Published as a conference paper at ICLR 2024

NEURON ACTIVATION COVERAGE: RETHINKING OUT-

OF-DISTRIBUTION DETECTION AND GENERALIZATION
Yibing Liu!, Chris Xing Tian!, Haoliang Li'-*, Lei Ma?-3, Shiqi Wang!

City University of Hong Kong' The University of Tokyo?

University of Alberta®

lyibingll2@gmail.com, xingtian4-c@my.cityu.edu.hk
{haoliang.li, shigiwang}@cityu.edu.hk,ma.leifacm.org

ABSTRACT

The out-of-distribution (OOD) problem generally arises when neural networks
encounter data that significantly deviates from the training data distribution, i.e.,
in-distribution (InD). In this paper, we study the OOD problem from a neuron
activation view. We first formulate neuron activation states by considering both
the neuron output and its influence on model decisions. Then, to characterize the
relationship between neurons and OOD issues, we introduce the neuron activa-
tion coverage (NAC) — a simple measure for neuron behaviors under InD data.
Leveraging our NAC, we show that 1) InD and OOD inputs can be largely sepa-
rated based on the neuron behavior, which significantly eases the OOD detection
problem and beats the 21 previous methods over three benchmarks (CIFAR-10,
CIFAR-100, and ImageNet-1K). 2) a positive correlation between NAC and model
generalization ability consistently holds across architectures and datasets, which
enables a NAC-based criterion for evaluating model robustness. Compared to
prevalent InD validation criteria, we show that NAC not only can select more ro-
bust models, but also has a stronger correlation with OOD test performance. Our

code is available at: https://github.com/BierOne/ood _coverage.

1 INTRODUCTION

Recent advances in machine learning systems hinge on an implicit assumption that the training
and test data share the same distribution, known as in-distribution (InD) (Dosovitskiy et al., 2021;
Szegedy et al., 2015; He et al., 2016; Simonyan & Zisserman, 2015). However, this assumption

rarely holds in real-world scenarios due to the presence

of out-of-distribution (OOD) data, e.g., samples from un- LT) ¥ RDS NAC-UE %
seen classes (Blanchard et al., 2011). Such distribution 8 84 ° KNN
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Prior efforts tackling this OOD problem mainly arise from S 751 MSP SHE
two avenues: 1) OOD detection and 2) OOD generaliza- = *  Ours

tion. The former one targets at designing tools that differ- < MDS ® Baseline
entiate between InD and OOD data inputs, thereby refrain- < 6¢+4®,
ing from using unreliable model predictions (Hendrycks & 84 8 88 90 92 94
Gimpel, 2017; Liang et al., 2018; Liu et al., 2020; Huang ImageNet OOD AUROC —

et al., 2021b). In contrast, OOD generalization focuses on Figure 1: OOD detection perfor-

developing robust networks to generalize unseen OOD data,
relying solely on InD data for training (Blanchard et al.,
2011; Sun & Saenko, 2016; Sagawa et al., 2020; Kim et al.,
2021; Shi et al., 2022). Despite the emergence of numerous

mance on CIFAR-100 and ImageNet.
AUROC scores (%) are averaged over
the OOD datasets and backbones.

studies, it is shown that existing approaches are still arguable to provide insights into the fundamen-
tal cause and mitigation of OOD issues (Sun et al., 2021; Gulrajani & Lopez-Paz, 2021).

As suggested by Sun et al. (2021); Ahn et al. (2023), neurons could exhibit distinct activation pat-
terns when exposed to data inputs from InD and OOD (See Figure 4). This reveals the potential of
leveraging neuron behavior to characterize model status in terms of the OOD problem. Yet, though
several studies recognize this significance, they either choose to modify neural networks (Sun et al.,
2021), or lack the suitable definition of neuron activation states (Ahn et al., 2023; Tian et al., 2023).

*Corresponding author.
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For instance, Sun et al. (2021) proposes a neuron truncation strategy that clips neuron output to
separate the InD and OOD data, improving OOD detection. However, such truncation unexpectedly
decrease the model classification ability (Djurisic et al., 2023)'. More recently, Ahn et al. (2023) and
Tian et al. (2023) employ a threshold to characterize neurons into binary states (i.e., activated or not)
based on the neuron output. This characterization, however, discards valuable neuron distribution
details. Unlike them, in this paper, we show that by leveraging natural neuron activation states, a
simple statistical property of neuron distribution could effectively facilitate the OOD solutions.

We first propose to formulate the neuron activation state by considering both the neuron output and
its influence on model decisions. Specifically, inspired by Huang et al. (2021b), we model neuron
influence as the gradients derived from Kullback-Leibler InD 00D InD Behavior
(KL) divergence (Kullback & Leibler, 1951) between net-
work output and a uniform vector. Then, to characterize the
relationship between neuron behavior and OOD issues, we
draw insights from coverage analysis in system testing (Pei
et al.,, 2017; Ma et al., 2018), which reveals that rarely-
activated (covered) neurons by a training set can potentially . ) e
trigger undetected bugs, such as misclassifications, during —— Q T 00D Behavior
the test stage. In this sense, we introduce the concept of neu-
ron activation coverage (NAC), which quantifies the cover-
age degree of neuron states under InD training data (See Fig-
ure 2). In particular, if a neuron state is frequently activated
by InD training inputs, NAC would assign it with a higher OOD data, neurons tend to behave
coverage score, indicating fewer underlying defects in this Outside the expected coverage area,
state. This paper applies NAC to two OOD tasks: thus with lower coverage scores.
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Figure 2: NAC models coverage
area in neuron activation space using
InD training data. Upon receiving

OOD detection. Since OOD data potentially trigger abnormal neuron activations, they should
present smaller coverage scores compared to the InD test data (Figure 2). As such, we present
NAC for Uncertainty Estimation (NAC-UE), which directly averages coverage scores over all neu-
rons as data uncertainty. We evaluate NAC—UE over three benchmarks (CIFAR-10, CIFAR-100, and
ImageNet-1k), establishing new state-of-the-art performance over the 21 previous best OOD detec-
tion methods. Notably, our NAC—-UE achieves a 10.60% improvement on FPR95 (with a 4.58% gain
on AUROC) over CIFAR-100 compared to the competitive ViM (Wang et al., 2022) (See Figure 1).

OOD generalization. Given that underlying defects can exist outside the coverage area (Pei et al.,
2017), we hypothesize that the robustness of the network increases with a larger coverage area. To
this end, we employ NAC for Model Evaluation (NAC—-ME), which measures model robustness by
integrating the coverage distribution of all neurons. Through experiments on DomainBed (Gulra-
jani & Lopez-Paz, 2021), we find that a positive correlation between NAC and model generalization
ability consistently holds across architectures and datasets. Moreover, compared to InD validation
criteria, NAC—-ME not only selects more robust models, but also exhibits stronger correlation with
OOD test performance. For instance, on the Vit-b16 (Dosovitskiy et al., 2021), NAC-ME outper-
forms validation criteria by 11.61% in terms of rank correlation with OOD test accuracy.

2 NAC: NEURON ACTIVATION COVERAGE

This paper studies OOD problems in multi-class classification, where D = R¢ denotes the input
space and Y = {1,2,...,C} is the output space. Let X = {(x;,y;)}, be the training set, com-
prising i.i.d. samples from the joint distribution P = X x ). A neural network parameterized by 6,
F(x;0): X — Rl is trained on samples drawn from P, producing a logit vector for classification.
We illustrate our NAC-based approaches in Figure 3. In the following, we first formulate the neuron
activation state (Section 2.1), and then introduce the details of our NAC (Section 2.2). We finally
show how to apply NAC to two OOD problems (Section 2.3): OOD detection and generalization.

2.1 FORMULATION OF NEURON ACTIVATION STATE

Neuron outputs generally depend on the propagation from network input to the layer where the
neuron resides. However, this does not consider the neuron influence in subsequent propagations.

"While it may be argued that maintaining neuron outputs for double-propagation preserves InD accuracy
with low computational cost, it relies on the assumption that only later layers are utilized in neuron pruning,
thus undermining the potential of these neuron-based methods.
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Figure 3: Illustration of our NAC-based methods. NAC is derived from the probability density
function (PDF), which quantifies the coverage degree of neuron states under the InD training set
X. Building upon NAC, we devise two approaches for tackling different OOD problems: OOD
Detection (NAC—-UE) and OOD Generalization (NAC-ME).

As such, we introduce gradients backpropagated from the KL divergence between network output
and a uniform vector (Huang et al., 2021b), to model the neuron influence. Formally, we denote
by f(x) = z € RY the output vector of a specific layer (Section 3.1 discusses this layer choice),
where N is the number of neurons and z; is the raw output of ¢-th neuron in this layer. By setting
the uniform vector u = [1/C,1/C, . 1 /C] € RY, the desired KL divergence can be given as:

c

Dxu(ul|p) = Zuzlogf == uilogp; — H(u), )
where p = softmax(F(x)), and p; denotes i-element in p. H(u) = — 210:1 u; log u; is a constant.
By combining the KL gradient with neuron output, we then formulate neuron activation state as,

. 0Dk, (u
z=0(z® 7Kg(z ||p))7 ()

where o(z) = 1/(1 + e~ ") is the sigmoid function with a steepness controller . In the rest of this
paper, we will also use the notation f(x) := 2z to represent the neuron state function.

Rationale of z. Here, we further analyze the gradients from KL divergence to show how this part
contributes to the neuron activation state z. Without loss of generality, let the network be F' = fog,
where g(-) is the predictor following z. Since 0Dkr1,/0g(z) = p — u, we can rewrite the Eq. (2) as
follows (more details are provided in Appendix B):

C
t=eteo 258 =oteo B G0 =o(Seo B pu-wi),

i=1

where (1) z © (9g(z);/0z) corresponds the simple explanation method known as Input © Gradi-
ent (Ancona et al., 2018), which quantifies the contribution of neurons to the model prediction g(z);.
It is also the general form of many prevalent explanation methods, such as e-LRP (Bach et al., 2015),
DeepLIFT (Shrikumar et al., 2017), and IG (Sundararajan et al., 2017); (2) p; — u; measures the
deviation of model predictions from a uniform distribution, thus denoting sample confidence (Huang
et al., 2021b). In this way, we builds z by considering both the significance of neurons on model
predictions, and model confidence in input data. Intuitively, if a neuron contributes less to the output
(or the model lacks confidence in input data), the neuron would be considered less active.

2.2 NEURON ACTIVATION COVERAGE (NAC)

With the formulation of neuron activation state, we now introduce the neuron activation coverage
(NAC) to characterize neuron behaviors under InD and OOD data. Inspired by system testing (Pei
etal., 2017; Ma et al., 2018; Xie et al., 2019), NAC aims to quantify the coverage degree of neuron
states under InD training data. The intuition is that if a neuron state is rarely activated (covered) by
any InD input, the chances of triggering bugs (e.g., misclassification) under this state would be high.
Since NAC directly measures the statistical property (i.e., coverage) over neuron state distribution,
we derive the NAC function from the probability density function (PDF). Formally, given a state Z;
of 7-th neuron, and its PDF n} (+) over an InD set X, the function for NAC can be given as:

1 .
P° % (Zir) = ;rnin(,%f)((,%i),r)7 ()
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where k% (%;) is the probability density of 2; over the set X, and r denotes the lower bound for
achieving full coverage w.r.t. state Z;. In cases where the neuron state Z; is frequently activated
by InD training data, the coverage score ®% (2;; ) would be 1, denoting fewer underlying defects
in this state. Notably, if r is too low, noisy activations would dominate the coverage, reducing the
significance of coverage scores. Conversely, an excessively large value of r also makes the NAC
function vulnerable to data biases. For example, given a homogeneous dataset comprising numerous
similar samples, the coverage score of a neuron state 2; can be mischaracterized as abnormally high,
marginalizing the effects of other meaningful states. We analyze the effect of r in Section 3.1.

2.3 APPLICATIONS

After modeling the NAC function over InD training data, we can directly apply it to tackle existing
OOD problems. In the following, we illustrate two application scenarios.

Uncertainty estimation for OOD detection. Since OOD data often trigger abnormal neuron be-
haviors (See Figure 4), we employ NAC for Uncertainty Estimation (NAC-UE), which directly
averages coverage scores over all neurons as the uncertainty

of test samples. Formally, given a test data x*, the function Neuron #969
for NAC-UE can be given as,

S(x*; f Zqﬂ (f(x* (5)

where N is the number of neurons; f (x*); := %; denotes the
state of ¢-th neuron; r is the controller of NAC function. If the Neuron #119

neuron states triggered by x* are frequently activated by InD

training samples, the coverage score S(x*; f, X) would be

high, suggesting that x* is likely to come from InD distribu- . . I\?:uron St(;':e v v
tion. By considering multiple layers in the network, we pro-

pose using NAC-UE for OOD detection following Liu et al. Figure 4: OOD vs. InD neuron acti-

OOD InD

Neuron #281

Frequency

(2020); Huang et al. (2021b); Sun et al. (2021): vation states. We employ PACS (Li
i . : et al., 2017) Photo domain as InD

D(x*) InD if 3, S(x 3Jile) >N (6) and Sketch as OOD. All neurons

00D if >, S(x*; fi, X) < A, stem from the layer4 of ResNet-50.

where )\ is a threshold, and fl denotes the neuron state function of layer [. The test sample with an
uncertainty score » |, S(x*; f;, X) less than A would be categorized as OOD; otherwise, InD.

Model evaluation for OOD generalization. OOD data potentially trigger neuron states beyond
the coverage area of InD data (Figure 2 and Figure 4), thus leading to misclassifications. From this
perspective, we hypothesize that the robustness of networks could positively correlate with the size
of coverage area. For instance, as coverage area narrows, larger inactive space would remain, in-
creasing the chances of triggering underlying bugs. Hence, we propose NAC for Model Evaluation
(NAC-ME), which characterizes model generalization ability based on the integral of neuron cover-
age distribution. Formally, given an InD training set X, NAC-ME measures the generalization ability
of a model (parameterized by ) as the average of integral w.r.t. NAC distribution:

AR
G(Xae) = N ;A:O (I)X(f;’l") d&a (7)

where N is the number of neurons, and 7 is the controller of NAC function. Given the training set X,
if a neuron is consistently active throughout the activation space, we consider it to be well exercised
by InD training data, thus with a lower probability of triggering bugs, i.e., favorable robustness.

Approximation. To enable efficient processing of large-scale datasets, we adopt a simple histogram-
based approach for modeling the probability density function (PDF) function. This approach divides
the neuron activation space into M intervals, and naturally supports mini-batch approximation. We
provide more details in Appendix C. In addition, we efficiently calculate G(X, 8) using the Riem-
man approximation (Krantz, 2005),

1 N M
GX.0) = 1/% Z > P )
i=1 k=1
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MINIST SVHN Textures Places365 Average
Method FPR95, AUROCt FPR95| AUROCT FPR95| AUROCtT FPR95| AUROCT FPR95, AUROCtT

CIFAR-10 Benchmark
OpenMax 23.33+467  90.50+044  25.40+147  89.77x04s  31.50x40s  89.58+060  38.52+227  88.63+028  29.69x121  89.62x0.19

ODIN 23.83+123¢  95.24+106  68.61+0s2  84.58+077  67.70+1106 86.94+226 70364696 85.07+124  57.62+424  87.96+061
MDS 27304355 90.10+241  25.96+252  91.18+047 27944420  92.69+106 47.67+as4 84904258 32224340 89.72+136
MDSEns 1.30=051 9917041 74341104 66561058  76.07+017  77.40+028  94.16+033  52.47+015s  61.47+048  73.90+027
RMDS 21494232 93221080  23.46+148  91.844026  25.25+0s3 92231023 31.20+028  9L.51+omr 25.35+073  92.20+021
Gram 70.30+896  72.64+234 339141735  91.52+445  94.64+271 62344527 90.49+193 60444341 72341673 T1.734320
ReAct 337741800  92.81+303  50.23+1598  89.12+310  51.42+1142  89.38+149  44.20+335  90.35x078  44.901837  90.42+141
VIM 18.36+142  94.761038  19.29+041  94.50+04s  21.14+183  95.15+034 41.434217  89.49+030  25.05+052  93.48+024
KNN 20.05+136  94.26+038  22.60+126  92.67+030  24.06+0s55  93.16+024  30.38+063  91.77+023  24.27+040  92.96+0.4
ASH 70.00+1056  83.16+466  83.64+648  73.46+641  84.59+17a 77454230  77.89+728  79.89+360  79.03+422 7849258
SHE 42224250 90431476 62.74+401  86.38+132  84.60+s30  81.57+121 76364532  82.89+122  66.48+s508  85.32+143
GEN 23.00+775  93.83x214  28.14x259  91.97x066  40.74x661  90.14x076  47.03+3220  89.46+065 34.73x158  91.35x060

NAC-UE 15.14+260  94.86+136  14.33+124  96.05+047  17.03:050  95.64+044  26.73:+0s0 91.85+028 18.31:092  94.60-+050

CIFAR-100 Benchmark
OpenMax 53824474 76.01+130  53.20+178  82.07+153  56.12+101  80.56+000 54.85+142  79.29+040  54.50+068  79.48+0.41

ODIN 45944320  83.79+131  67.41+4388  T4.54+076  62.37+296  79.33+108  59.71+092  79.45+026 58.86x079  79.28+021
MDS 71.724204  67.47+081 67214600  70.68+640 70.49+248  76.26+069 79.61+034  63.15+040  72.26+156 69.39+139
MDSEns 2.83:086  98.21+073  82.57+2s8  53.76+163 84941083 69.75+114  96.61+007  42.27+073  66.74x104  66.00+0.60
RMDS 52.05+628  79.741249  51.65+368  84.89+110  53.99+106  83.65+tosi  53.57+043  83.40+04s  52.81+063 82.92+042
Gram 53534745 80.71x415  20.06+196  95.55+060 89.51+2s4  70.79+13:2  94.67+060 46.38+121  64.441237 73364108
ReAct 56.04+s566  78.37x159  50.41+200  83.01x097  55.04x0s2  80.15+04s  55.30+041  80.03xtonr  54.20+x1s6  80.39x0a0
VIM 48.32+107  81.89+102  46.224546  83.14+3711  46.86+220  85.91+078  61.57+077  75.85+037  50.74+100 81.70+062
KNN 48.58+467 82364152 51.754312  84.15+100  53.56+232  83.66+0s3  60.70+103  79.43+047  53.65+028  82.40+0.17
ASH 66.58+388  77.23x046  46.00+267  85.60+140 61.27+274  80.72x070  62.95+099  78.76x016  59.20+246  80.58=066
SHE 58.78+270  76.76+107  59.15+761  80.97+398  73.29+320  73.64+128  65.241098  76.30+0s1  64.12+270 76.92+116
GEN 53924571 78294205 55454276  81.41+1s0 61231140  78.74x0s1  56.25+100  80.28+027  56.71+1s9  79.68+075

NAC-UE 21.97+662  93.15+163  24.39+466  92.40+126  40.65+194  89.32:+055  73.57+116  73.05+06s  40.14+136  86.98+037

Table 1: OOD detection performance on CIFAR-10 and CIFAR-100 benchmarks. We format first,
second, and third results. Full results for all baselines are provided in Table 20 and Table 21.

3 EXPERIMENTS

3.1 CASE STUDY 1: OOD DETECTION

Setup. Our experimental settings align with the latest version of OpenOOD? (Yang et al., 2022;
Zhang et al., 2023a). We evaluate our NAC—-UE on three benchmarks: CIFAR-10, CIFAR-100, and
ImageNet-1k. For CIFAR-10 and CIFAR-100, InD dataset corresponds to the respective CIFAR, and
4 00D datasets are included: MNIST (Deng, 2012), SVHN (Netzer et al., 2011), Textures (Cim-
poi et al., 2014), and Places365 (Zhou et al., 2018). For ImageNet experiments, ImageNet-1k
serves as InD, along with 3 OOD datasets: iNaturalist (Horn et al., 2018), Textures (Cim-
poi etal., 2014), and OpenImage-0 (Wang et al., 2022). We use pretrained ResNet-50 and Vit-b16
for ImageNet experiments, and ResNet-18 for CIFAR. For all employed benchmarks, we compare
our NAC-UE with 21 SoTA OOD detection methods. We provide more details in Appendix D.

Metrics. We utilize two threshold-free metrics in our evaluation: 1) FPROS: the false-positive-rate
of OOD samples when the true positive rate of ID samples is at 95%; 2) AUROC: the area under the
receiver operating characteristic curve. Throughout our implementations, all pretrained models are
left unmodified, preserving their classification ability during the OOD detection phase.

Implementation details. We first build the NAC function using InD training data, utilizing 1,000
training images for ResNet-18 and ResNet-50, and 50,000 images for Vit-b16. Note that in this
stage, we merely use training samples less than 5% of the training set (See Appendix G.1 for more
analysis). Next, we employ NAC-UE to calculate uncertainty scores during the test phase. Following
OpenOOD, we use the validation set to select hyperparameters and evaluate NAC-UE on the test set.

Results. Table 1 and Table 2 mainly illustrate our results on CIFAR and ImageNet benchmarks,
where we compare NAC-UE with 21 SoTA methods. As can be seen, our NAC-UE consistently
outperforms all of the SOTA methods on average performance, establishing record-breaking perfor-
mance over 3 benchmarks. Specifically, NAC-UE reduces the FPR95 by 10.60% and 5.96% over
the most competitive rival (Wang et al., 2022; Sun et al., 2022) on CIFAR-100 and CIFAR-10, re-
spectively. On the large-scale ImageNet benchmark, NAC—-UE also consistently improves AUROC
scores across backbones and OOD datasets. Besides, since NAC-UE performs in a post-hoc fashion,
it preserves model classification ability (i.e., InD accuracy) during the OOD detection phase. In
contrast, advanced methods such as ReAct (Sun et al., 2021) and ASH (Djurisic et al., 2023) exhibit
promising OOD detection results at the expense of InD performance (Djurisic et al., 2023).

2https://github.com/Jingkang50/OpenOOD.
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Dataset Backbone OpenMax MDS RMDS ReAct VIM KNN ASH SHE GEN NAC-UE
ResNet-50 92.05 63.67 8724 9634 89.56 86.41 97.07 92.65 92.44 96.52
iNaturalist Vit-b16 94.93 96.01 96.10 86.11 9572 9146 50.62 93.57 93.54 93.72
Average 93.49 79.84 91.67 9123 92.64 8894 73.85 93.11 92.99 95.12
ResNet-50 87.62 69.27 8584 91.87 90.50 87.04 93.26 86.52 89.26 91.45
Openlmage-O Vit-b16 87.36 9238 9232 8429 92.18 89.86 5551 91.04 90.27 91.58
Average 87.49 80.83 89.08 88.08 91.34 8845 7439 88.78 89.77 91.52
ResNet-50 88.10 89.80 86.08 9279 9797 97.09 9690 93.60 87.59 97.9
Textures Vit-b16 85.52 89.41 89.38  86.66 90.61 91.12 48.53 92.65 90.23 94.17
Average 86.81 89.61 87.73 89.73 9429 94.11 7272 93.13 8891 96.04

Table 2: OOD detection performance (AUROCT) on ImageNet. See Table 22 for full results.

NAC-UE with training methods. Training-time regularization is one of the potential directions in
OOD detection. Here, we further show that NAC-UE
is pluggable to existing training methods. Table 3 il-
lustrates our results using three training schemes: Conf- ConfBranch '\~ e 37104 93.90
Branch (DeVries & Taylor, 2018), RotPred (Hendrycks Baseline  36.67 90,00
et al.,, 2019b), and GODIN (Hsu et al., 2020), where = RotPred NAC.UE 3024 93.28
we compare NAC-UE with the detection method em- Baseline  50.87 85.51
ployed in the original paper, i.e., Baseline in Table 3. GODIN NAC.UE  26.86 94.61
Notably, NAC-UE significantly improves upon the base-
line method across all three training approaches, which Table 3: ImageNet results of NAC-UE
highlights its effectiveness for OOD detection again. with different training methods.

Training Method  FPR95| AUROCT
Baseline 50.98 83.94

Where to apply NAC-UE? Since NAC-UE performs based on neurons in a network, we further
investigate its effect when using neurons from different layers. Table 4 exhibits the results, where
the ResNet is utilized as the backbone for analysis. It can be drawn that (1) the performance of
NAC-UE positively correlates with the number of employed layers. This is intuitive, as including
more layers enables a greater number of neurons to be considered, thereby enhancing the accuracy
of NAC-UE in estimating the model status; (2) even with a single layer of neurons, NAC-UE is able
to achieve favorable performance. For instance, by employing layer4, NAC—-UE already achieves
23.50% FPR95, which outperforms the previous best method KNN on CIFAR-10.

Layer Combinations CIFAR-10 CIFAR-100 ImageNet
Layer4 Layer3 Layer2 Layerl FPR95| AUROCT FPR95] AUROCT FPR95| AUROCYT

v 23.50 93.21 85.84 58.37 26.89 94.57
v v 21.32 94.35 44.92 85.25 23.51 95.05
v v v 18.50 94.46 39.96 86.94 22.69 95.23
v v v v 18.31 94.60 40.14 86.98 22.49 95.29

Table 4: Performance of NAC-UE with different layer choices.

The superiority of neuron activation state z. Section 2.1 formulates the neuron activation state z
by combining the neuron output z with its KL gradients 9 Dky,/0z. Here, we ablate this formulation
to examine the superiority of z. In particular, we analyze the neuron behaviors w.r.f. 1) raw neuron
output: z, 2) KL gradients of neuron output: 9Dk1,/9z, and 3) ours neuron state: z ® 0Dk, /0z.

Figure 5 illustrates the results, where we visualize the InD and OOD distribution of different neu-
rons in the ImageNet benchmark. As can be seen, under the form of z ® 9 Dk1,/9z, neurons tend to
present distinct activation patterns when exposed to InD and OOD data. This distinctiveness greatly
facilitates the separability between InD and OOD, thereby leading to the best OOD detection per-
formance with NAC-UE, e.g., 16.58% FPR95 (z ® 0Dxk1,/0z) vs. 35.72% FPR95 (z) on layer4.
Contrary to that, when considering the vanilla form of z and 9 D1,/ 0z, the neuron behaviors under
InD and OOD are largely overlapped, which further spotlights the unique characteristic of our z.
More detailed analysis can be found in Appendix G.2.

Paramter analysis. Table 5-7 presents a systematically analysis of the effect of sigmoid steepness
(), lower bound (r) for full coverage, and the number of intervals (M) for PDF approximation. The
following observations can be noted: 1) A relatively steep sigmoid function could make NAC—-UE
perform better. We conjecture this is due to that neuron activation states often distribute in a small
range, thus requiring a steeper function to distinguish their finer variations; 2) NAC-UE is sensitive
to the choice of r. As previously discussed, a small r would allows noisy activations to dominate
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Figure 5: Ablation studies on the neuron activation state. We visualize InD (ImageNet) and OOD
(iNaturalist) distributions w.r.z. (a) neuron output, z; (b) KL gradients of neuron output, 9 Dk, /0z;
(c) our defined neuron state, z ® 0Dk, /0z. All states are normalized via the sigmoid function.

Sigmoid Lower No. of

Steepness (@) FPR95] AUROCT Bound (1) FPR95] AUROCT Intervals (M) FPR95] AUROC?t
a=1 40.07 85.48 r=0.1 27.10 91.51 M =10 25.19 91.80
a=10 25.64 92.11 r=20.5 24.16 92.79 M =50 23.50 93.21
a =100 23.50 93.21 r=1 23.50 93.21 M =100 24.23 93.09
a = 500 48.99 86.00 r=>5 28.35 92.17 M = 500 33.87 91.11
a = 1000 92.69 54.69 r =50 36.70 90.38 M = 1000 40.36 89.69

Table 5: NAC-UE w.r.t different Table 6: NAC-UE w.r.t differ- Table 7: NAC-UE w.r.t different
« over CIFAR-10. ent r over CIFAR-10. M over CIFAR-10.

NAC, thus diminishing the effect of coverage scores. Also, a large » makes the NAC vulnerable
to data biases, e.g., in datasets with numerous similar samples, a neuron state can be inaccurately
characterized with a high coverage score, disregarding other meaningful neuron states. 3) NAC-UE
works better with a moderate M. This is intuitive as a lower M may not sufficiently approximate
the PDF function, while a higher M can easily lead to overfitting on the utilized training samples.

3.2 CASE STUDY 2: OOD GENERALIZATION

Setup. Our experimental settings follow the Domainbed benchmark (Gulrajani & Lopez-Paz, 2021).
Without employing digital images, we adopt four datasets: VLCS (Fang et al., 2013) (4 domains,
10,729 images) , PACS (Li et al., 2017) (4 domains, 9,991 images), Of ficeHome (Venkateswara
et al., 2017) (4 domains, 15,588 images), and TerraInc (Beery et al., 2018) (4 domains, 24,788
images). For all datasets, we report the leave-one-out test accuracy following (Gulrajani & Lopez-
Paz, 2021), whereby results are averaged over cases that use a single domain for test and the others
for training. For all employed backbones, we utilize the hyperparameters suggested by (Cha et al.,
2021) to fine-tune them. The training strategy is ERM (Vapnik, 1999), unless stated otherwise. We
set the total training steps as 5000, and the evaluation frequency as 300 steps for all models. We use
the validation set to select hyperparameters of NAC-ME. See Appendix E for more details.

Model evaluation criteria. Since OOD data is assumed unavailable during model training, existing
methods commonly resort to InD validation accuracy to evaluate a model (Ramé et al., 2022; Yao
etal., 2022; Shi et al., 2022; Kim et al., 2021). Thus, we mainly compare NAC-ME with the prevalent
validation criterion (Gulrajani & Lopez-Paz, 2021). We also leverage the oracle criterion (Gulrajani
& Lopez-Paz, 2021) as the upper bound, which directly utilizes OOD test data for model evaluation.

Metrics. Here, we utilize two metrics: 1) Spearman Rank Correlation (RC) between OOD test
accuracy and the model evaluation scores (i.e., InD validation accuracy or NAC—ME scores), which
are sampled at regular evaluation intervals (i.e., every 300 steps) during the training process; 2) OOD
Test Accuracy (ACC) of the best model selected by the criterion within a single run of training.
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VLCS PACS OfficeHome Terralnc Average
Bakbone Method
RC ACC RC ACC RC ACC RC ACC RC ACC
Oracle - 77.67 - 80.51 - 56.18 - 4451 - 64.72

Validation 34.27 75.12 68.71 79.01 83.50 55.60 39.58 37.36 56.52 61.77

ResNet-18 NAC-ME 50.29 75.83 74.16 78.85 84.91 55.76 40.42 39.45 62.45 62.47
A (+16.02) (+0.71) (+545) (-0.16) (+1.41) (+0.16) (+0.84) (+2.09) (+5.93) (+0.70)

Oracle - 79.79 - 86.10 - 65.95 - 50.76 - 70.65

ResNet-50 Validation 3143 71.70 58.54 84.57 67.93 65.04 37.07 46.07 48.74 68.34
NAC-ME 28.68 76.41 62.07 85.28 69.16 65.23 40.16 47.10 50.02 68.51
A (-2.75) (-1.29)  (+3.53) (+0.71) (+1.23) (+0.19) (+3.09) (+1.03) (+1.28) (+0.17)

Oracle - 79.11 - 71.99 - 61.44 - 41.29 - 63.46

Vit-t16 Validation 37.95 77.43 89.34 69.83 98.71 61.22 22.71 36.28 62.18 61.19
NAC-ME 49.59 71.97 90.67 70.99 99.14 61.26 23.26 36.69 65.67 61.73

A (+11.64) (+0.54) (+1.33) (+1.16) (+0.43) (+0.04) (+0.55) (+0.41) (+3.49) (+0.54)

Oracle - 80.96 - 90.23 - 81.23 - 52.23 - 76.16

Vit-b16 Validation 18.81 78.70 41.38 87.80 58.29 80.11 0.92 45.49 29.85 73.03
NAC-ME 37.42 79.20 45.04 88.83 63.17 80.52 20.22 47.86 41.46 74.10

A (+18.61)  (+0.50) (+3.66) (+1.03) (+4.88) (+0.41) (+19.30) (+2.37) (+11.61) (+1.07)

Table 8: OOD generalization results on DomainBed. Oracle denotes the upper bound, which uses
OOD test data to evaluate models. A denotes the improvement of NAC-ME over the validation
criterion. All scores are averaged over 3 random trials. Full results are provided in Appendix K.

Results. As illustrated in Table 8, we mainly compare our NAC-ME with the typical validation
criterion over four backbones: ResNet-18, ResNet-50, Vit-t16, and Vit-b16. We provide the main
observations in the following: 1) The positive correlation (i.e., RC > 0) between the NAC-ME and
OOD test performance consistently holds across architectures and datasets; 2) By comparison with
the validation criterion, NAC—ME not only selects more robust models (with higher OOD accuracy),
but also exhibits stronger correlation with OOD test performance. For instance, on the Terralnc
dataset, NAC-ME achieves a rank correlation of 20.22% with OOD test accuracy, surpassing valida-
tion criterion by 19.30% on Vit-b16. Similarly, on the VLCS dataset, NAC-ME also shows a rank
correlation of 52.29%, outperforming the validation criterion by 16.02% on ResNet-18. Such results
highlight the potential of NAC—-ME in evaluating model generalization ability.

NAC-ME can co-work with SoTA learning algorithms. Algorithm  Method RC ACC
Recent literature has suggested numerous learning algo- Validation 6176 80.66
rithms to enhance the model robustness (Ganin et al., 2016; SelfReg NA%—ME 6§.gg sg.g?
Shi et al., 2022; Ramé et al., 2022). In this sense, we fur- — Gl ) o)

. . . . . . Validation ~ 70.06 80.68
ther investigate the potential of NAC—-ME by implementing it CORAL  NAC.ME 7655 8154
with two recent SOTA algorithms: CORAL (Sun & Saenko, A (+6.49)  (+0.86)

2016) and SelfReg (Kim et al., 2021). The results are shown o

in Table 9. We can see that NAC-ME as an evaluation cri- 1able 9: OOD generalization results
terion still presents better performance compared with the ©n PACS (Li et al,, 2017), averaged
validation criterion, which spotlights its effectiveness again. ©Ver 3 trials. Backbone: ResNet-18.

Does the volume of OOD test data hinder the Rank Cor-
relation (RC)? As illustrated in Table 8, while in most cases
NAC-ME outperforms the validation criterion on model se-
lection, we can find that the Rank Correlation (RC) still falls
short of its maximum value, e.g., on the VLCS dataset us-
ing ResNet-18, RC only reaches 50% compared to the maxi-
mum of 100%. Given that Domainbed only provides 6 OOD
domains at most, we hypothesize that the volume/variance 0.54
of OOD test data may be the reason: insufficient OOD test 20% 40% 60% 80% 100%
data may be unreliable to reflect model generalization ability, Ratio of OOD test data
thereby hindering the validity of RC. To this end, we conduct
additional experiments on the iWildCam dataset (Koh et al.,
2021), which includes 323 domains and 203,029 images in a
total. Figure 6 illustrates the results, where we analyze the test data. Dataset: iWildCaM (Koh
relationship between RC and the volume of OOD test data etal., 2021). Backbone: ResNet-30.
by randomly sampling different ratios of OOD data for RC calculation. As can be seen, an increase
in the ratio of test data also leads to an improvement in the RC, which confirms our hypothesis re-
garding the effect of OOD data. Furthermore, we can observe that in most cases, NAC—ME could still
outperform the validation criterion. These observations spotlight the capability of our NAC again.

Validation
0.8 NAC-ME

0.7

0.6

Rank Correlation

Figure 6: The positive relationship
between RC and the volume of OOD
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4 RELATED WORK

Neuron coverage in system testing. Traditional system testing commonly leverages coverage cri-
teria to uncover defects in software programs (Ammann & Offutt, 2008). These criteria measure the
degree to which certain codes or components have been exercised, thereby revealing areas with po-
tential defects. To simulate such program testing in neural networks, Pei et al. (2017) first introduced
neuron coverage, which measures the proportion of activated neurons within a given input set. The
underlying idea is that if a network performs with larger neuron coverage during testing, it is likely
to have fewer undetected bugs, e.g., misclassification. In line with this, Ma et al. (2018) extended
neuron coverage with fine-grained criteria by considering the neuron outputs from training data.
Yuan et al. (2023) introduced layer-wise neuron coverage, focusing on interactions between neurons
within the same layer. The most recent work related to our paper is Tian et al. (2023), where they
proposed to improve model generalization ability by maximizing neuron coverage during training.
However, these existing definitions of neuron coverage still focus on the proportion of activated neu-
rons in the entire network, which disregards the activation details of individual neurons. Contrary to
that, in this paper, we specifically define neuron activation coverage (NAC) for individual neurons,
which characterizes the coverage degree of each neuron state under InD data. This provides a more
comprehensive perspective on understanding neuron behaviors under InD and OOD scenarios.

OOD detection. The goal of OOD detection is to distinguish between InD and OOD data inputs,
thereby refraining from using unreliable model predictions during deployment. Existing detection
methods can be broadly categorized into three groups: 1) confidence-based (Bendale & Boult,
2016; Hendrycks & Gimpel, 2017; Huang & Li, 2021), 2) distance-based (Huang et al., 2021a;
Chen et al., 2020; van Amersfoort et al., 2020), and 3) density-based (Zisselman & Tamar, 2020;
Jiang et al., 2022; Kirichenko et al., 2020) approaches. Confidence-based methods commonly resort
to the confidence level of model outputs to detect OOD samples, e.g., maximum softmax proba-
bility (Hendrycks & Gimpel, 2017). In contrast, distance-based approaches identify OOD samples
by measuring the distance (e.g., Mahalanobis distance (Lee et al., 2018)) between input sample and
typical InD centroids or prototypes. Likewise, density-based methods employ probabilistic models
to explicitly model InD distribution and classify test data located in low-density regions as OOD.

Specific to neuron behaviors, ReAct (Sun et al., 2021) recently proposes the truncation of neuron
activations to separate the InD and OOD data. However, such truncation can lead to a decrease in
model classification ability (Djurisic et al., 2023). Similarly, LINe (Ahn et al., 2023) seeks to find
important neurons using the Shapley value (Shapley, 1997) and then performs activation clipping.
Yet, this approach relies on a threshold-based strategy that categorizes neurons into binary states,
disregarding valuable neuron distribution details. Unlike them, in this work, we show that by using
natural neuron states, a distribution property (i.e., coverage) greatly facilitates the OOD detection.

OOD generalization. OOD generalization aims to train models that can overcome distribution shifts
between InD and OOD data. While a myriad of studies has emerged to tackle this problem (Li et al.,
2018b; Sun & Saenko, 2016; Sagawa et al., 2020; Parascandolo et al., 2021; Arjovsky et al., 2019;
Ganin et al., 2016; Li et al., 2018a; Krueger et al., 2021), Gulrajani & Lopez-Paz (2021) recently put
forth the importance of model evaluation criterion, and demonstrated that a vanilla ERM (Vapnik,
1999) along with a proper criterion could outperform most state-of-the-art methods. In line with
this, Arpit et al. (2022) discovered that using validation accuracy as the evaluation criterion could
be unstable for model selection, and thus proposed moving average to stabilize model training.
Contrary to that, this work sheds light on the potential of neuron activation coverage for model
evaluation, showing that it outperforms the validation criterion in various cases.

5 CONCLUSION

In this work, we have presented a neuron activation view to reflect the OOD problem. We have
shown that through our formulated neuron activation states, the concept of neuron activation cov-
erage (NAC) could effectively facilitate two OOD tasks: OOD detection and OOD generalization.
Specifically, we have demonstrated that 1) InD and OOD inputs can be more separable based on
the neuron activation coverage, yielding substantially improved OOD detection performance; 2) a
positive correlation between NAC and model generalization ability consistently holds across archi-
tectures and datasets, which highlights the potential of NAC-based criterion for model evaluation.
Along these lines, we hope this paper has further motivated the community to consider neuron be-
havior in the OOD problem. This is also the most considerable benefit eventually lies.
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A POTENTIAL SOCIAL IMPACT

This study introduces neuron activation coverage (NAC) as an efficient tool for facilitating out-of-
distribution (OOD) solutions. By improving OOD detection and generalization, NAC has the poten-
tial to significantly enhance the dependability and safety of modern machine learning models. Thus,
the social impact of this research can be far-reaching, spanning consumer and business applications
in digital content understanding, transportation systems including driver assistance and autonomous
vehicles, as well as healthcare applications such as identifying unseen diseases. Moreover, by openly
sharing our code, we strive to offer machine learning practitioners a readily available resource for
responsible Al development, ultimately benefiting society as a whole. Although we anticipate no
negative repercussions, we are committed to expanding upon our framework in future endeavors.

B ADDITIONAL THEORETICAL DETAILS

In this section, we present additional theoretical details for Eq. (3) in the main paper. Concretely,
we first elaborate on the calculation of gradients w.r.r. the sample confidence, i.e., 0Dk1,/0g(z) =
p — u. Then, we show the detailed derivation of Eq. (3).

Derivation of sample confidence. As a reminder, in the main paper, we introduce the Kullback-
Leibler (KL) divergence (Kullback & Leibler, 1951) between the network output and a uniform
vectoru = [1/C,1/C, ..., 1/C] € R as follows:

Dk1,(ullp) = Zul log—
c
= —Zuilogpi + Zuilogui
i=1 i=1
1 &
= fGZlogp,; — H(u
i=1

where p = softmax(F'(x)), and p; denotes i-element in p H (u) =— Zlc 1 44 log u; is a constant.
Let F'(x); indicates i-th element in F'(x), we have p; = ef' ¥ / Z . Then, by substituting
the expression of p;, we can rewrite KL divergence as:

F(x);

Dx,(u][softmax(F(x))) = — = Z log — H(u)

F(x);

c
1 .
i=1 Jj=1

Subsequently, we can derive the gradients of KL divergence w.r.z. the output logit F'(x); as:

c %),
(x)i

OF(x); C 0F (x);
F(x);
_ 1 1-C- 067
C Zj:l eF(x)j
_ 1 F(X)L
o C Z x)]
= Pi — Uj-

Since F(x) = g(f(x)) = g(z), we finally have:
0Dx1r,  0DkL
dg(z) OF(x)

= [p1 — 1, pe —u’ =p—u )
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Derivation of Eq.(3). As shown above, we have dDky,/0g(z) = p — u. By substituting this
expression, we can rewrite the formulation of neuron activation state z as:
8DKL 8g(z) 6DKL
)=0(z0( : ) =
0z 0z  0g(z)

20 (X% p_w). a0

z=0(z0® %

By expanding the expression of dg(z)/0z, we have:
9g9(z) _ [89(2)1 9g(z)s  9g(z)c
0z 0z = 0z 7 0Oz

where dg(z);/0z € RY denotes the gradients of i-th element in the logit output g(z). N is the
number of neurons in z, and C' is the number of classes. In this way, we can reorganize Eq.(10) as:

] € RV*C, (11)

c

5 _ U(Z o (Z (990(:)1' (pi — ul))) = o’(i(z ® 896(:)1) (pi — uz)) (12)

i=1 i=1

C APPROXIMATION DETAILS

In this section, we demonstrate details for the approximation of PDF function, and further show the
insights for the choice of 7 in our NAC function.

C.1 PRELIMINARIES

Probability density function (PDF). The Probability Density Function (PDF), denoted by x(x),
measures the probability of a continuous random variable taking on a specific value within a given
range. Accordingly, x(x) should possess the following key properties:

(1) Non-Negativity: x(x) > 0, for all z € R;
(2) Normalization: [*_k(z)dz = 1;
(3) Probability Interpretation: P(a < p < b) = f; k(z)dx,
where P(a < u < b) denotes the probability that random variable y has values within range [a, b].

Cumulative distribution function (CDF). In line with PDF, the Cumulative Distribution Function
(CDF), denoted by K (z), calculates the cumulative probability for a given z-value. Formally, K ()
gives the area under the probability density function up to the specified z,

K(z)=Pu<z)= /m K(t)dt. (13)

By the Fundamental Theorem of Calculus, we can rewrite the function x(z) as,

H(x):K,(x):%%K(x—Fh})L—K(aS).

(14)

Note that in the main paper, we denote by % (-) the PDF, and ®%(-) the NAC function of i-th
neuron over the training dataset X . In this appendix, we will omit the superscript ¢ and subscript X
for simplicity.

C.2 APPROXIMATION

In line with the main paper, we approximate the PDF of neuron states following a simple histogram-

based approach, where the neuron activation space is partitioned into M intervals/bins with loga-

rithmic scales. Formally, suppose the width of a bin is h, we can rewrite the PDF function as,
_K(E+h)-K(2) PlE<p<z+h) OF) 1

where £ is the neuron activation state, and O(Z) is the number of samples in the bin activating 2.
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During the PDF modeling process, we iteratively take a random batch of neuron states as input and
assign them corresponding bins.

The choice of . With the approximation of PDF, we can rewrite the NAC function as,

D(%r) = %min(n(é)m) = min(@, 1) ~ min(|OX(2}1 . %,

1), (16)

where r denotes the lower bound for achieving full coverage w.r.z. state Z. However, for the above
formulation, it could be challenging to search for a suitable r, since various factors (e.g., InD dataset
size | X|) could affect the significance of NAC scores ®(Z; ). In this sense, to further simplify this

formulation in the practical deployment, we set r = %, such that
0(2) 1 0(%)

®(%;7) =~ min(

where O* represents the minimum number of samples required for bin filling, and O(2) is the
number of samples activating the neuron state 2 in the bin. In this way, we can directly manipulate
O~ to control the NAC function in the practical deployment.

D EXPERIMENTAL DETAILS FOR OOD DETECTION

We conduct experiments following the latest version of OpenOOD? (Yang et al., 2022; Zhang et al.,
2023a). In this section, we first provide more details for the utilized baselines (Section D.1), datasets
and evaluation protocol (Section D.2), and model architectures (Section D.3). Then, we demonstrate
the hyperparameters of NAC-UE, and the corresponding search space (Section D.4).

D.1 BASELINE METHODS

Since NAC-UE performs in a post-hoc fashion, we mainly compare our approach on three bech-
marks with the 21 post-hoc OOD detection methods, including OpenMax (Bendale & Boult, 2016),
MSP (Hendrycks & Gimpel, 2017), TempScale (Guo et al., 2017), ODIN (Liang et al., 2018),
MDS (Lee et al., 2018), MDSEns (Lee et al., 2018), RMDS (Ren et al., 2021), Gram (Sastry &
Oore, 2020), EBO (Liu et al., 2020), OpenGAN (Kong & Ramanan, 2021), GradNorm (Huang
et al., 2021b), ReAct (Sun et al., 2021), MLS (Hendrycks et al., 2022), KLM (Hendrycks et al.,
2022), VIM (Wang et al., 2022), KNN (Sun et al., 2022), DICE (Sun & Li, 2022), RankFeat (Song
etal., 2022), ASH (Djurisic et al., 2023), SHE (Zhang et al., 2023b), GEN (Liu et al., 2023). In par-
ticular, ReAct and ASH are neuron-based methods, which modify the neuron activations for OOD
detection. The results presented in Table 20-22 are from the OpenOOD implementations.

D.2 OOD BENCHMARKS

We mainly utilize the Far-OOD track of OpenOOD for the evaluation, as it is well defined and
supported by many existing studies, e.g., Wang et al. (2022) and Bitterwolf et al. (2023).

CIFAR benchmarks CIFAR-10 and CIFAR-100 are widely employed as in-distribution (InD)
datasets in existing studies. CIFAR-10 consists of 10 classes, while CIFAR-100 contains 100 classes.
In line with OpenOOD, we adopt the same split setup for CIFAR-10 and CIFAR-100 benchmarks.
Specifically, for both CIFAR-10 and CIFAR-100, we utilize the official train set with 50,000 training
images, and hold out 1,000 samples from the test set as InD validation set. The remaining 9,000 test
images are employed as InD ftest set. The 1,000 images covering 20 categories are held out from
Tiny ImageNet (Le & Yang, 2015), serving as the OOD validation set. To assess the performance
of OOD detection methods, we employ four commonly adopted datasets for OOD test, which are
disjoint with the OOD validation set. The details of them are provided below:

1. MNIST (Deng, 2012): This is a 10-class handwriting digital dataset, contains 60,000 im-
ages for training and 10,000 for test. We utilize the entire test set for OOD detection.

3https://github.com/Jingkang50/OpenOOD.
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Architecture Parameter Denotation Values
- layer choice layer4 / layer3 / layer2 / layerl
M number of bins for PDF estimation 50/500/50/500
ResNet-18 o sigmoid steepness 100/ 1000/ 0.001 / 0.001
O number of samples required for bin filling 50/100/5/100

Table 10: Hyperparameters and their default values on the CIFAR-10 benchmark. Note that r can
be computed based on O*, as illustrated in Appendix C.2

Architecture Parameter Denotation Values
- layer choice layer4 / layer3 / layer2 / layerl
M number of bins for PDF estimation 50/1000/50/50
ResNet-18 o sigmoid steepness 50/10/1/0.005
o number of samples required for bin filling 50/500/500/5

Table 11: Hyperparameters and their default values on the CIFAR-100 benchmark. Note that r can
be computed based on O*, as illustrated in Appendix C.2

2. SVHN (Netzer et al., 2011): This dataset consists of color images depicting house numbers,
encompassing ten classes representing digits O to 9. We utilize the entire test set, containing
26,032 images.

3. Textures (Cimpoi et al., 2014): The Textures dataset comprises 5,640 real-world texture
images classified into 47 categories. We employ the entire dataset for evaluation purposes.

4. Places365 (Zhou et al., 2018): Places365 contains a vast collection of photographs de-
picting scenes, classified into 365 scene categories. The test set consists of 900 images per
category. For OOD detection, we utilize the entire test dataset with 1,305 images removed
due to the semantic overlap following (Yang et al., 2022).

Large-scale ImageNet benchmark We employ ImageNet-1k (Deng et al., 2009) as the in-
distribution dataset, which contains about 1.2M training images. Following OpenOOD, we utilize
45,000 images from the ImageNet validation set as InD ftest set, and the remaining 5,000 samples
as InD validation set. To search hyperparameters, 1,763 images from Openlmage-O (Wang et al.,
2022) are picked out for OOD validation. Finally, we leverage three commonly adopted datasets as
0OD test for evaluations:

1. iNaturalist (Horn et al., 2018): This dataset consists of 859,000 images of plants
and animals, covering over 5,000 different species. Each image is resized to a maximum
dimension of 800 pixels. Following (Huang & Li, 2021; Yang et al., 2022), we evaluate our
method on a randomly selected subset of 10,000 images, which are drawn from 110 classes
that do not overlap with ImageNet-1k.

2. Textures (Cimpoi et al., 2014): This dataset contains 5,640 real-world texture images
categorized into 47 classes. We utilize the entire dataset for evaluation purposes.

3. OpenImage-0 (Wang et al., 2022): This dataset is curated based on the test set of
Openlmage-v3, thereby enjoying natural class statistics to avoid initial design biases. It
contains 17,632 images with large scale. Following OpenOOD, we utilize the entire dataset
for OOD detection, except the images selected for OOD validation.

D.3 MODEL ARCHITECTURE

For CIFAR-10 and CIFAR-100 benchmarks, we employ the powerful ResNet-18 (He et al,
2016) architecture. In line with the OpenOOD (Yang et al., 2022; Zhang et al., 2023a), we train
ResNet-18 for 100 epochs and evaluate OOD detection methods over three checkpoints. Pleas
refer to OpenOOD for more training details.

Following OpenOOD, our experiments for ImageNet benchmark employ two model architectures:
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Architecture Parameter Denotation Values
) laver choice before_head / block11 /
¥ block10 / block9
Vit-b16 M number of bins for PDF estimation 50/500/500 /1000
«a sigmoid steepness 100/1/10/1
O~ number of samples required for bin filling 500/50/10/ 10
- layer choice layer4 / layer3 / layer2 / layerl
M number of bins for PDF estimation 50/50/500/1000
ResNet-50 o sigmoid steepness 3000/300/0.01/1
O number of samples required for bin filling 10/500 /50 / 5000

Table 12: Hyperparameters and their default values on the ImageNet benchmark. Note that r can be
computed based on O, as illustrated in Appendix C.2

* ResNet-50 (He et al.,, 2016) is pretrained on ImageNet-1k. For this model, all images
are resized to 224 x 224 at the test phase. We use the official checkpoints from Pytorch.

* Vit-bl6 (Dosovitskiy et al., 2021) is also pretrained on ImageNet-1k. Similar to ResNet-
50, test images are resized to 224 x 224. The checkpoints from Pytorch are employed.

D.4 HYPERPARAMETERS

In all of our experiments, we utilize the InD and OOD validation sets to search for the best hyperpa-
rameters. In general, we search M in [50, 500, 1000], and O* in [5, 10, 50, 100, 500, 5000] across
architectures and benchmarks. Since neurons in deeper network layers (e.g., layer4) often varies in
a smaller range (See z in Figure 5 for an example), we search « in [50, 100, 300, 1000, 3000] for
steeper sigmoid function. Otherwise, we search « in [0,001, 0.005, 0.01, 0.1, 1, 10].

In Table 10-12, we list the values of selected hyperparameters for different model architectures over
CIFAR-10, CIFAR-100, and ImageNet benchmarks. As suggested in Table 4, we use layer4, layer3,
layer2, and layerl together for OOD detection regrading the ResNet architectures. For Vit-b16, we
use the attention layer in block11, block10, block9, and the neurons before the head layer.

E EXPERIMENTAL DETAILS FOR OOD GENERALIZATION

E.1 DOMAINBED BENCHMARK

Datasets We conduct experiments on the DomainBed (Gulrajani & Lopez-Paz, 2021) benchmark,
which is an arguably fairer benchmark in OOD generalization*. Without utilizing digital images, we
utilize four datasets:

1. VLCS (Fang et al., 2013) is composed of photographic domains, namely Caltechl101,
LabelMe, SUN0Y, and VOC2007. This dataset consists of 10,729 examples with dimen-
sions (3, 224, 224) and 5 classes.

2. PACS dataset (Li et al., 2017) consists of four domains: art, cartoons, photos, and
sketches. It comprises a total of 9,991 examples with dimensions (3, 224, 224) and 7
classes.

3. OfficeHome (Venkateswara et al., 2017) includes domains: art, clipart, product,
real. This dataset contains 15,588 examples of dimension (3, 224, 224) and 65 classes.

4. TerralInc (Beery etal, 2018) is a collection of wildlife photographs captured by camera
traps at various locations: L100, L38, L43, and L4 6. Our version of this dataset contains
24,788 examples of dimension (3, 224, 224) and 10 classes.

Settings To ensure the reliability of final results, the data from each domain is partitioned into two
parts: 80% for training or testing, and 20% for validation. This process is repeated three times with

*https://github.com/facebookresearch/DomainBed.
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different seeds, such that reported numbers represent the mean and standard errors across these three
runs. In our experiments, we report leave-one-out test accuracy scores, whereby results are averaged
over cases that uses a single domain for test and the others for training. Besides, we set the total
training steps as 5000, and the evaluation frequency as 300 steps for all runs.

Model evaluation criteria For model evaluation, we mainly compare our method with the valida-
tion criterion, which measures model accuracy over 20% source-domain (i.e., InD) validation data.
In addition, we also employ the oracle criterion as the upper bound, which directly utilizes the accu-
racy over 20% test-domain data for model evaluation. For more details, we suggest to refer Gulrajani
& Lopez-Paz (2021).

E.2 METRIC: RANK CORRELATION

Rank correlation metrics are widely utilized to measure the relationship between two random vari-
ables. The purpose of these metrics is to provide a quantitative way to assess the similarity in
rankings of observations across the variables. Following Arpit et al. (2022), we utilize the Spearman
Rank Correlation (RC) for assessing the relationship between OOD test accuracy and the model
evaluation scores, i.e., InD validation accuracy or InD NAC—-ME scores.

The rationale behind this choice is that during the training phase, the selection of the optimal model
is frequently based on the ranking of model performance, such as validation accuracy. Therefore,
utilizing the RC score enables us to directly measure the effectiveness of evaluation criteria in model
selection (which naturally translates to early stopping). The value of RC ranges between -1 and 1,
where a value of -1 signifies that the rankings of two random variables are exactly opposite to each
other; whereas, a value of +1 indicates that the rankings are exactly the same. Furthermore, a RC
score of 0 indicates no linear relationship between the two variables.

E.3 MODEL ARCHITECTURE

In our experiments, we employ four model architectures: ResNet-18 (He et al., 2016), ResNet-
50 (He et al., 2016), Vit-t16 (Dosovitskiy et al., 2021), and Vit-b16 (Dosovitskiy et al., 2021). All of
them are pretrained on the ImageNet dataset, and are employed as the initial weight. For parameter
choices, we suggest to refer Cha et al. (2021).

E.4 HYPERPARAMETERS

In the case of ResNet architectures, NAC-ME computation is performed by using the neurons in
layer-4. For ResNet-50, layer-4 consists of 2048 neurons, while ResNet-18 has 512 neurons. As
for vision transformers, NAC-ME computation utilizes the neurons in the attention layer of block-
11. In the case of Vit-b16, we utilize 768 neurons, while for Vit-t16, we employ 192 neurons.
During this series of experiments, we employ the source-domain training data to formulate the NAC
function. Besides, to mitigate the noises in training samples, we merely utilize training data that can
be correctly classified to build the NAC function.

In order to determine the best hyperparameters of NAC—-ME for all models, we utilize the InD vali-
dation data for parameter search based on the distribution outlined in Table 13. Specifically, given
the unavailability of OOD data in this context, we select NAC-ME hyperparameters based on the
rank correlation with the InD validation accuracy. This is motivated by the fact that the validation
accuracy can provide some insights into the model learning progress.

Dataset No. of bins M Sigmoid steepness a No. of samples for bin filling O*
VLCS/ [1, 500, 5000] /

PACS / [50. 1000] [0.01,0.1,0.5]/ [1, 500, 5000, 10000] if not Ter-
OfficeHome / ’ [0.01, 1, 1007/ ralnc else [5, 10, 30, 50]

Terralnc [0.01, 0.1]

Table 13: Hyperparameters of our NAC-ME and their distributions for random search. Note that r
can be computed based on O*, as illustrated in Appendix C.2
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Figure 7: Ablation studies on the number of training samples for building NAC. NAC-UE achieves
promising performance though only 1% of the training data are utilized, demonstrating the efficiency
of our NAC-based approaches.

F REPRODUCIBILITY
We will publicly release our code with detailed instructions.
F.1 SOFTWARE AND HARDWARE

All experiments are performed on a single NVIDIA GeForce RTX 3090 GPU, with Python version
3.8.11. The deep learning framework used is PyTorch 1.10.0, and Torchvision version 0.11.1 is
utilized for image processing. We leverage CUDA 11.3 for GPU acceleration.

F.2 RUNTIME ANALYSIS

The total runtime of the experiments varies depending on the tasks and datasets. In the following,
we provide details for two OOD tasks with resent50 architecture, using a single NVIDIA GeForce
RTX 3090 GPU. For OOD detection, the experiments (e.g., inference during the test phase) take
approximately 10 minutes for all benchmarks. For OOD generalization, the experiments on average
take approximately 4 hours for PACS and VLCS, 8 hours for OfficeHome, 8.5 hours for Terralnc.

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 EFFICIENCY ANALYSIS

Efficient NAC modeling. As previously mentioned in the main paper, the NAC function is con-
structed using the InD training data. Specifically, we utilize a subset with 1,000 training images
on the CIFAR-10 and CIFAR-100 benchmarks, representing approximately 2% of the total train-
ing set. In the case of ImageNet, we employ 1,000 and 50,000 images for ResNet-50 and Vit-b16,
respectively, which correspond to approximately 0.1% and 5% of the complete training set.

Here, to gain further insights into the efficiency of our approach, we analyze the performance of
NAC-UE when constructing the NAC function with varying numbers of training samples. Figure 7
illustrates the results on CIFAR-10 and CIFAR-100 benchmarks, where we randomly sample train-
ing images at different ratios and repeat this process five times to ensure the validity of the results.
Notably, even when utilizing only 1% of the training data, NAC-UE demonstrates remarkable perfor-
mance that is comparable to the scenario where 100% of the training data is used. This demonstrates
the efficiency of our approach, especially in situations with limited data availability.

Computational Cost Analysis. To provide a comprehensive view of our approach, we further an-
alyze the computational costs of our proposed NAC-UE method. Specifically, we select the top-3
performing methods from Table 2 as baselines, and compare them with NAC-UE in terms of pre-
processing and inference time on the ImageNet benchmark. From the results exhibited in Table 14,
the following two observations can be drawn:

1) Preprocessing Time: From Table 14, we can see that NAC-UE significantly reduces the prepro-
cessing time compared to the most competitive ViM and SHE, e.g., 7.75s (NAC-UE) vs. 1019.34s
(ViM). This finding aligns with our previous experiments (Figure 7), where we show that NAC-UE
achieves favorable performance despite utilizing only 1% of the training data for NAC modeling.
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Figure 8: Ablation studies on the neuron activation states z. We visualize the distribution of averaged
coverage scores w.r.t all neurons (See Eq.(5)) on the ImageNet benchmark.

Method Preprocessing Time (s)  Total Inference Time (s) AUROCT
GEN (Liu et al., 2023) 0.00 £ 0.0 43.33+£03 89.76
ViM (Wang et al., 2022) 1087.82 £9.0 48.10+ 04 92.68
SHE (Zhang et al., 2023b) 1019.34 £2.2 41.85+£0.5 90.92
NAC-UE (layer4) 543+0.3 39.63 £0.2 94.57
NAC-UE (layer4+layer3) 6.75+0.3 46.09 £ 0.7 95.05
NAC-UE (layer4+layer3+layer2) 7.75+0.2 69.73 £0.4 95.23

Table 14: Computational time comparison between NAC-UE and three SoTA OOD detection meth-
ods. Preprocessing and inference time are assessed on the ImageNet benchmark with ResNet-50,
which are averaged over five trials. Appendix F.1 provides the details for hardware configurations.

2) Inference Time: While NAC-UE requires more inference time with an increase in the number
of layers, it is able to outperform SoTA methods in terms of both inference time and detection
performance. Remarkably, when utilizing just a single layer (layer4), NAC-UE achieves an AUROC
of 94.57% with an inference time of 39.63 seconds. In contrast, GEN achieves only 8§9.76% AUROC
with an inference time of 43.33 seconds. This highlights the efficiency of our approach.

Besides the above analysis, it is also worth noting that there are numerous ongoing research ef-
forts dedicated to facilitating gradient calculation (e.g., Lee et al. (2019)), which could potentially
complement our proposed method.

G.2 ABLATION ON NEURON ACTIVATION STATE Zz

In the main paper (Figure 5), we analyze the formulation of neuron activation state zZ with two neuron
examples. In this section, we provide additional experiments to further verify the superiority of z.

Distribution of coverage scores under InD and OOD. To complement the previous analysis which
mainly centers on individual neurons, we first investigate the overall neuron activities under different
form of neuron states, i.e., raw neuron output z, neuron gradients 0 Dx1,/9z, and ours z® 9D,/ 0z.
Figure 8 illustrates the results, where we visualize the InD and OOD distributions of averaged cov-
erage scores w.r.t all neurons (See Eq.(5)) on the ImageNet benchmark. We provide the main obser-
vations in the following:

Firstly, among all the three variants, z® 0 Dxr,/90z method performs the best, as it inherits the advan-
tages from both z and 9 Dky,/0z. This spotlights the superiority of our defined neuron state again.
Secondly, it can also be found that OOD samples generally present lower coverage scores compared
to InD samples. This demonstrates that OOD data tend to provoke abnormal neuron behaviors in
comparison to InD data, which confirms the rationale behind our NAC-based approaches.
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CIFAR-100 Tiny ImageNet Average
FPR95] AUROCT FPR95] AUROCtT FPR95] AUROC?T
OpenMax  48.06+325 86.91+031  39.18+144 88.32+028 43.62+227  87.62+029

Method

MSP 53.08+486 87.19+033 43.27+300 88.87+019 48.17+392  88.03+025
TempScale 55.81+s507  87.17+040 46.114363 89.00+023 50.96+432  88.09+031
ODIN 77.00+574  82.18+187  75.38+642 83.55+184 76.19+608 82.87+1s5
MDS 52814362 83.594227 46.99+436 84.81+253 49.90+308 84.20+240
MDSEns 91.87x010 61.29x023  92.66+042 59.57+053 92.26x020 60.43+026
RMDS 43.86+340  88.83+035 33.91x139 90.76+027 38.89+239  89.80+028
Gram 91.68+224  58.33+449  90.06+150 58.98+519  90.87+191  58.66+483
EBO 66.60+446 86.36x058 56.08+4s3 88.80+036 61.34+463 87.58+046

OpenGAN  94.84+383 52.81+760 94.11x421 54.62+768 94.48+401 53.71+768
GradNorm  94.54+t111 54434159 94.89+060 55.37x041 94.72+082  54.90+09s

ReAct 67.40+734  85.93+083 59.71+731  88.29+044  63.56+733  87.11x061
MLS 66.59+444  86.31+050 56.06+452 88.72+036 61.32+462  87.52+047
KLM 90.55+583  77.89x075 85.18+760 80.49+0s5 87.86+637 79.19+0s0
VIM 49.19+4315  87.75+028 40.49+155  89.62+033 44.841231  88.68+028
KNN 37.64+031  89.73+014  30.37x06s 91.56+026 34.01x038 90.64+020
DICE 73.71x761  77.01x0s8 66.37x768 79.67+087 70.04x764 78.34x079
RankFeat 65.324348  77.984224  56.444576  80.94+250 60.88+460 79.46+252
ASH 87.31+206 74.11+155 86.25+158 76.44+061 86.78+182  75.27+104
SHE 81.00+342 80311060 78304352 82.76+043 79.65+347  81.54+051
GEN 58.75+397  87.21+036 48.59+234  89.20+025 53.67+314  88.20+030

NAC-UE 35.06+03 89.78+031  26.53+021 91.98+024  30.80+0.13  90.88-+025

Table 15: Near-OOD detection results on the CIFAR-100 and Tiny ImageNet datasets. Following
OpenOOD, we employ ResNet-18 model, which is trained solely on the InD dataset, i.e., CIFAR-10.
1 denotes the higher value is better, while | indicates lower values are better.

Distribution of neuron states with varying o under InD and OOD. As illustrated in Table 5,
choosing a suitable sigmoid steepness « is crucial for the OOD detection of NAC—-UE. To further in-
vestigate if this factor also affects other forms of neuron states (e.g., z), we visualize the distribution
of different neuron states with varying o under InD and OOD.

We present the results in Figure 9. It can be observed that when the sigmoid steepness « is increased,
the neurons behaviors of InD and OOD become more distinguishable in the form of z ® 0Dy, /0z.
This leads to the superior performance of NAC-UE in OOD detection. On the other hand, when
using the vanilla form of z and 9Dk, /02, the varying number of « has less of an effect. This
result is consistent with our previous finding in Figure 5, which further demonstrates the unique
characteristic of our neuron activation state z in distinguishing InD and OOD data points.

Respective power of z, Vg(z), and p — u.. To assess the
individual contributions of different components in our
neuron states, we conduct ablation studies to evaluate the

Vg(z) p—u FPR95] AUROC?T
45.70 89.42

. 84.20 64.13
respective power of each component: 1) neuron output 59,39 30.96
z, 2) neuron gradients Vg(z), and 3) model prediction 43.43 88.9

49.29 87.85
44.71 89.47
26.89 94.57

deviation p — u. We provide the results in Table 16.

NN
EENENEEN

v
These results reveal two key findings. Firstly, the for- v
mulation that includes all three components performs the
best among all variants, demonstrating the superiority Table 16: Ablation studies on our de-
of our state z. Moreover, arbitrary combinations of z, fined neuron state. The results are ob-
V¢(z), and p — u can lead to improvements compared tained from the ImageNet benchmark
to using a single component alone. For instance, utilizing for OOD detection.
z ® Vg(z) yields better performance than using either z
or Vg(z) in isolation. This suggest that all three components encode meaningful information in
OOD scenarios, further supporting the rationale behind our proposed states.

G.3 NEAR-OOD ANALYSIS

Near-OOD detection considers more challenging scenarios, where OOD data points often exhibit
characteristics that lie in proximity to InD data distribution (Fort et al., 2021). In this section, we con-
duct a series of experiments to explore the potential of our approach in handling near-ood scenarios.
We employ ResNet-18, trained on CIFAR-10, as the foundation for our experiments. The evaluation
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of OOD detection methods is performed on two near-ood datasets: CIFAR-100 (Krizhevsky, 2009)
and Tiny ImageNet (Le & Yang, 2015). We carefully follow the evaluation protocol of OpenOOD,
and illustrate the results in Table 15. Remarkably, NAC-UE continues to outperform existing 21
SoTA methods on two near-ood datasets. By comparison with the best-performing method KNN,
our NAC-UE achieves a 30.80% FPR95 with 3.3% gain. This finding further confirms the effective-
ness and robustness of our proposed approach.

G.4 WEIGHTED NAC FOR OOD DETECTION

As illustrated in Eq. (6), we calculate the NAC-UE by considering multiple layers and averaging the
coverage scores across layers to obtain the final uncertainty of test data. However, since different
layers may contribute differently to the model predictions, it is worth exploring a weighted version
of NAC that takes layer difference into account. To do so, we conduct a series of experiments on the
CIFAR-10 benchmark, examining our NAC-UE in the weighted version. Specifically, we randomly
search the weight for each layer within the same space: [0.2, 0.4, 0.6, 0.8, 1.0], and combine these
weighted neural layers for uncertainty estimation. Note that in line with our previous experiments,
we first utilize the validation set to search hyperparameters and then test our NAC-UE.

Table 17 illustrates the results. As can be seen, NAC-UE can be further improved in this weighted
version, e.g., 2.47% gain on the average FPR95. The again demonstrates the potential of our NAC-
based approaches. Interestingly, we also notice that assigning larger weights to the deeper layers
often results in better performance for NAC-UE. For instance, the best weight suite found during
the random search was [0.4, 0.8, 0.2, 0.4] for [layer4, layer3, layer2, layerl]. We conjecture this
is due to that deeper layers often encode richer semantic information than shallow layers, making
them crucial in detection problems.

MINIST SVHN Textures Places365 Average
Method FPR95| AUROCt FPR| AUROCT FPR95| AUROCT FPR95| AUROCT FPR95| AUROCT
NAC-UE 15.14426  94.86+14 1433412 96.05+05  17.03+06  95.64104 26.73+08 91.85+03 1831+002  94.60+0s

NAC-UE (weighted) 13.94+24  95.55+11 99011 981002 133607 97.25:02 26.16x0s 9231103  15.84:07  95.80+02

Table 17: OOD detection results on the CIFAR-10 benchmark. NAC-UE (weighted) denotes our
method performed with weighted layer combinations.

G.5 MAXIMUM NAC ENTROPY FOR OOD GENERALIZATION

In addition to evaluating model robustness using NAC-ME, in this section, we also investigate the
potential of NAC in the training and regularization. Specifically, we propose to improve model
generalization ability with the NAC entropy:

H(z) = _Zpi(zi)Ingi(zi>7 (18)

i=1

where p; (z;) represents the probability associated with the i-th neuron output z; over its NAC dis-
tribution, and N is the total number of neurons. To simplify the computation, we directly utilize
the raw neuron output z for NAC modeling, instead of our rectified neuron states z. This is be-
cause optimizing z could involve second-order gradient calculation, which may result in the extra
computational burden and decelerate the learning. Concretely, we propose two loss functions that
incorporate NAC entropy for regularization, 1) Minimum NAC entropy loss: £.. + AH(z) and 2)
Maximum NAC entropy loss: L.. — AH(z), where L.. denotes the traditional cross entropy loss
and A is the regularization coefficient.

We conduct experiments on the PACS dataset using a ResNet-18 backbone, and Table 18 illustrates
the results. Interestingly, we can see that maximizing NAC entropy leads to improved performance.
This finding also aligns with the intuitive understanding presented in Dubey et al. (2018). By maxi-
mizing NAC entropy, we encourage the activation of neurons in unexplored regions over NAC dis-
tribution, thus diversifying the neuron activities and improving the model robustness. Conversely,
minimizing entropy may result in collapsed neuron behavior.
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Algorithm Art Cartoon Photo Sketch ~ Average
ERM 7732407 719107  72.36+11  94.44 102 79.01

NAC (Minimizing Entropy) ~ 77.28+02  69.17+02  93.21+02 66.73+12  76.60
NAC (Maximizing Entropy) 78.64+0s 72.97+03  72.39+03  95.09+0. 79.77

Table 18: OOD generalization results on the PACS dataset. We implement NAC as an entropy loss,
which improves OOD generalization performance.

OOD Dataset RMS Calibration Error, MAD Calibration Error],
MSP  Temperature NAC-UE | MSP  Temperature NAC-UE

CIFAR100 50.62 43.01 33.04 42.56 36.64 26.92
Tiny ImageNet 48.01 40.25 31.99 38.86 32.88 26.25
MNIST 71.74 60.91 51.30 67.81 57.16 49.45
SVHN 65.82 56.41 45.32 59.57 51.05 41.60
Texture 42.65 35.19 28.74 32.37 26.90 23.72
Places365 68.85 59.67 48.65 64.65 56.02 45.33

Table 19: Calibration results on five OOD datasets. To evaluate the calibration performance, we
follow the evaluation protocol of Hendrycks et al. (2019a), and utilize two metrics: RMS and MAD.

G.6 UNCERTAINTY CALIBRATION ANALYSIS

Uncertainty calibration plays a pivotal role in achieving reliable and accurate predictions. In this
section, we evaluate our NAC-UE specifically focusing on its uncertainty calibration capabilities.
We follow the experimental setup outlined in Hendrycks et al. (2019a), and employ two calibration
error metrics: Root Mean Square (RMS) and Mean Absolute Deviation (MAD) calibration error.
We mainly compare NAC-UE with two simple baselines, MSP (Hendrycks & Gimpel, 2017) and
Temperature (Guo et al., 2017), which are officially implemented by OpenOOD.

For the calibration evaluation, we utilize a pretrained model on the CIFAR-10 dataset as the foun-
dation, and assess the calibration errors on both InD and OOD test data. Since OOD points are
commonly misclassified and their labels are often not included in the output space of model, con-
fidence estimation methods should assign these OOD points with low confidence. We illustrate the
results in Table 19. As can be seen, NAC-UE significantly outperforms two baseline approaches,
which demonstrates its potential in prediction calibration.

H DISCUSSIONS

NAC vs. SparseIRM. For OOD generalization, NAC is differs from SparseIRM (Zhou et al., 2022)
in two aspects: 1) SparseIRM concentrates on refining model training. In contrast, our NAC focuses
on the robustness evaluation of existing models, which provides a different perspective; 2) Drawing
parallels with system testing coverage criteria, NAC tracks neuron behaviors in the whole network.
However, feature sparsity, as addressed in SparseIRM, is primarily concerned with feature represen-
tation, specifically identifying areas where most features are zero or irrelevant. Hence, these two
methods are different in their measurement and targets.

NAC vs. Neural Mean Discrepancy (NMD). We outline the differences between NAC and
NMD (Dong et al., 2022) in three-fold: Firstly, NMD primarily investigates the raw neuron out-
put, while our paper centers on a new formulation of neuron states, which can be decoupled as the
neuron gradients, neuron output, and model prediction deviations. This offers a fresh interpretation
of neurons in OOD scenarios. Secondly, our NAC specifically focuses on the distribution of neuron
states, while NMD examines the mean of neuron output. This distinctive perspective makes our
NAC more comprehensive and superior in understanding neuron behaviors. Thirdly, while NMD
could effectively detect OOD samples, it requires an additional classifier during the inference phase.
Instead, NAC directly calculates the coverage scores in a parameter-free manner, serving as an effi-
cient measure for both OOD detection and generalization.
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NAC vs. SCONE. While our NAC and SCONE (Bai et al., 2023) both focus on OOD detection and
generalization, they are actually different in their targets, design choices, and experimental settings.
Specifically, 1) Target: our NAC aims to provide an off-the-shelf/post-hoc tool that efficiently detects
OOD data and evaluates model robustness. In contrast, SCONE targets an effective learning strategy,
which trains the network to overcome OOD scenarios. 2) Design: NAC directly leverages neuron
distributions to reflect model status under OOD scenarios, while SCONE enforces energy margin
during the training phase. 3) Experimental setup: our paper focuses on the prevalent OOD detection
and generalization setup, where the InD and OOD data are clearly separated. Instead, SCONE
centers on the wild scenarios, where data distribution is a mixed version of InD and OOD, turning
the OOD into valuable learning resources.

What makes NAC effective for both OOD detection and generalization? Conventionally, OOD
detection and generalization are perceived as distinct problems: the former primarily addresses se-
mantic (concept) shift while the latter considers covariate shift. Despite agreeing with this traditional
perspective, we also should recognize the overlapping nature of these two problem areas. Indeed,
a number of prior research studies have examined the role of covariate shift in the context of OOD
detection (Tian et al., 2021; Averly & Chao, 2023; Yang et al., 2023), and the impact of semantic
shift on OOD generalization (Zhang et al., 2023c; Rostami & Galstyan, 2023). This overlap con-
stitutes a fundamental rationale for why NAC is adept at addressing both of these OOD challenges.
Additionally, NAC exhibits unique advantages such as:

1) NAC benefits from data-centric modeling: Our NAC method is rooted in a data-centric approach,
leveraging the neuron distributions within InD training data to characterize model status. This data-
centric modeling enables NAC to effectively capture the intrinsic patterns and characteristics of
the model (i.e., from a neuron level), thus serving as an effective tool for uncertainty estimation
(OOD detection) and model robustness evaluation (OOD generalization). This also aligns with the
principles of DNN defect detection / network quality assessment, in system testing (Xie et al., 2022;
Ma et al., 2018).

2) Shallow to deep layers account for covariate and semantic shifts: As per research studies (Yang
et al., 2023), shallow layers in models often closely correlate with the image style information
(covariate level), while deep layers capture semantic information. Since our NAC often works by
leveraging multiple layers spanning from shallow to deep, it naturally accounts for both covariate
and semantic shifts. This demonstrates its potential in addressing various OOD problem:s.

Why NAC-UE exhibits higher improvements on CIFAR compared to ImageNet? From Table 1
and 2, we can see that NAC-UE often shows higher improvements on the CIFAR compared to
ImageNet benchmarks. We conjecture that this phenomenon can be attributed to an intrinsic model
bias, where the model generally performs poorly on the challenging ImageNet dataset. For example,
the InD accuracy of the model on CIFAR-10 is 95.06, whereas the accuracy over ImageNet is 76.18.
This poor performance on ImageNet indicates the worse learning of models, thus potentially raising
unstable behaviors in neurons and impacting the performance of our NAC-UE. This also explains
the performance gap of NAC-UE on Places365 between CIFAR-10 and CIFAR-100. Since the
model trained on CIFAR-100 achieves only 77.25 accuracy, it leads to higher neuron instability and
subsequently affects the performance of NAC-UE.
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I FuLL CIFAR RESULTS

MINIST SVHN Textures Places365 Average
FPR95|  AUROCT  FPR95, AUROCtT  FPR95| AUROCt FPR95| AUROCT FPR95|  AUROC?T
CIFAR-10 Benchmark
OpenMax 23331467 90.50+044  25.40+147  89.77x04s  31.50+40s  89.58+060  38.52+227  88.63x028  29.69+121  89.62+0.19

Method

MSP 23.64+s81  92.63+157  25.82+164 91.461040 34964464 89.8910m1  42.47+3s1  88.92+047  31.72+1s4  90.73+043
TempScale  23.53+70s  93.11+177  26.97+26s  91.66+0s2  38.164s89  90.01+074  4527+4s0 89.11xos2  33.48+230  90.97+0s2
ODIN 23.83+1234  95.24+196  68.61+052  84.58x077  67.70+106 86941226  70.36+696 85.07x124  57.62+424  87.96+0s1
MDS 27304355 90.10+241 25964252 91.18+047  27.944420  92.69+106  47.67+as54  84.90+254 32224340  89.72+136
MDSEns 1.30=+051 9917041 74341104 66.56+0s8  76.07+017  77.40+028  94.16+033  52.47+01s  61.47+0as  73.90=027
RMDS 21494232 93.22+080  23.46+148  91.841026  25.25+0s3 92231023 31.20+02s  91.51+0onn 25.35+073 92.20+021
Gram 70.30+896  72.64+23¢  33.91+173s  91.52+445  94.64+2m1 62341327 90.49+193 6044341 72341673 T1.73+320
EBO 249941203 94324253 35.124611 91.79+008  51.82+611  89.47+070  54.85+6s2  89.25+078  41.69+53:2  91.21+002

OpenGAN  79.54+1911  56.141208 752742603 52.81+2760 83.95+1480 56.14+1826  95.324445  53.341s70  83.52+1n6  54.61+1s51
GradNorm  85.41+4ss  63.72+737  91.65+242  53.91x636  98.09+049  52.07+409  92.46+228  60.50+533  91.90+223  57.55+322

ReAct 33.77+1800  92.81+303 502341508  89.12+310  51.4241142  89.38+1490 44204335 90.35:078  44.904837 90421141
MLS 25.06+1287 94154243 35.09+609  91.69+004  51.73x613  89.41xom1  S54.8416s51  89.14x076  41.68+s527  91.10=0s0
KLM 76.22+1200  85.00+204  59.47+706  84.99+118  81.95+005s  82.35+033  95.58+212  78.37+033  78314i4ss  82.68102
VIM 18.36+142  94.76+03  19.29+041  94.50+04s  21.14+183  95.15+03¢ 41431217 89.49x039  25.05+052  93.48+024
KNN 20.05+136  94.26+038  22.60+126  92.67+030  24.06+0ss  93.16+024  30.38+063 91.77+023  24.27+040  92.96+0.14
DICE 30.83+1054  90.37+s597  36.61+a74  90.02+177 62424479  81.86+235  77.19+1260 T4.67+498  51.76+442  84.23+180
RankFeat 61.86+1278  75.87+522  64.49+73  68.15+744  59.71+079  73.461649  43.70+730 85991304  57.444790 75874506
ASH 70.00+1056  83.16+466  83.64+648  73.46+641  84.59+174 77451230 77.89+728  79.89+360  79.03+420  78.49:i2s8
SHE 422242050 90.43x476  62.74+400  86.38+132  84.60+s30  81.57=x121  76.36+s532  82.89+122  66.48+s9s  85.32+143
GEN 23.00+775  93.83+214  28.14+250  91.97+06s  40.74+661  90.14+076  47.03+322  89.46+06s 34.73+158  91.35+060

NAC-UE 15.14+260  94.86+136  14.33+124  96.05:047  17.03+059  95.64+044  26.73+0s0  91.85:+028 18311092  94.60+050

Table 20: OOD detection results on the CIFAR-10 benchmark. We format first, second, and third re-
sults. Following OpenOOD, we report the performance averaged over three checkpoints of ResNet-
18, which are trained solely on the InD dataset, i.e., CIFAR-10. 1 denotes the higher value is better,
while | indicates lower values are better.

MINIST SVHN Textures Places365 Average
FPR95|  AUROCtT  FPR95) AUROCt FPR95| AUROCtT FPR95| AUROCtT FPR95| AUROCT
CIFAR-100 Benchmark
OpenMax  53.82+474  76.01+139  53.20+178  82.07+153  56.12+191  80.56+000 54.85+142  79.29+040  54.50+068  79.48+041

Method

MSP 57234468 76.08+136  59.07+253 78.42+0s0 61.88+128  77.32+0m1  56.62+087  79.22+020  58.70+106  77.76+044
TempScale  56.05+461  77.27+185  57.71+268  79.79+10s  61.56+143  7T8.11x072  56.46+094  79.80+025 57944114 78.74+051
ODIN 45944320 83.79+131  67.41+388  74.54+076  62.37+206  79.33+108  59.71+092  79.45+026  58.86+079  79.28+021
MDS 71724204 67471081 67.214600  70.68+640  70.49+248  76.26+060  79.61+03¢  63.15+040 72264156  69.39+130
MDSEns 2.83+086 98.21+078  82.57+258  53.76+163 84941083 69.75+114  96.61+017 42271073 66.74+104  66.00+069
RMDS 52.05+628  79.744249  51.65+368 84.89+110 53994106 83.65+t0s51  53.57+043  83.40+046 52.81+063 82.92+042
Gram 53.53+74s  80.71+4a1s  20.06+196 95.55+060 89.51x2s¢  70.79+132  94.67+060 46.38+121  64.44+237  73.36+108
EBO 52.62+383  79.18+137  53.62+314  82.03+t1714 6235206  78.35+0s3  57.75+0s6  79.52+023  56.59+13  79.77+061

OpenGAN  63.09+2325  68.14+1878  70.35+206 68.40+215  74.77+178 65844343  73.75+832  69.13+708  70.49+738  67.88+7.16
GradNorm  86.97+144  65.35+112  69.90+794  76.95+473  92.51x061  64.58+013  85.32+044  69.69+047  83.68+192  69.14x105

ReAct 56.04+s566 78374150  50.41+202  83.01+097 55.04+0s2  80.15+046  55.30+041  80.03+011  54.20+1s6  80.39+049
MLS 52954380 78914147 53.90+304  81.65+149 62394213 78391084  57.68+001  79.75+02¢  56.73+133  79.67+0s7
KLM 73.09+667 74154250 50.30+704  79.341044  81.80+ss0  75.77+04s  81.40+1s8  75.70+02¢  71.65+200  76.24+0s2
VIM 48.32+107  81.89+102  46.224546  83.144371  46.86+220 85914078  61.57+077  75.85+037  50.74+100  81.70+062
KNN 48.58+467 82364152 51.754312  84.15+100 53.56+23  83.60+0s3  60.70+103  79.43+047  53.65+028  82.40+0.17
DICE 51794367 79.86+180  49.58+33:  84.22+200 64.23x16s  77.63x034  59.39+125 78331066  56.25+060  80.01x0.s
RankFeat 75014585 63.03+336 58.49+230 72.14+130  66.87+380 69.40+308 T7.42+196 63.82+183  69.45+100  67.10+142
ASH 66.58+388  77.23+046  46.00+267 85.60+140 61.27+274  80.72+070 62.95+099  78.76+016  59.20+246  80.58+066
SHE 58.78+270  76.76+107  59.15+761  80.97+3908  73.29+322  73.64+128  65.2410908  76.30+051 64124270  76.92+116
GEN 53.924s571 78294205 55454276 81.41lsis0  61.23+140  78.74x0s1  56.25+1010  80.28+027  56.71+150  79.68+075

NAC-UE 21974662 93.15+163  24.39+466 92.40+126  40.65+104  89.32+055  73.57+116  73.05+06s 40.14+136  86.98+037

Table 21: OOD detection results on the CIFAR-100 benchmark. We format first, second, and
third results. Following OpenOOD, we report the performance averaged over three checkpoints of
ResNet-18, which are trained solely on the InD dataset, i.e., CIFAR-100. 1 denotes the higher value
is better, while | indicates lower values are better.
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J FULL IMAGENET RESULTS

iNaturalist Openlmage-O Textures
ResNet-50 Vit-bl6  Average ResNet-50 Vit-bl6 Average ResNet-50 Vit-bl6  Average
OpenMax 92.05 94.93 93.49 87.62 87.36 87.49 88.10 85.52 86.81

Method

MSP 88.41 88.19 88.30 84.86 84.86 84.86 82.43 85.06 83.75
TempScale 90.50 88.54 89.52 87.22 85.04 86.13 84.95 85.39 85.17
ODIN 91.17 / 91.17 88.23 / 88.23 89.00 / 89.00
MDS 63.67 96.01 79.84 69.27 92.38 80.83 89.80 89.41 89.61
MDSEns 61.82 / 61.82 60.80 / 60.80 79.94 / 79.94
RMDS 87.24 96.10 91.67 85.84 92.32 89.08 86.08 89.38 87.73
Gram 76.67 / 76.67 74.43 / 7443 88.02 / 88.02
EBO 90.63 79.30 84.97 89.06 76.48 82.77 88.70 81.17 84.94
OpenGAN / / / / / / / / /

GradNorm 93.89 42.42 68.16 84.82 37.82 61.32 92.05 44.99 68.52
ReAct 96.34 86.11 91.23 91.87 84.29 88.08 92.79 86.66 89.73
MLS 91.17 85.29 88.23 89.17 81.60 85.39 88.39 83.74 86.07
KLM 90.78 89.59 90.19 87.30 87.03 87.17 84.72 86.49 85.61
VIM 89.56 95.72 92.64 90.50 92.18 91.34 97.97 90.61 94.29
KNN 86.41 91.46 88.94 87.04 89.86 88.45 97.09 91.12 94.11
DICE 92.54 82.50 87.52 88.26 82.22 85.24 92.04 82.21 87.13
RankFeat 40.06 / 40.06 50.83 / 50.83 70.90 / 70.90
ASH 97.07 50.62 73.85 93.26 55.51 74.39 96.90 48.53 72.72
SHE 92.65 93.57 93.11 86.52 91.04 88.78 93.60 92.65 93.13
GEN 92.44 93.54 92.99 89.26 90.27 89.77 87.59 90.23 88.91
NAC-UE 96.52 93.72 95.12 91.45 91.58 91.52 97.9 94.17 96.04

Table 22: OOD detection results on the ImageNet benchmark. We format first, second, and third
results. Following OpenOOD, we report the AUROCT scores over two backbones (ResNet-50 and
Vit-b16), which are trained solely on the InD dataset, i.e., ImageNet-1k.
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K FULL DOMAINBED RESULTS

Method Caltech101 LabelMe SUNO09 VOC2007 Average

RC ACC RC ACC RC ACC RC ACC RC ACC
o Oracle - 97.00+056 - 65.60+03 - 7144405 - 76.64+05 - 77.67
Z Validation 36.03+173 95.38%0s 17.57+132  63.62+11  50.33x136  67.73z0s 33.1711s7  73.75:07 3427 75.12
®  NAC-ME 67.73:30 96.41i0s  7.52434  63.72:0s 64.22:72 70.89:11 61.68:t02 72.29:105 5029 75.83
- Oracle - 98.53+03 - 68.69+03 - 73.88+05 - 78.07+03 - 79.79
2 Validation  20.75+170  98.00+02  35.29+132  65.16+14  33.01+31  70.37+06  36.68+43 77.28+03 31.43 77.70
® NAC-ME 54.90i26 98.50105 -2.04127 602706 28270 70.88121 33.58is0 7600110 28.68 76.41
©° Oracle - 98.88+0.1 - 66.65+03 - 74.78+02 - 76.14+03 - 79.11
I Validation 25.57+ss  98.32:t03  41.01xss  63.87x06 47.14x27 7244101 38.07+123  75.08t06 37.95 77.43
» NAC-ME 24.02:02 98.26101 69.69+36 64.30102 49.51+62 74.36+04 5515100 74.95+05 49.59 77.97
© Oracle - 98.65+0.1 - 67.18+05 - 78.24 104 - 79.77 +0s - 80.96
2 Validation  -6.45+102  95.49+07 43.30+141  64.67+06 12.83+122  76.68+00 25.57+29 77.96+00 18.81 78.70
> NAC-ME 47.79:>> 9744101 3848x104 64.30x14 30.07x116 7722104 3333241 77.851+04 37.42 79.20

Table 23: OOD generalization results on VLCS dataset (Fang et al., 2013). Oracle denotes the upper
bound, which uses OOD test data to evaluate models. The training strategy is ERM (Vapnik, 1999).
All scores are averaged over 3 random trials.

Method Art Cartoon Photo Sketch Average

RC ACC RC ACC RC ACC RC ACC RC ACC
o Oracle - 78.52+02 - 75.09+0s - 94.96+03 - 73.47+15 - 80.51
Z  Validation 72.22:s1 7732407 6520466 719107  60.87+71 94.4dioz  76.55:12 7236111 6871 79.01
M NAC-ME 7549155 77.89:03 74.8411: 7154108 6536160 94.64x02 8096115 7134124 74.16 78.85
- Oracle - 86.78+05 - 81.31+0s - 98.43+00 - 77.87+04 - 86.10
2 Validation  70.26+91  86.72+05 65.93+103 78.86+13 38.73+123 97.83+01 59.23+114 T4.87+11 58.54 84.57
®  NAC-ME 73.61:i14 86.5604 7614450 80.22:11 30.15+153 97.68+101 68.381ss  76.66:12 62.07 85.28
© Oracle - 75.84 0.1 - 66.01:+07 - 96.31+02 - 49.79+16 - 71.99
I Validation 8897137 75.66x02 92324116  65.4li0s  93.79:1s 9616102 8227437  42.10x22 89.34 69.83
> NAC-ME 88.15+35 75.64+02 92.57+05 64.04+06 95.02:20 96.11+02 86.93+24 48.20+15 90.67 70.99
© Oracle - 94.81+03 - 86.57+02 - 99.65+00 - 79.89+056 - 90.23
E Validation  22.96+77 92.58+02 47.96+43 84.54+03 55.64+5> 99.43+00 3897131  74.66+25 41.38 87.80
> NAC-ME 17.73439 93.25+05 63.24+31  85.09+11  37.17+77  99.33+01  62.01i60 77.66+04 45.04 88.83

Table 24: OOD generalization results on PACS dataset (Li et al., 2017). Oracle denotes the upper
bound, which uses OOD test data to evaluate models. The training strategy is ERM (Vapnik, 1999).
All scores are averaged over 3 random trials.
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Method Art Clipart Product Real Average

RC ACC RC ACC RC ACC RC ACC RC ACC
- Oracle - 48.04+02 - 41.99+02 - 66.26-+02 - 68.41+02 - 56.18
Z Validation 86.36:119 47.68z03 753332 4116106 88.73:33 65.82:01 83.58+31 67.73x04 83.50 55.60
®  NAC-ME 86.19+25 47.68z01 77.45:s5 4116106 91.83112 66.15:02 84.15:45 68.04105 8491 55.76
- Oracle - 60.20+03 - 51.76+02 - 75.49+0.1 - 76.37+03 - 65.95
2 Validation 7132442 59.01405s 5343+65 50.29:04 812157 74.96:05 65.77+70 7588402 67.93 65.04
& NAC-ME 78.68+70 60.20105 59.15:31 50.19i04 78.68+53 74.66x04 60.13173 75.86+01 69.16 65.23
©° Oracle - 56.97+0.1 - 43.58+04 - 71.82+0.1 - 73.41+01 - 61.44
I Validation 98.77+t03 56.39+04 98.45i01 4347105 98.28z06 71.62x02 99.35+03 73.41s0n  98.71 6122
> NAC-ME 98.77+05 56.39+0s 98.86+04 43.55:104 99.35:05 7173101 99.59+01 73.39+01 99.14 61.26
© Oracle - 78.94 102 - 68.12+03 - 87.93+0.1 - 89.91+00 - 81.23
2 Validation ~ 54.66+47  77.77+03 56.70+24 66.49+03 61.03+59 87.19+00 60.78+0> 88.99+01 5829 80.11
> NAC-ME 70.83:10 78.03+t03 65.03+23 67.52+07 56.13136 87.43+03 60.70+32 89.12:02 63.17 80.52

Table 25: OOD generalization results on OfficeHome dataset (Venkateswara et al., 2017). Oracle
denotes the upper bound, which uses OOD test data to evaluate models. The training strategy is
ERM (Vapnik, 1999). All scores are averaged over 3 random trials.

Method Loc100 Loc38 Loc43 Loc46 Average

RC ACC RC ACC RC ACC RC ACC RC ACC
© Oracle - 5494113 - 35.64+07 - 52.32+01 - 35.14+06 - 44.51
E Validation  12.01+110  40.60+25  49.75+t100 28.41+20 58.17+128 48.31+15 3840+103 32.12+0s8 39.58 37.36
~ NAC-ME 10.29:132 41.31:25 5319104 3323107  54.49+50 5026405 437106 33.01:02 40.42 39.45
- Oracle - 55.62+05 - 4512411 - 58.75+03 - 43.55+0s - 50.76
2 Validation 43.95i76 49.08435 36.60116 37.44423  28.02:s5  56.12+03 39714150 41.6310s  37.07  46.07
~ NAC-ME 4828170 5094125 34.07xi54 4093120 26.06s4 55.95i06 52.21x1s1  40.59+00 40.16 47.10
©° Oracle - 52.03+03 - 27.38+30 - 49.61+04 - 36.14+0.1 - 41.29
Lz Validation 21.24+ns  43.51+2s  13.15+40  20.85+21  20.02+156  46.55+01 36.44+142 3420407 2271 36.28
> NAC-ME 21.65:+121 44.371+33 1577415 202307  18.30+179  46.77+x02 37.34x139 3539105 2326 36.69
) Oracle - 62.23+04 - 46.94417 - 57.45+05 - 4229401 - 52.23
i Validation — -1.31+31  53.13+20 -1691+134  36.78+22  -3.27+95  54.19+02  25.16+70 37.84+04 092 4549
> NAC-ME 32.60:115 5898107 11.44:197 40484126 15.60+1197 53.63106 2124127 3835104 2022 47.86

Table 26: OOD generalization results on Terralnc dataset (Beery et al., 2018). Oracle denotes the
upper bound, which uses OOD test data to evaluate models. The training strategy is ERM (Vapnik,
1999). All scores are averaged over 3 random trials.
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