tasks and datasets. In the following,
we provide details for two OOD tasks with resent50 architecture, using a single NVIDIA GeForce
RTX 3090 GPU. For OOD detection, the experiments (e.g., inference during the test phase) take
approximately 10 minutes for all benchmarks. For OOD generalization, the experiments on average
take approximately 4 hours for PACS and VLCS, 8 hours for OfficeHome, 8.5 hours for TerraInc.

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 EFFICIENCY ANALYSIS

Efficient NAC modeling. As previously mentioned in the main paper, the NAC function is con-
structed using the InD training data. Specifically, we utilize a subset with 1,000 training images
on the CIFAR-10 and CIFAR-100 benchmarks, representing approximately 2% of the total train-
ing set. In the case of ImageNet, we employ 1,000 and 50,000 images for ResNet-50 and Vit-b16,
respectively, which correspond to approximately 0.1% and 5% of the complete training set.

Here, to gain further insights into the efficiency of our approach, we analyze the performance of
NAC-UE when constructing the NAC function with varying numbers of training samples. Figure 7
illustrates the results on CIFAR-10 and CIFAR-100 benchmarks, where we randomly sample train-
ing images at different ratios and repeat this process five times to ensure the validity of the results.
Notably, even when utilizing only 1% of the training data, NAC-UE demonstrates remarkable perfor-
mance that is comparable to the scenario where 100% of the training data is used. This demonstrates
the efficiency of our approach, especially in situations with limited data availability.

Computational Cost Analysis. To provide a comprehensive view of our approach, we further an-
alyze the computational costs of our proposed NAC-UE method. Specifically, we select the top-3
performing methods from Table 2 as baselines, and compare them with NAC-UE in terms of pre-
processing and inference time on the ImageNet benchmark. From the results exhibited in Table 14,
the following two observations can be drawn:

1) Preprocessing Time: From Table 14, we can see that NAC-UE significantly reduces the prepro-
cessing time compared to the most competitive ViM and SHE, e.g., 7.75s (NAC-UE) vs. 1019.34s
(ViM). This finding aligns with our previous experiments (Figure 7), where we show that NAC-UE
achieves favorable performance despite utilizing only 1% of the training data for NAC modeling.
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(b) Neuron Gradients(a) Neuron Output (c) Ours Neuron State

Figure 8: Ablation studies on the neuron activation states ẑ. We visualize the distribution of averaged
coverage scores w.r.t all neurons (See Eq.(5)) on the ImageNet benchmark.

Method Preprocessing Time (s) Total Inference Time (s) AUROC↑
GEN (Liu et al., 2023) 0.00 ± 0.0 43.33 ± 0.3 89.76
ViM (Wang et al., 2022) 1087.82 ± 9.0 48.10 ± 0.4 92.68
SHE (Zhang et al., 2023b) 1019.34 ± 2.2 41.85 ± 0.5 90.92
NAC-UE (layer4) 5.43 ± 0.3 39.63 ± 0.2 94.57
NAC-UE (layer4+layer3) 6.75 ± 0.3 46.09 ± 0.7 95.05
NAC-UE (layer4+layer3+layer2) 7.75 ± 0.2 69.73 ± 0.4 95.23

Table 14: Computational time comparison between NAC-UE and three SoTA OOD detection meth-
ods. Preprocessing and inference time are assessed on the ImageNet benchmark with ResNet-50,
which are averaged over five trials. Appendix F.1 provides the details for hardware configurations.

2) Inference Time: While NAC-UE requires more inference time with an increase in the number
of layers, it is able to outperform SoTA methods in terms of both inference time and detection
performance. Remarkably, when utilizing just a single layer (layer4), NAC-UE achieves an AUROC
of 94.57% with an inference time of 39.63 seconds. In contrast, GEN achieves only 89.76% AUROC
with an inference time of 43.33 seconds. This highlights the efficiency of our approach.

Besides the above analysis, it is also worth noting that there are numerous ongoing research ef-
forts dedicated to facilitating gradient calculation (e.g., Lee et al. (2019)), which could potentially
complement our proposed method.

G.2 ABLATION ON NEURON ACTIVATION STATE ẑ

In the main paper (Figure 5), we analyze the formulation of neuron activation state ẑ with two neuron
examples. In this section, we provide additional experiments to further verify the superiority of ẑ.

Distribution of coverage scores under InD and OOD. To complement the previous analysis which
mainly centers on individual neurons, we first investigate the overall neuron activities under different
form of neuron states, i.e., raw neuron output z, neuron gradients ∂DKL/∂z, and ours z⊙∂DKL/∂z.
Figure 8 illustrates the results, where we visualize the InD and OOD distributions of averaged cov-
erage scores w.r.t all neurons (See Eq.(5)) on the ImageNet benchmark. We provide the main obser-
vations in the following:

Firstly, among all the three variants, z⊙∂DKL/∂z method performs the best, as it inherits the advan-
tages from both z and ∂DKL/∂z. This spotlights the superiority of our defined neuron state again.
Secondly, it can also be found that OOD samples generally present lower coverage scores compared
to InD samples. This demonstrates that OOD data tend to provoke abnormal neuron behaviors in
comparison to InD data, which confirms the rationale behind our NAC-based approaches.
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(b) InD and OOD distribution of neuron state               under different sigmoid steepness 𝛼𝛼

Neuron Gradients

(c) InD and OOD distribution of neuron state                      under different sigmoid steepness 𝛼𝛼

Ours Neuron State

(a) InD and OOD distribution of neuron state      under different sigmoid steepness 𝛼𝛼

Raw Neuron Output

Score

Score
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Figure 9: Ablation studies on the form of neuron activation states with varying sigmoid steepness α.
We visualize InD and OOD distributions for the layer4 unit-894 on ResNet-50. NAC-UE achieves
best performance when α = 3000 (using state σ(z ⊙ ∂DKL

∂z )), which outperforms other forms of
neuron states, i.e., σ(z) and σ(∂DKL

∂z ).
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Method
CIFAR-100 Tiny ImageNet Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
OpenMax 48.06±3.25 86.91±0.31 39.18±1.44 88.32±0.28 43.62±2.27 87.62±0.29

MSP 53.08±4.86 87.19±0.33 43.27±3.00 88.87±0.19 48.17±3.92 88.03±0.25

TempScale 55.81±5.07 87.17±0.40 46.11±3.63 89.00±0.23 50.96±4.32 88.09±0.31

ODIN 77.00±5.74 82.18±1.87 75.38±6.42 83.55±1.84 76.19±6.08 82.87±1.85

MDS 52.81±3.62 83.59±2.27 46.99±4.36 84.81±2.53 49.90±3.98 84.20±2.40

MDSEns 91.87±0.10 61.29±0.23 92.66±0.42 59.57±0.53 92.26±0.20 60.43±0.26

RMDS 43.86±3.49 88.83±0.35 33.91±1.39 90.76±0.27 38.89±2.39 89.80±0.28

Gram 91.68±2.24 58.33±4.49 90.06±1.59 58.98±5.19 90.87±1.91 58.66±4.83

EBO 66.60±4.46 86.36±0.58 56.08±4.83 88.80±0.36 61.34±4.63 87.58±0.46

OpenGAN 94.84±3.83 52.81±7.69 94.11±4.21 54.62±7.68 94.48±4.01 53.71±7.68

GradNorm 94.54±1.11 54.43±1.59 94.89±0.60 55.37±0.41 94.72±0.82 54.90±0.98

ReAct 67.40±7.34 85.93±0.83 59.71±7.31 88.29±0.44 63.56±7.33 87.11±0.61

MLS 66.59±4.44 86.31±0.59 56.06±4.82 88.72±0.36 61.32±4.62 87.52±0.47

KLM 90.55±5.83 77.89±0.75 85.18±7.60 80.49±0.85 87.86±6.37 79.19±0.80

VIM 49.19±3.15 87.75±0.28 40.49±1.55 89.62±0.33 44.84±2.31 88.68±0.28

KNN 37.64±0.31 89.73±0.14 30.37±0.65 91.56±0.26 34.01±0.38 90.64±0.20

DICE 73.71±7.67 77.01±0.88 66.37±7.68 79.67±0.87 70.04±7.64 78.34±0.79

RankFeat 65.32±3.48 77.98±2.24 56.44±5.76 80.94±2.80 60.88±4.60 79.46±2.52

ASH 87.31±2.06 74.11±1.55 86.25±1.58 76.44±0.61 86.78±1.82 75.27±1.04

SHE 81.00±3.42 80.31±0.69 78.30±3.52 82.76±0.43 79.65±3.47 81.54±0.51

GEN 58.75±3.97 87.21±0.36 48.59±2.34 89.20±0.25 53.67±3.14 88.20±0.30

NAC-UE 35.06±0.30 89.78±0.31 26.53±0.21 91.98±0.24 30.80±0.13 90.88±0.25

Table 15: Near-OOD detection results on the CIFAR-100 and Tiny ImageNet datasets. Following
OpenOOD, we employ ResNet-18 model, which is trained solely on the InD dataset, i.e., CIFAR-10.
↑ denotes the higher value is better, while ↓ indicates lower values are better.

Distribution of neuron states with varying α under InD and OOD. As illustrated in Table 5,
choosing a suitable sigmoid steepness α is crucial for the OOD detection of NAC-UE. To further in-
vestigate if this factor also affects other forms of neuron states (e.g., z), we visualize the distribution
of different neuron states with varying α under InD and OOD.

We present the results in Figure 9. It can be observed that when the sigmoid steepness α is increased,
the neurons behaviors of InD and OOD become more distinguishable in the form of z⊙ ∂DKL/∂z.
This leads to the superior performance of NAC-UE in OOD detection. On the other hand, when
using the vanilla form of z and ∂DKL/∂z, the varying number of α has less of an effect. This
result is consistent with our previous finding in Figure 5, which further demonstrates the unique
characteristic of our neuron activation state ẑ in distinguishing InD and OOD data points.

z ∇g(z) p− u FPR95↓ AUROC↑
✓ 45.70 89.42

✓ 84.20 64.13
✓ 59.39 80.96

✓ ✓ 43.43 88.9
✓ ✓ 49.29 87.85

✓ ✓ 44.71 89.47
✓ ✓ ✓ 26.89 94.57

Table 16: Ablation studies on our de-
fined neuron state. The results are ob-
tained from the ImageNet benchmark
for OOD detection.

Respective power of z, ∇g(z), and p−u.. To assess the
individual contributions of different components in our
neuron states, we conduct ablation studies to evaluate the
respective power of each component: 1) neuron output
z, 2) neuron gradients ∇g(z), and 3) model prediction
deviation p− u. We provide the results in Table 16.

These results reveal two key findings. Firstly, the for-
mulation that includes all three components performs the
best among all variants, demonstrating the superiority
of our state ẑ. Moreover, arbitrary combinations of z,
∇g(z), and p − u can lead to improvements compared
to using a single component alone. For instance, utilizing
z ⊙ ∇g(z) yields better performance than using either z
or ∇g(z) in isolation. This suggest that all three components encode meaningful information in
OOD scenarios, further supporting the rationale behind our proposed states.

G.3 NEAR-OOD ANALYSIS

Near-OOD detection considers more challenging scenarios, where OOD data points often exhibit
characteristics that lie in proximity to InD data distribution (Fort et al., 2021). In this section, we con-
duct a series of experiments to explore the potential of our approach in handling near-ood scenarios.
We employ ResNet-18, trained on CIFAR-10, as the foundation for our experiments. The evaluation
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of OOD detection methods is performed on two near-ood datasets: CIFAR-100 (Krizhevsky, 2009)
and Tiny ImageNet (Le & Yang, 2015). We carefully follow the evaluation protocol of OpenOOD,
and illustrate the results in Table 15. Remarkably, NAC-UE continues to outperform existing 21
SoTA methods on two near-ood datasets. By comparison with the best-performing method KNN,
our NAC-UE achieves a 30.80% FPR95 with 3.3% gain. This finding further confirms the effective-
ness and robustness of our proposed approach.

G.4 WEIGHTED NAC FOR OOD DETECTION

As illustrated in Eq. (6), we calculate the NAC-UE by considering multiple layers and averaging the
coverage scores across layers to obtain the final uncertainty of test data. However, since different
layers may contribute differently to the model predictions, it is worth exploring a weighted version
of NAC that takes layer difference into account. To do so, we conduct a series of experiments on the
CIFAR-10 benchmark, examining our NAC-UE in the weighted version. Specifically, we randomly
search the weight for each layer within the same space: [0.2, 0.4, 0.6, 0.8, 1.0], and combine these
weighted neural layers for uncertainty estimation. Note that in line with our previous experiments,
we first utilize the validation set to search hyperparameters and then test our NAC-UE.

Table 17 illustrates the results. As can be seen, NAC-UE can be further improved in this weighted
version, e.g., 2.47% gain on the average FPR95. The again demonstrates the potential of our NAC-
based approaches. Interestingly, we also notice that assigning larger weights to the deeper layers
often results in better performance for NAC-UE. For instance, the best weight suite found during
the random search was [0.4, 0.8, 0.2, 0.4] for [layer4, layer3, layer2, layer1]. We conjecture this
is due to that deeper layers often encode richer semantic information than shallow layers, making
them crucial in detection problems.

Method
MINIST SVHN Textures Places365 Average

FPR95↓ AUROC↑ FPR↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
NAC-UE 15.14±2.6 94.86±1.4 14.33±1.2 96.05±0.5 17.03±0.6 95.64±0.4 26.73±0.8 91.85±0.3 18.31±0.92 94.60±0.5

NAC-UE (weighted) 13.94±2.4 95.55±1.1 9.90±1.1 98.10±0.2 13.36±0.7 97.25±0.2 26.16±0.8 92.31±0.3 15.84±0.7 95.80±0.2

Table 17: OOD detection results on the CIFAR-10 benchmark. NAC-UE (weighted) denotes our
method performed with weighted layer combinations.

G.5 MAXIMUM NAC ENTROPY FOR OOD GENERALIZATION

In addition to evaluating model robustness using NAC-ME, in this section, we also investigate the
potential of NAC in the training and regularization. Specifically, we propose to improve model
generalization ability with the NAC entropy:

H(z) = −
N∑
i=1

pi(zi) log pi(zi), (18)

where pi(zi) represents the probability associated with the i-th neuron output zi over its NAC dis-
tribution, and N is the total number of neurons. To simplify the computation, we directly utilize
the raw neuron output z for NAC modeling, instead of our rectified neuron states ẑ. This is be-
cause optimizing ẑ could involve second-order gradient calculation, which may result in the extra
computational burden and decelerate the learning. Concretely, we propose two loss functions that
incorporate NAC entropy for regularization, 1) Minimum NAC entropy loss: Lce + λH(z) and 2)
Maximum NAC entropy loss: Lce − λH(z), where Lce denotes the traditional cross entropy loss
and λ is the regularization coefficient.

We conduct experiments on the PACS dataset using a ResNet-18 backbone, and Table 18 illustrates
the results. Interestingly, we can see that maximizing NAC entropy leads to improved performance.
This finding also aligns with the intuitive understanding presented in Dubey et al. (2018). By maxi-
mizing NAC entropy, we encourage the activation of neurons in unexplored regions over NAC dis-
tribution, thus diversifying the neuron activities and improving the model robustness. Conversely,
minimizing entropy may result in collapsed neuron behavior.
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Algorithm Art Cartoon Photo Sketch Average

ERM 77.32±0.7 71.91±0.7 72.36±1.1 94.44±0.2 79.01

NAC (Minimizing Entropy) 77.28±0.2 69.17±0.2 93.21±0.2 66.73±1.2 76.60
NAC (Maximizing Entropy) 78.64±0.5 72.97±0.3 72.39±0.3 95.09±0.1 79.77

Table 18: OOD generalization results on the PACS dataset. We implement NAC as an entropy loss,
which improves OOD generalization performance.

OOD Dataset RMS Calibration Error↓ MAD Calibration Error↓
MSP Temperature NAC-UE MSP Temperature NAC-UE

CIFAR100 50.62 43.01 33.04 42.56 36.64 26.92
Tiny ImageNet 48.01 40.25 31.99 38.86 32.88 26.25

MNIST 71.74 60.91 51.30 67.81 57.16 49.45
SVHN 65.82 56.41 45.32 59.57 51.05 41.60
Texture 42.65 35.19 28.74 32.37 26.90 23.72

Places365 68.85 59.67 48.65 64.65 56.02 45.33

Table 19: Calibration results on five OOD datasets. To evaluate the calibration performance, we
follow the evaluation protocol of Hendrycks et al. (2019a), and utilize two metrics: RMS and MAD.

G.6 UNCERTAINTY CALIBRATION ANALYSIS

Uncertainty calibration plays a pivotal role in achieving reliable and accurate predictions. In this
section, we evaluate our NAC-UE specifically focusing on its uncertainty calibration capabilities.
We follow the experimental setup outlined in Hendrycks et al. (2019a), and employ two calibration
error metrics: Root Mean Square (RMS) and Mean Absolute Deviation (MAD) calibration error.
We mainly compare NAC-UE with two simple baselines, MSP (Hendrycks & Gimpel, 2017) and
Temperature (Guo et al., 2017), which are officially implemented by OpenOOD.

For the calibration evaluation, we utilize a pretrained model on the CIFAR-10 dataset as the foun-
dation, and assess the calibration errors on both InD and OOD test data. Since OOD points are
commonly misclassified and their labels are often not included in the output space of model, con-
fidence estimation methods should assign these OOD points with low confidence. We illustrate the
results in Table 19. As can be seen, NAC-UE significantly outperforms two baseline approaches,
which demonstrates its potential in prediction calibration.

H DISCUSSIONS

NAC vs. SparseIRM. For OOD generalization, NAC is differs from SparseIRM (Zhou et al., 2022)
in two aspects: 1) SparseIRM concentrates on refining model training. In contrast, our NAC focuses
on the robustness evaluation of existing models, which provides a different perspective; 2) Drawing
parallels with system testing coverage criteria, NAC tracks neuron behaviors in the whole network.
However, feature sparsity, as addressed in SparseIRM, is primarily concerned with feature represen-
tation, specifically identifying areas where most features are zero or irrelevant. Hence, these two
methods are different in their measurement and targets.

NAC vs. Neural Mean Discrepancy (NMD). We outline the differences between NAC and
NMD (Dong et al., 2022) in three-fold: Firstly, NMD primarily investigates the raw neuron out-
put, while our paper centers on a new formulation of neuron states, which can be decoupled as the
neuron gradients, neuron output, and model prediction deviations. This offers a fresh interpretation
of neurons in OOD scenarios. Secondly, our NAC specifically focuses on the distribution of neuron
states, while NMD examines the mean of neuron output. This distinctive perspective makes our
NAC more comprehensive and superior in understanding neuron behaviors. Thirdly, while NMD
could effectively detect OOD samples, it requires an additional classifier during the inference phase.
Instead, NAC directly calculates the coverage scores in a parameter-free manner, serving as an effi-
cient measure for both OOD detection and generalization.
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NAC vs. SCONE. While our NAC and SCONE (Bai et al., 2023) both focus on OOD detection and
generalization, they are actually different in their targets, design choices, and experimental settings.
Specifically, 1) Target: our NAC aims to provide an off-the-shelf/post-hoc tool that efficiently detects
OOD data and evaluates model robustness. In contrast, SCONE targets an effective learning strategy,
which trains the network to overcome OOD scenarios. 2) Design: NAC directly leverages neuron
distributions to reflect model status under OOD scenarios, while SCONE enforces energy margin
during the training phase. 3) Experimental setup: our paper focuses on the prevalent OOD detection
and generalization setup, where the InD and OOD data are clearly separated. Instead, SCONE
centers on the wild scenarios, where data distribution is a mixed version of InD and OOD, turning
the OOD into valuable learning resources.

What makes NAC effective for both OOD detection and generalization? Conventionally, OOD
detection and generalization are perceived as distinct problems: the former primarily addresses se-
mantic (concept) shift while the latter considers covariate shift. Despite agreeing with this traditional
perspective, we also should recognize the overlapping nature of these two problem areas. Indeed,
a number of prior research studies have examined the role of covariate shift in the context of OOD
detection (Tian et al., 2021; Averly & Chao, 2023; Yang et al., 2023), and the impact of semantic
shift on OOD generalization (Zhang et al., 2023c; Rostami & Galstyan, 2023). This overlap con-
stitutes a fundamental rationale for why NAC is adept at addressing both of these OOD challenges.
Additionally, NAC exhibits unique advantages such as:

1) NAC benefits from data-centric modeling: Our NAC method is rooted in a data-centric approach,
leveraging the neuron distributions within InD training data to characterize model status. This data-
centric modeling enables NAC to effectively capture the intrinsic patterns and characteristics of
the model (i.e., from a neuron level), thus serving as an effective tool for uncertainty estimation
(OOD detection) and model robustness evaluation (OOD generalization). This also aligns with the
principles of DNN defect detection / network quality assessment, in system testing (Xie et al., 2022;
Ma et al., 2018).

2) Shallow to deep layers account for covariate and semantic shifts: As per research studies (Yang
et al., 2023), shallow layers in models often closely correlate with the image style information
(covariate level), while deep layers capture semantic information. Since our NAC often works by
leveraging multiple layers spanning from shallow to deep, it naturally accounts for both covariate
and semantic shifts. This demonstrates its potential in addressing various OOD problems.

Why NAC-UE exhibits higher improvements on CIFAR compared to ImageNet? From Table 1
and 2, we can see that NAC-UE often shows higher improvements on the CIFAR compared to
ImageNet benchmarks. We conjecture that this phenomenon can be attributed to an intrinsic model
bias, where the model generally performs poorly on the challenging ImageNet dataset. For example,
the InD accuracy of the model on CIFAR-10 is 95.06, whereas the accuracy over ImageNet is 76.18.
This poor performance on ImageNet indicates the worse learning of models, thus potentially raising
unstable behaviors in neurons and impacting the performance of our NAC-UE. This also explains
the performance gap of NAC-UE on Places365 between CIFAR-10 and CIFAR-100. Since the
model trained on CIFAR-100 achieves only 77.25 accuracy, it leads to higher neuron instability and
subsequently affects the performance of NAC-UE.
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I FULL CIFAR RESULTS

Method
MINIST SVHN Textures Places365 Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
CIFAR-10 Benchmark

OpenMax 23.33±4.67 90.50±0.44 25.40±1.47 89.77±0.45 31.50±4.05 89.58±0.60 38.52±2.27 88.63±0.28 29.69±1.21 89.62±0.19

MSP 23.64±5.81 92.63±1.57 25.82±1.64 91.46±0.40 34.96±4.64 89.89±0.71 42.47±3.81 88.92±0.47 31.72±1.84 90.73±0.43

TempScale 23.53±7.05 93.11±1.77 26.97±2.65 91.66±0.52 38.16±5.89 90.01±0.74 45.27±4.50 89.11±0.52 33.48±2.39 90.97±0.52

ODIN 23.83±12.34 95.24±1.96 68.61±0.52 84.58±0.77 67.70±11.06 86.94±2.26 70.36±6.96 85.07±1.24 57.62±4.24 87.96±0.61

MDS 27.30±3.55 90.10±2.41 25.96±2.52 91.18±0.47 27.94±4.20 92.69±1.06 47.67±4.54 84.90±2.54 32.22±3.40 89.72±1.36

MDSEns 1.30±0.51 99.17±0.41 74.34±1.04 66.56±0.58 76.07±0.17 77.40±0.28 94.16±0.33 52.47±0.15 61.47±0.48 73.90±0.27

RMDS 21.49±2.32 93.22±0.80 23.46±1.48 91.84±0.26 25.25±0.53 92.23±0.23 31.20±0.28 91.51±0.11 25.35±0.73 92.20±0.21

Gram 70.30±8.96 72.64±2.34 33.91±17.35 91.52±4.45 94.64±2.71 62.34±8.27 90.49±1.93 60.44±3.41 72.34±6.73 71.73±3.20

EBO 24.99±12.93 94.32±2.53 35.12±6.11 91.79±0.98 51.82±6.11 89.47±0.70 54.85±6.52 89.25±0.78 41.69±5.32 91.21±0.92

OpenGAN 79.54±19.71 56.14±24.08 75.27±26.93 52.81±27.60 83.95±14.89 56.14±18.26 95.32±4.45 53.34±5.79 83.52±11.63 54.61±15.51

GradNorm 85.41±4.85 63.72±7.37 91.65±2.42 53.91±6.36 98.09±0.49 52.07±4.09 92.46±2.28 60.50±5.33 91.90±2.23 57.55±3.22

ReAct 33.77±18.00 92.81±3.03 50.23±15.98 89.12±3.19 51.42±11.42 89.38±1.49 44.20±3.35 90.35±0.78 44.90±8.37 90.42±1.41

MLS 25.06±12.87 94.15±2.48 35.09±6.09 91.69±0.94 51.73±6.13 89.41±0.71 54.84±6.51 89.14±0.76 41.68±5.27 91.10±0.89

KLM 76.22±12.09 85.00±2.04 59.47±7.06 84.99±1.18 81.95±9.95 82.35±0.33 95.58±2.12 78.37±0.33 78.31±4.84 82.68±0.21

VIM 18.36±1.42 94.76±0.38 19.29±0.41 94.50±0.48 21.14±1.83 95.15±0.34 41.43±2.17 89.49±0.39 25.05±0.52 93.48±0.24

KNN 20.05±1.36 94.26±0.38 22.60±1.26 92.67±0.30 24.06±0.55 93.16±0.24 30.38±0.63 91.77±0.23 24.27±0.40 92.96±0.14

DICE 30.83±10.54 90.37±5.97 36.61±4.74 90.02±1.77 62.42±4.79 81.86±2.35 77.19±12.60 74.67±4.98 51.76±4.42 84.23±1.89

RankFeat 61.86±12.78 75.87±5.22 64.49±7.38 68.15±7.44 59.71±9.79 73.46±6.49 43.70±7.39 85.99±3.04 57.44±7.99 75.87±5.06

ASH 70.00±10.56 83.16±4.66 83.64±6.48 73.46±6.41 84.59±1.74 77.45±2.39 77.89±7.28 79.89±3.69 79.03±4.22 78.49±2.58

SHE 42.22±20.59 90.43±4.76 62.74±4.01 86.38±1.32 84.60±5.30 81.57±1.21 76.36±5.32 82.89±1.22 66.48±5.98 85.32±1.43

GEN 23.00±7.75 93.83±2.14 28.14±2.59 91.97±0.66 40.74±6.61 90.14±0.76 47.03±3.22 89.46±0.65 34.73±1.58 91.35±0.69

NAC-UE 15.14±2.60 94.86±1.36 14.33±1.24 96.05±0.47 17.03±0.59 95.64±0.44 26.73±0.80 91.85±0.28 18.31±0.92 94.60±0.50

Table 20: OOD detection results on the CIFAR-10 benchmark. We format first, second, and third re-
sults. Following OpenOOD, we report the performance averaged over three checkpoints of ResNet-
18, which are trained solely on the InD dataset, i.e., CIFAR-10. ↑ denotes the higher value is better,
while ↓ indicates lower values are better.

Method
MINIST SVHN Textures Places365 Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
CIFAR-100 Benchmark

OpenMax 53.82±4.74 76.01±1.39 53.20±1.78 82.07±1.53 56.12±1.91 80.56±0.09 54.85±1.42 79.29±0.40 54.50±0.68 79.48±0.41

MSP 57.23±4.68 76.08±1.86 59.07±2.53 78.42±0.89 61.88±1.28 77.32±0.71 56.62±0.87 79.22±0.29 58.70±1.06 77.76±0.44

TempScale 56.05±4.61 77.27±1.85 57.71±2.68 79.79±1.05 61.56±1.43 78.11±0.72 56.46±0.94 79.80±0.25 57.94±1.14 78.74±0.51

ODIN 45.94±3.29 83.79±1.31 67.41±3.88 74.54±0.76 62.37±2.96 79.33±1.08 59.71±0.92 79.45±0.26 58.86±0.79 79.28±0.21

MDS 71.72±2.94 67.47±0.81 67.21±6.09 70.68±6.40 70.49±2.48 76.26±0.69 79.61±0.34 63.15±0.49 72.26±1.56 69.39±1.39

MDSEns 2.83±0.86 98.21±0.78 82.57±2.58 53.76±1.63 84.94±0.83 69.75±1.14 96.61±0.17 42.27±0.73 66.74±1.04 66.00±0.69

RMDS 52.05±6.28 79.74±2.49 51.65±3.68 84.89±1.10 53.99±1.06 83.65±0.51 53.57±0.43 83.40±0.46 52.81±0.63 82.92±0.42

Gram 53.53±7.45 80.71±4.15 20.06±1.96 95.55±0.60 89.51±2.54 70.79±1.32 94.67±0.60 46.38±1.21 64.44±2.37 73.36±1.08

EBO 52.62±3.83 79.18±1.37 53.62±3.14 82.03±1.74 62.35±2.06 78.35±0.83 57.75±0.86 79.52±0.23 56.59±1.38 79.77±0.61

OpenGAN 63.09±23.25 68.14±18.78 70.35±2.06 68.40±2.15 74.77±1.78 65.84±3.43 73.75±8.32 69.13±7.08 70.49±7.38 67.88±7.16

GradNorm 86.97±1.44 65.35±1.12 69.90±7.94 76.95±4.73 92.51±0.61 64.58±0.13 85.32±0.44 69.69±0.17 83.68±1.92 69.14±1.05

ReAct 56.04±5.66 78.37±1.59 50.41±2.02 83.01±0.97 55.04±0.82 80.15±0.46 55.30±0.41 80.03±0.11 54.20±1.56 80.39±0.49

MLS 52.95±3.82 78.91±1.47 53.90±3.04 81.65±1.49 62.39±2.13 78.39±0.84 57.68±0.91 79.75±0.24 56.73±1.33 79.67±0.57

KLM 73.09±6.67 74.15±2.59 50.30±7.04 79.34±0.44 81.80±5.80 75.77±0.45 81.40±1.58 75.70±0.24 71.65±2.01 76.24±0.52

VIM 48.32±1.07 81.89±1.02 46.22±5.46 83.14±3.71 46.86±2.29 85.91±0.78 61.57±0.77 75.85±0.37 50.74±1.00 81.70±0.62

KNN 48.58±4.67 82.36±1.52 51.75±3.12 84.15±1.09 53.56±2.32 83.66±0.83 60.70±1.03 79.43±0.47 53.65±0.28 82.40±0.17

DICE 51.79±3.67 79.86±1.89 49.58±3.32 84.22±2.00 64.23±1.65 77.63±0.34 59.39±1.25 78.33±0.66 56.25±0.60 80.01±0.18

RankFeat 75.01±5.83 63.03±3.86 58.49±2.30 72.14±1.39 66.87±3.80 69.40±3.08 77.42±1.96 63.82±1.83 69.45±1.01 67.10±1.42

ASH 66.58±3.88 77.23±0.46 46.00±2.67 85.60±1.40 61.27±2.74 80.72±0.70 62.95±0.99 78.76±0.16 59.20±2.46 80.58±0.66

SHE 58.78±2.70 76.76±1.07 59.15±7.61 80.97±3.98 73.29±3.22 73.64±1.28 65.24±0.98 76.30±0.51 64.12±2.70 76.92±1.16

GEN 53.92±5.71 78.29±2.05 55.45±2.76 81.41±1.50 61.23±1.40 78.74±0.81 56.25±1.01 80.28±0.27 56.71±1.59 79.68±0.75

NAC-UE 21.97±6.62 93.15±1.63 24.39±4.66 92.40±1.26 40.65±1.94 89.32±0.55 73.57±1.16 73.05±0.68 40.14±1.86 86.98±0.37

Table 21: OOD detection results on the CIFAR-100 benchmark. We format first, second, and
third results. Following OpenOOD, we report the performance averaged over three checkpoints of
ResNet-18, which are trained solely on the InD dataset, i.e., CIFAR-100. ↑ denotes the higher value
is better, while ↓ indicates lower values are better.
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J FULL IMAGENET RESULTS

Method iNaturalist OpenImage-O Textures

ResNet-50 Vit-b16 Average ResNet-50 Vit-b16 Average ResNet-50 Vit-b16 Average

OpenMax 92.05 94.93 93.49 87.62 87.36 87.49 88.10 85.52 86.81
MSP 88.41 88.19 88.30 84.86 84.86 84.86 82.43 85.06 83.75
TempScale 90.50 88.54 89.52 87.22 85.04 86.13 84.95 85.39 85.17
ODIN 91.17 / 91.17 88.23 / 88.23 89.00 / 89.00
MDS 63.67 96.01 79.84 69.27 92.38 80.83 89.80 89.41 89.61
MDSEns 61.82 / 61.82 60.80 / 60.80 79.94 / 79.94
RMDS 87.24 96.10 91.67 85.84 92.32 89.08 86.08 89.38 87.73
Gram 76.67 / 76.67 74.43 / 74.43 88.02 / 88.02
EBO 90.63 79.30 84.97 89.06 76.48 82.77 88.70 81.17 84.94
OpenGAN / / / / / / / / /
GradNorm 93.89 42.42 68.16 84.82 37.82 61.32 92.05 44.99 68.52
ReAct 96.34 86.11 91.23 91.87 84.29 88.08 92.79 86.66 89.73
MLS 91.17 85.29 88.23 89.17 81.60 85.39 88.39 83.74 86.07
KLM 90.78 89.59 90.19 87.30 87.03 87.17 84.72 86.49 85.61
VIM 89.56 95.72 92.64 90.50 92.18 91.34 97.97 90.61 94.29
KNN 86.41 91.46 88.94 87.04 89.86 88.45 97.09 91.12 94.11
DICE 92.54 82.50 87.52 88.26 82.22 85.24 92.04 82.21 87.13
RankFeat 40.06 / 40.06 50.83 / 50.83 70.90 / 70.90
ASH 97.07 50.62 73.85 93.26 55.51 74.39 96.90 48.53 72.72
SHE 92.65 93.57 93.11 86.52 91.04 88.78 93.60 92.65 93.13
GEN 92.44 93.54 92.99 89.26 90.27 89.77 87.59 90.23 88.91
NAC-UE 96.52 93.72 95.12 91.45 91.58 91.52 97.9 94.17 96.04

Table 22: OOD detection results on the ImageNet benchmark. We format first, second, and third
results. Following OpenOOD, we report the AUROC↑ scores over two backbones (ResNet-50 and
Vit-b16), which are trained solely on the InD dataset, i.e., ImageNet-1k.
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K FULL DOMAINBED RESULTS

Method Caltech101 LabelMe SUN09 VOC2007 Average

RC ACC RC ACC RC ACC RC ACC RC ACC

Oracle - 97.00±0.6 - 65.60±0.3 - 71.44±0.8 - 76.64±0.5 - 77.67

Validation 36.03±17.3 95.38±0.9 17.57±13.2 63.62±1.1 50.33±13.6 67.73±0.6 33.17±15.7 73.75±0.7 34.27 75.12
NAC-ME 67.73±3.0 96.41±0.5 7.52±3.4 63.72±0.8 64.22±7.2 70.89±1.1 61.68±10.2 72.29±0.5 50.29 75.83R

N
18

Oracle - 98.53±0.3 - 68.69±0.8 - 73.88±0.5 - 78.07±0.3 - 79.79

Validation 20.75±17.0 98.00±0.2 35.29±13.2 65.16±1.4 33.01±3.1 70.37±0.6 36.68±4.3 77.28±0.3 31.43 77.70
NAC-ME 54.90±2.6 98.50±0.3 -2.04±2.7 60.27±0.6 28.27±14.0 70.88±2.1 33.58±8.9 76.00±1.0 28.68 76.41R

N
50

Oracle - 98.88±0.1 - 66.65±0.3 - 74.78±0.2 - 76.14±0.3 - 79.11

Validation 25.57±8.8 98.32±0.3 41.01±4.6 63.87±0.6 47.14±2.7 72.44±0.1 38.07±12.3 75.08±0.6 37.95 77.43
NAC-ME 24.02±0.2 98.26±0.1 69.69±3.6 64.30±0.2 49.51±6.2 74.36±0.4 55.15±9.0 74.95±0.3 49.59 77.97V

it-
t1

6

Oracle - 98.65±0.1 - 67.18±0.5 - 78.24±0.4 - 79.77±0.5 - 80.96

Validation -6.45±10.2 95.49±0.7 43.30±14.1 64.67±0.6 12.83±12.2 76.68±0.9 25.57±26.9 77.96±0.9 18.81 78.70

V
it-

b1
6

NAC-ME 47.79±2.2 97.44±0.1 38.48±10.4 64.30±1.4 30.07±11.6 77.22±0.4 33.33±4.1 77.85±0.4 37.42 79.20

Table 23: OOD generalization results on VLCS dataset (Fang et al., 2013). Oracle denotes the upper
bound, which uses OOD test data to evaluate models. The training strategy is ERM (Vapnik, 1999).
All scores are averaged over 3 random trials.

Method Art Cartoon Photo Sketch Average

RC ACC RC ACC RC ACC RC ACC RC ACC

Oracle - 78.52±0.2 - 75.09±0.8 - 94.96±0.3 - 73.47±1.5 - 80.51

Validation 72.22±5.1 77.32±0.7 65.20±6.6 71.91±0.7 60.87±7.1 94.44±0.2 76.55±1.2 72.36±1.1 68.71 79.01
NAC-ME 75.49±5.8 77.89±0.3 74.84±1.3 71.54±0.8 65.36±6.0 94.64±0.2 80.96±1.9 71.34±2.4 74.16 78.85R

N
18

Oracle - 86.78±0.5 - 81.31±0.5 - 98.43±0.0 - 77.87±0.4 - 86.10

Validation 70.26±9.1 86.72±0.5 65.93±10.3 78.86±1.3 38.73±12.3 97.83±0.1 59.23±11.4 74.87±1.1 58.54 84.57
NAC-ME 73.61±1.4 86.56±0.4 76.14±5.0 80.22±1.1 30.15±15.3 97.68±0.1 68.38±8.8 76.66±1.2 62.07 85.28R

N
50

Oracle - 75.84±0.1 - 66.01±0.7 - 96.31±0.2 - 49.79±1.6 - 71.99

Validation 88.97±3.7 75.66±0.2 92.32±1.6 65.41±0.4 93.79±1.8 96.16±0.2 82.27±3.7 42.10±2.2 89.34 69.83
NAC-ME 88.15±3.8 75.64±0.2 92.57±0.5 64.04±0.6 95.02±2.0 96.11±0.2 86.93±2.4 48.20±1.9 90.67 70.99V

it-
t1

6

Oracle - 94.81±0.3 - 86.57±0.2 - 99.65±0.0 - 79.89±0.6 - 90.23

Validation 22.96±7.7 92.58±0.2 47.96±4.3 84.54±0.3 55.64±5.2 99.43±0.0 38.97±3.1 74.66±2.8 41.38 87.80

V
it-

b1
6

NAC-ME 17.73±3.9 93.25±0.5 63.24±3.1 85.09±1.1 37.17±7.7 99.33±0.1 62.01±6.0 77.66±0.4 45.04 88.83

Table 24: OOD generalization results on PACS dataset (Li et al., 2017). Oracle denotes the upper
bound, which uses OOD test data to evaluate models. The training strategy is ERM (Vapnik, 1999).
All scores are averaged over 3 random trials.
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Method Art Clipart Product Real Average

RC ACC RC ACC RC ACC RC ACC RC ACC

Oracle - 48.04±0.2 - 41.99±0.2 - 66.26±0.2 - 68.41±0.2 - 56.18

Validation 86.36±1.9 47.68±0.3 75.33±3.2 41.16±0.6 88.73±3.3 65.82±0.1 83.58±3.1 67.73±0.4 83.50 55.60
NAC-ME 86.19±2.5 47.68±0.1 77.45±5.8 41.16±0.6 91.83±1.2 66.15±0.2 84.15±4.5 68.04±0.3 84.91 55.76R

N
18

Oracle - 60.20±0.3 - 51.76±0.2 - 75.49±0.1 - 76.37±0.3 - 65.95

Validation 71.32±4.2 59.01±0.5 53.43±6.5 50.29±0.4 81.21±5.7 74.96±0.5 65.77±7.0 75.88±0.2 67.93 65.04
NAC-ME 78.68±7.0 60.20±0.3 59.15±3.1 50.19±0.4 78.68±5.3 74.66±0.4 60.13±7.3 75.86±0.1 69.16 65.23R

N
50

Oracle - 56.97±0.1 - 43.58±0.4 - 71.82±0.1 - 73.41±0.1 - 61.44

Validation 98.77±0.3 56.39±0.4 98.45±0.1 43.47±0.5 98.28±0.6 71.62±0.2 99.35±0.3 73.41±0.1 98.71 61.22
NAC-ME 98.77±0.5 56.39±0.4 98.86±0.4 43.55±0.4 99.35±0.3 71.73±0.1 99.59±0.1 73.39±0.1 99.14 61.26V

it-
t1

6

Oracle - 78.94±0.2 - 68.12±0.3 - 87.93±0.1 - 89.91±0.0 - 81.23

Validation 54.66±4.7 77.77±0.3 56.70±2.4 66.49±0.3 61.03±5.9 87.19±0.0 60.78±9.2 88.99±0.1 58.29 80.11

V
it-

b1
6

NAC-ME 70.83±1.0 78.03±0.3 65.03±2.3 67.52±0.7 56.13±3.6 87.43±0.3 60.70±3.2 89.12±0.2 63.17 80.52

Table 25: OOD generalization results on OfficeHome dataset (Venkateswara et al., 2017). Oracle
denotes the upper bound, which uses OOD test data to evaluate models. The training strategy is
ERM (Vapnik, 1999). All scores are averaged over 3 random trials.

Method Loc100 Loc38 Loc43 Loc46 Average

RC ACC RC ACC RC ACC RC ACC RC ACC

Oracle - 54.94±1.3 - 35.64±0.7 - 52.32±0.1 - 35.14±0.6 - 44.51

Validation 12.01±11.9 40.60±2.5 49.75±10.9 28.41±2.9 58.17±12.8 48.31±1.5 38.40±10.3 32.12±0.8 39.58 37.36
NAC-ME 10.29±13.2 41.31±2.5 53.19±9.4 33.23±0.7 54.49±8.2 50.26±0.5 43.71±10.6 33.01±0.2 40.42 39.45R

N
18

Oracle - 55.62±0.5 - 45.12±1.1 - 58.75±0.3 - 43.55±0.8 - 50.76

Validation 43.95±7.6 49.08±3.5 36.60±13.6 37.44±2.3 28.02±8.6 56.12±0.3 39.71±15.0 41.63±0.5 37.07 46.07
NAC-ME 48.28±7.0 50.94±2.5 34.07±15.4 40.93±2.0 26.06±8.4 55.95±0.6 52.21±15.1 40.59±0.9 40.16 47.10R

N
50

Oracle - 52.03±0.3 - 27.38±3.0 - 49.61±0.4 - 36.14±0.1 - 41.29

Validation 21.24±11.8 43.51±2.8 13.15±4.0 20.85±2.1 20.02±18.6 46.55±0.1 36.44±14.2 34.20±0.7 22.71 36.28
NAC-ME 21.65±12.1 44.37±3.3 15.77±1.5 20.23±0.7 18.30±17.9 46.77±0.2 37.34±13.9 35.39±0.5 23.26 36.69V

it-
t1

6

Oracle - 62.23±0.4 - 46.94±1.7 - 57.45±0.5 - 42.29±0.1 - 52.23

Validation -1.31±3.1 53.13±2.0 -16.91±13.4 36.78±2.2 -3.27±9.5 54.19±0.2 25.16±7.0 37.84±0.4 0.92 45.49

V
it-

b1
6

NAC-ME 32.60±11.5 58.98±0.7 11.44±19.7 40.48±2.6 15.60±19.7 53.63±0.6 21.24±2.7 38.35±0.4 20.22 47.86

Table 26: OOD generalization results on TerraInc dataset (Beery et al., 2018). Oracle denotes the
upper bound, which uses OOD test data to evaluate models. The training strategy is ERM (Vapnik,
1999). All scores are averaged over 3 random trials.
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