
Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

PRTGS: Precomputed Radiance Transfer of Gaussian Splats for
Real-Time High-Quality Relighting

Anonymous Authors

Env light

Relightable

1FPS

Relightable

30FPS

Ours

30FPS

Relightable

30FPS

Relightable

1FPS

Ours

30FPS

Relightable

30FPS

Relightable

1FPS

Ours

30FPS

Figure 1: An edited complex scene with over 1000000 Gaussian splats relighted by dynamic lights. (Right) Offline result (less
than 1 FPS) from Relightable 3DGS [7]. (Middle) Real-time results conducted by our PRGS. (Left) Real-time results from
Relightable 3DGS. All methods run equally on a Nvidia RTX 3090 GPU. Note that for comparable rendering times to the current
real-time relighting method, we achieve similar quality to their offline rendering results.

ABSTRACT
We proposed Precomputed Radiance Transfer of Gaussian Splats
(PRTGS), a real-time high-quality relighting method for Gauss-
ian splats in low-frequency lighting environments that captures
soft shadows and interreflections by precomputing 3D Gaussian
splats’ radiance transfer. Existing studies have demonstrated that 3D
Gaussian splatting (3DGS) outperforms neural fields in efficiency
for dynamic lighting scenarios. However, the current relighting
method based on 3DGS still struggling in computing high-quality
shadow and indirect illumination in real time for dynamic light,
leading to unrealistic rendering results. We solve this problem by
precomputing the expensive transport simulations required for
complex transfer functions like shadowing, the resulting transfer
functions are represented as dense sets of vectors or matrices for

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

every Gaussian splat. We introduce distinct precomputing methods
tailored for training and rendering stages, along with unique ray
tracing and indirect lighting precomputation techniques for 3D
Gaussian splats to accelerate training speed and compute accurate
indirect lighting related to environment light. Experimental analy-
ses demonstrate that our approach achieves state-of-the-art visual
quality while maintaining competitive training times and impor-
tantly allows high-quality real-time (30+ fps) relighting for dynamic
light and relatively complex scenes at 1080p resolution.Weprovide
a video that shows more details of our real-time rendering
results under dynamic lighting conditions in supplementary
materials.

CCS CONCEPTS
• Computing methodologies→ Rendering; Ray tracing; Point-
based models; Machine learning algorithms.

KEYWORDS
Precomputed Radiance Transfer, Radiance Field, 3D Gaussian Splat-
ting, Relighting

2024-04-13 10:21. Page 1 of 1–9.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

1 INTRODUCTION
3D Gaussian Splatting [11] has garnered significant attention from
the community as a promising approach for various tasks in 3D
scene reconstruction. The utilization of 3DGS presents the potential
for individuals to reconstruct their surrounding environment us-
ing contemporary technological devices such as smartphones and
computers in minutes. Furthermore, individuals can modify their
reconstructed world according to their unique preferences, which
makes it particularly attractive for multimedia applications and
could potentially spur innovation within the multimedia industry.
The foundation for achieving this lies in a real-time and high-quality
inverse rendering, relighting, and scene editing method.

The achievement of real-time inverse rendering and relighting
has been a long-standing problem. Method based on Neural Radi-
ance Fields (NeRF) [9, 20, 37] have exhibited noteworthy accom-
plishments in high-quality material editing, illumination comput-
ing, and shadow estimation. However, these techniques struggle
with the computational overhead and cannot achieve the desired
quality in dynamic environments. The integration of MLPs within
these methods gives rise to inherent obstacles owing to their re-
stricted expressive capacity and substantial computational demands.
These obstacles engender a considerable curtailment of the effective-
ness and efficiency of inverse rendering. Current works [7, 16, 27]
introduce 3DGS to inverse rendering instead of NeRF, achieving
high-performance inverse rendering and relighting by employing a
set of 3D Gaussian splats to represent a 3D scene. However, they
still face challenges in the real-time computation of high-quality
indirect lighting and shadows in dynamic environmental lighting
conditions, primarily due to the utilization of ray tracing or am-
bient occlusion techniques. The former struggles with balancing
quality and speed because of the immense number of Gaussian
splats involved [7], while the latter have difficulty in computing
realistic indirect lighting [16].

In this paper, we solve the aforementioned challenge by introduc-
ing Precomputed Radiance Transfer (PRT) [28] to 3DGS. Starting
with assigning each 3D Gaussian splat with normal (geometry), visi-
bility, and BRDF attributes, we precompute the expensive transport
simulation required by complex transfer functions like shadowing
and interreflection for given 3d Gaussian splats. The precomputed
transfer functions and incident radiance are encoded as either a
dense set of vectors (diffuse cases) or matrices (glossy cases), utiliz-
ing a low-order spherical harmonic (SH) basis for each Gaussian
splats distribution. This approach allows for an efficient represen-
tation of the complex transfer functions while maintaining a high
level of accuracy. Leveraging the linearity inherent in light trans-
port, we streamline the light integration process to a straightfor-
ward dot product operation between their coefficient vectors for
diffuse surfaces, or a compact transfer matrix for glossy surfaces,
significantly reducing computational overhead.

Our approach not only enhances real-time rendering quality in
dynamic lighting but also opens up new possibilities for interac-
tive multimedia applications. we developed unique precomputing
and ray tracing methods that are specifically tailored to accommo-
date the unique geometry and rendering pipeline of 3DGS. This
ensures that our approach is optimized to provide high-quality
results while maintaining computational efficiency. Specifically,

during the training stage, we carefully designed different reflection
strategies for various surfaces under different conditions, ensuring
the quality of interreflection while significantly reducing training
time. Our unique ray tracing method allows us to perform only
one-bounce ray tracing throughout the whole training or testing
stage, resulting in real-time photorealistic rendering results. Exten-
sive experimental analyses have demonstrated that our proposed
approach significantly outperforms existing methods on synthetic
and real-world datasets across multiple tasks. We summarize our
main contributions as follows:

• We applied PRT to 3DGS for the first time, achieving high-
quality real-time relighting in complex scenes under dynamic
lighting conditions, while also supporting high-quality scene
editing.

• For efficiency, we designed distinct precomputing methods
for both training and rendering. Additionally, we devised
unique ray tracing and indirect lighting precomputation
methods for 3DGS to accelerate training speed and com-
pute accurate indirect illumination related to environmental
lighting.

• Through comprehensive experimentation, we have demon-
strated that our approach outperforms relevant schemes.
The experimental results highlight that our method not only
facilitates high-quality real-time relighting but also excels
in supporting high-quality scene editing.

2 RELATEDWORK
2.1 Radiance Fields
Neural Radiance Field (NeRF) [18] has arisen as a significant devel-
opment in the field of Computer Vision and Computer Graphics,
used for synthesizing novel views of a scene from a sparse set of
images by combining machine learning with geometric reason-
ing. Recently, a plethora of research and methodologies built upon
NeRF have been proposed. For example, [15, 22, 23, 31] extend NeRF
to dynamic and non-grid scenes, [2, 3] significantly improve the
rendering quality of NeRF. Recently, researchers have collectively
recognized that the bottleneck in efficiency lies in querying the neu-
ral field, prompting efforts to address it. InstantNGP [19] combines
a neural network with a multiresolution hash table for efficient eval-
uation while Plenoxels [6] replaces neural networks with a sparse
voxel grid. 3D Gaussian splatting [11] further adopts a discrete 3D
Gaussian representation of scenes, significantly accelerating the
training and rendering of radiance fields. It has attracted consider-
able research interest in the field of generation [5, 34], relighting
[7, 16, 27] and dynamic 3D scene reconstruction [30, 32].

2.2 Relighting and Inverse Rendering
Inverse rendering [25, 26] aims to decompose the image’s appear-
ance into the geometry, material properties, and lighting conditions.
Most traditional methods simplified the problem by assuming con-
trollable lighting conditions [1, 35]. Works based on Nerf explore
more complex lighting models to cope with realistic scenarios and
extensively utilize MLPs to encode lighting andmaterials properties.
NeRV [29] and Invrender [38] train an additional MLP to model the
light visibility. NeILF [33] expresses the incident lights as a neural
incident light field. NeILF++ [36] integrates VolSDF with NeILF

2024-04-13 10:21. Page 2 of 1–9.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

PRTGS: Precomputed Radiance Transfer of Gaussian Splats for Real-Time High-Quality Relighting Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

and unifies incident light and outgoing radiance. TensoIR [9] intro-
duces TensoRF representation which enables the computation of
visibility and indirect lighting by raytracing. Works based on 3DGS
[7, 16, 27] have significantly accelerated training and rendering,
enabling real-time relighting and editing. However, these meth-
ods still face challenges in real-time high-quality indirect lighting
computation, dynamic relighting, and shadow estimation.

2.3 Precompute Radiance Transfer
The fundamental concept of Precompute Radiance Transfer (PRT)
[28] involves selecting an angular basis comprised of continuous
functions, notably Spherical Harmonics (SH), and conducting all
light transport operations within this domain. However, Spherical
Harmonics are limited in terms of high frequencies, Sloan [17]
then replace it with Haar wavelet. Kristensen [12] further extends
PRT to local lighting and pan [21] extends it to dynamic scenes.
Recently there has been a growing interest in using deep learning
tools within traditional PRT frameworks [14, 24], and ideas from
PRT have been used in the context of the radiance field [13].

3 PRELIMINARY
3.1 3D Gaussian splatting
Distinct from the widely adopted Neural Radiance Field, 3D Gauss-
ian Splatting is an explicit 3D scene representation in the form of
point clouds, where Gaussian splats are utilized to represent the
structure of the scene. In this representation, every Gaussian splat
𝐺 is defined by a full 3D covariance matrix Σ as well as the center
(mean) 𝑥 ∈ 𝑅3.

𝐺 (𝑥) = 𝑒−1/2(𝑥)
𝑇 Σ−1 (𝑥) (1)

The covariance matrix Σ of a 3D Gaussian splat can be likened to
characterizing the shape of an ellipsoid. Therefore, we can describe
it using a rotation matrix R and a scale matrix S and independently
optimize of both them.

Σ = 𝑅𝑆𝑆𝑇𝑅𝑇 (2)

To project our 3D Gaussian splats to 2D for rendering, the method
of splatting is utilized for positioning the Gaussian splats on the
camera planes:

Σ′ = 𝐽𝑊 Σ𝑊𝑇 𝐽𝑇 (3)

Where J is the Jacobian of the affine approximation of the projective
transformation and W is the viewing transformation. Following
this, the pixel color is obtained by alpha-blending N sequentially
layered 2D Gaussian splats from front to back:

𝐶 =
∑︁
𝑖∈𝑁

𝑐𝑖𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗) (4)

Where 𝑐𝑖 is the color of each point and 𝛼𝑖 is given by evaluating a
2D Gaussian with covariance Σ multiplied with a learned per-point
opacity.

3.2 Precompute Radiance Transfer
According to [10], the outgoing radiance 𝐿𝑜 at a point 𝑥 with normal
𝑛 observed by the camera in direction 𝜔𝑜 is given by the Rendering

Equation:

𝐿𝑜 (𝜔𝑜 , 𝑥) = 𝐿𝑒 +
∫
Ω
𝑓 (𝑥, 𝜔𝑖 , 𝜔𝑜)𝐿𝑖 (𝜔𝑖 , 𝑥) (𝜔𝑖 , 𝑛)𝑉 (𝜔𝑖 , 𝑥)𝑑𝜔𝑖 (5)

where 𝐿𝑖 corresponds to the incident light coming from direction𝜔𝑖 ,
and 𝑓 represents the Bidirectional Reflectance Distribution Function
(BRDF) properties of the point corresponding to 𝜔𝑖 and outgoing
direction 𝜔𝑜 . If we assume that objects in the scene do not have
self-emission. Further, we have:

𝐿𝑜 (𝜔𝑜 , 𝑥) =
∫
Ω
𝑇 (𝑥, 𝜔𝑖 , 𝜔𝑜)𝐿𝑖 (𝜔𝑖 · 𝑥)𝑑𝜔𝑖 (6)

where

𝑇 (𝑥, 𝜔𝑖 , 𝜔𝑜) = 𝑓 (𝑥,𝜔𝑖 , 𝜔𝑜) (𝜔𝑖 · 𝑛)𝑉 (𝜔𝑖 , 𝑥) (7)

corresponds to the radiance transfer. Our goal is to precompute
incident light 𝐿𝑖 and radiance transfer 𝑇 and project them into
SH domain. Any function 𝐹 (𝑠) defined on the sphere 𝑆 can be
represented as a set of SH basis functions:

𝐹 (𝑠) =
𝑛−1∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑓𝑚
𝑙
𝑌𝑚
𝑙
(𝑠) (8)

where n denotes the degree of SH and 𝑌𝑚
𝑙
(𝑠) is a set of real basis

of SH. Because the SH basis is orthonormal, the scalar function 𝐹

can be projected into its coefficients via the integral:

𝑓𝑚
𝑙

=

∫
𝐹 (𝑠)𝑌𝑚

𝑙
(𝑠)𝑑𝑠 (9)

Then, 𝐿𝑖 (𝜔𝑖) at 𝑥 defined on 𝜔𝑖 can be represented as:

𝐿𝑖 (𝜔𝑖) =
𝑛−1∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑙𝑚
𝑙
𝑌𝑚
𝑙
(𝜔𝑖) =

𝑛2∑︁
𝑗=1

𝑙 𝑗𝑌𝑗 (𝜔𝑖) (10)

and for diffuse cases, 𝑓 (𝑥, 𝜔𝑖 , 𝜔𝑜) = 𝜌/𝜋 which is not related to 𝜔𝑜 ,
We have:

𝑇𝑖 (𝜔) =
𝑛−1∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑡𝑚
𝑙
𝑌𝑚
𝑙
(𝜔𝑖) =

𝑛2∑︁
𝑗=1

𝑡 𝑗𝑌𝑗 (𝜔𝑖) (11)

because 𝑇 is also defined only on 𝜔𝑖 . Equation 5 can be written as:

𝐿𝑜 (𝑥) =
𝑛2∑︁
𝑝=1

𝑛2∑︁
𝑞=1

𝑙𝑝𝑡𝑞

∫
Ω
𝑌𝑝 (𝜔𝑖)𝑌𝑞 (𝜔𝑖)𝑑𝜔𝑖 (12)

Considering: ∫
Ω
𝑌𝑝 (𝜔𝑖)𝑌𝑞 (𝜔𝑖)𝑑𝜔𝑖 =

{
1 if 𝑞 = 𝑝

0 otherwise
(13)

Then equation 12 can be written as:

𝐿𝑜 (𝑥) =
𝑛2∑︁
𝑖=0

𝑙𝑖𝑡𝑖 = ®𝐿 · ®𝑇 (14)

where ®𝑇={𝑡1,. . . ,𝑡𝑛2 } and ®𝐿={𝑙1,. . . ,𝑙𝑛2 }. In summary, we can project
the lighting and radiance transfer to the basis to obtain ®𝐿 and ®𝑇 .
Rendering at each point is reduced to a dot product. For glossy
cases, light transport will be obtained as a transfer matrix. Please
refer to sec 4.5 and supplementary for more details.

2024-04-13 10:21. Page 3 of 1–9.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 2: The proposed rendering pipeline. Starting with a collection of 3D Gaussian splats that embody geometry, visibility,
and BRDF attributes along with incident lighting, We first compute the radiance transfer for every Gaussian splat by executing
equation 28, the direct transfer matrix by equation 40 and the incident vector by equation 10. Following this, we conduct
one-bounce 3D Gaussian ray tracing (Sec 4.4) to get the index matrix and precompute self-transfer for every Gaussian splat
recursively to estimate indirect illumination based on the index matrix. Finally, we conduct a straightforward dot product
between the radiance transfer matrix and incident vector in the spherical harmonics domain and compute the final rendering
result with Gaussian splatting. Note that during the testing stage, only dot product and Gaussian splatting (red background) are
executed iteratively while the rest are precomputed once. All stages except ray tracing are differentiable for training.

4 METHOD
4.1 Overview
In this section, we present our precomputed Gaussian splats ra-
diance transfer framework, shown in Fig 2, which decomposes
geometry, materials, and illumination for Gaussian splats (sec 4.2
and 4.3). In addition, we developed unique precomputing and ray
tracing methods that are specifically tailored to accommodate the
unique geometry and rendering pipeline of 3DGS (sec 4.4). Finally,
we recursively compute self-transfer and project radiance transfer
into SH coefficients for fast rendering (sec 4.5).

4.2 BRDF Rendering
To facilitate the physically based rendering of 3D Gaussian splats,
we introduce a parametrization scheme that includes an additional
set of terms for optimization purposes, i.e. albedo 𝜌 ∈ [0, 1], rough-
ness r ∈ [0, 1] and metallic m ∈ [0, 1]. According to Disney BRDF
model [4], the BRDF property 𝑓 (𝜔𝑖 , 𝜔𝑜) of a material can be de-
composed into two components: roughness BRDF 𝑓𝑑 and specular

BRDF 𝑓𝑠 .

𝑓 (𝜔𝑖 , 𝜔𝑜) = (1 −m) 𝜌
𝜋
+ 𝐷𝐹𝐺

4(𝜔𝑖 · 𝑛) (𝜔𝑜 · 𝑛) = 𝑓𝑑 + 𝑓𝑠 (15)

where D is the microfacet distribution function, F is the Fresnel
reflection and G is the geometric shadowing factor all of which are
related to the roughness r. Then equation 5 can be written as

𝐿𝑜 (𝜔𝑜) = 𝐿𝑠𝑜 (𝜔𝑜) + 𝐿𝑑𝑜 (16)

where:

𝐿𝑑𝑜 = 𝑓𝑑

∫
Ω
𝐿𝑖 (𝜔𝑖 , 𝑥) (𝜔𝑖 , 𝑛)𝑑𝜔𝑖 (17)

𝐿𝑠𝑜 (𝜔𝑜) =
∫
Ω
𝑓𝑠 (𝑥,𝜔𝑖 , 𝜔𝑜)𝐿𝑖 (𝜔𝑖 , 𝑥) (𝜔𝑖 , 𝑛)𝑑𝜔𝑖 (18)

4.3 Lighting and Geometry Modeling
Lighting Modeling The majority of existing methods decompose
the incident light 𝐿𝑖 at point x into two components: direct illumi-
nation 𝐿𝑑𝑖𝑟

𝑖
and indirect illumination 𝐿𝑖𝑛

𝑖
. Equation 6 can be further
2024-04-13 10:21. Page 4 of 1–9.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

PRTGS: Precomputed Radiance Transfer of Gaussian Splats for Real-Time High-Quality Relighting Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

written as:

𝐿𝑜 (𝜔𝑜) =
∫
Ω
𝑇 (𝜔𝑖 , 𝜔𝑜) (𝐿𝑑𝑖𝑟𝑖 (𝜔𝑖) + (𝐿𝑖𝑛𝑖 (𝜔𝑖))𝑑𝜔𝑖 (19)

However, computing accurate indirect illumination in real-time
for 3D Gaussian splats is a challenging task. We precompute self-
transfer instead of directly computing indirect illumination. Con-
sidering:

𝐿𝑖𝑛𝑖 (−𝜔𝑖) =
∫
Ω
𝑇 1 (𝜔1

𝑖 ,−𝜔𝑖) (𝐿𝑑𝑖𝑟𝑖 (𝜔1
𝑖) + (𝐿𝑖𝑛𝑖 (𝜔1

𝑖))𝑑𝜔
1
𝑖 (20)

where 𝑇 1 (𝜔1
𝑖
,−𝜔𝑖) is the light transfer at point (splat) 𝑥1 which is

hit by one-bounce ray tracing. Recursively, we have:

𝐿𝑜 (𝜔𝑜) =
∫
Ω
𝑇 ′ (𝜔𝑖 , 𝜔𝑜)𝐿𝑑𝑖𝑟𝑖 (𝜔𝑖)𝑑𝜔𝑖 (21)

where

𝑇 ′ (𝜔𝑖 , 𝜔𝑜) = 𝑇 (𝜔𝑖 , 𝜔𝑜) +𝑇 (𝜔𝑖 , 𝜔𝑜)
∫
Ω
𝑇 1 (𝜔1

𝑖 ,−𝜔𝑖)𝑑𝜔1
𝑖 (22)

+ · · · +𝑇 (𝜔𝑖 , 𝜔𝑜)
∫
Ω
· · ·

∫
Ω
𝑇𝑛 (𝜔𝑛

𝑖 ,−𝜔
𝑛−1
𝑖)𝑑𝜔𝑛

𝑖

and the global direct light term 𝐿𝑑𝑖𝑟 is parameterized as a globally
shared SH, denoted as ®𝑙𝑑𝑖𝑟 , and indirect light is represented as the
direct light multiplied by self-transfer.

Geometry Modeling Same as [7, 9, 16, 37], we utilize the depth
gradient to derive pseudo-normals, which in turn serve as guidance
for optimizing normals within the 3D Gaussian splats. Given the
distance from the corresponding 3D Gaussian splat to the image
plane 𝑑𝑖 and the 𝛼𝑖 by evaluating a 2D Gaussian with covariance
Σ multiplied with a learned per-point opacity, we obtain pseudo
depth D derived from equation 4:

𝐷 =
∑︁
𝑖∈𝑁

𝑑𝑖𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗) (23)

The pseudo-normal 𝑁 ′ ∈ 𝐻𝑥𝑊 can be computed from D. However,
calculating the normal 𝑛𝑖 for each Gaussian from 𝑁 through inter-
polation is highly inaccurate. Therefore, like [7, 9], we initialize a
random normal ni for each Gaussian splat and constrain it using
normal loss 𝐿𝑛𝑜𝑟𝑚𝑎𝑙 . Here:

𝐿𝑛𝑜𝑟𝑚𝑎𝑙 = ∥𝑁 − 𝑁 ′∥ (24)

and

𝑁 =
∑︁
𝑖∈𝑁

𝑛𝑖𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗) (25)

4.4 3D Gaussian Raytracing
In the context of 3D Gaussian splats, the computational overhead
of ray tracing is notably increased. Because ray tracing cannot be
initiated directly from screen space, multiple sampling is required
for each Gaussian splat to achieve noise-free results. Moreover,
rays need to bounce recursively between Gaussian splats, as the
number of bounces increases, the computation for tracing and
rendering grows exponentially with the sample amount. In this
paper, we present a novel ray tracing technique integrated with
self-transfer precomputation. Our approach streamlines the pro-
cess by doing one-bounce ray tracing during the whole training or

Direction1:G2

G1
G2

G3
G4

Normal selected

> >

Figure 3: 3D Gaussian raytracing. Ray from 𝐺1 at direction 1
hits 3 Gaussian splats 𝐺2, 𝐺3 and 𝐺4, we compute the weight
for each Gaussian splat by equation 26 and select the Gauss-
ian splat with the biggest weight (𝐺2). Note that𝑊4 = 0 be-
cause 𝑛4 · 𝑑1 < 0 and direction 2 are labeled as -1 because the
ray at this direction doesn’t hit any Gaussian splat.

rendering stage and updating self-radiance transfer iteratively and
recursively. As a result, we achieve precise computation of indirect
illumination for multiple bounces under diverse dynamic environ-
ment lighting. Like [5, 7, 16], our proposed ray tracing technique
on 3D Gaussian splats is constructed upon the Bounding Volume
Hierarchy (BVH), facilitating efficient querying of visibility along a
ray. Unlike conventional ray tracing methods, our approach does
not involve computing irradiance during the ray tracing process.
Instead, we solely compute the weights𝑊𝑖 of the Gaussian splat
intersected along each direction and record the index of the Gauss-
ian splat with the maximum weight for each direction. Same as 4,
our weight can be written as:

𝑊𝑖 = 𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗)𝑚𝑎𝑥 (−𝑟𝑑 · 𝑛𝑖 , 0) (26)

where 𝑟𝑑 is the normalized ray direction and 𝑛𝑖 is the normal of hit
Gaussian splat and𝑚𝑎𝑥 (−𝑟𝑑 · 𝑛𝑖 , 0) prevents one Gaussian splat
from being illuminated by the backside of another Gaussian splat.
𝛼𝑖 is given by evaluating a 3D Gaussian splat with covariance Σ
multiplied with a learned per-splat opacity.

𝛼𝑖 =
𝑟𝑇 Σ𝑟𝑑
𝑟𝑑

𝑇 Σ𝑟𝑑
𝜎𝑖 (27)

where 𝜎𝑖 is the opacity of hit Gaussian. To avoid illumination from
other Gaussian splats on the same surface, we filter out all points
when

∏𝑖−1
𝑗=1 (1 − 𝛼 𝑗) > 𝑡 and 𝑡 is a hyperparameter that can be

adjusted. Although we only performed one-bounce ray tracing,
we can recursively compute n-bounce indirect illumination using
equation 22, with minimal additional computational cost in terms
of time. please refer to section 4.5 for a detailed explanation of this.
In summary, we performed one-bounce ray tracing in n directions
for each Gaussian splat and generated an index matrix. This matrix
records the index of other Gaussian splats that exert the greatest
contribution on the current Gaussian splat along n directions (if
no splat is hit along a direction, it is recorded as -1). This index
matrix is utilized for computing self-transfer. Note that we no longer
update the positions and other geometric properties of Gaussian
splats after ray tracing. Our training stage is performed on a set of

2024-04-13 10:21. Page 5 of 1–9.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

stable Gaussian splats trained by using [11] but without additional
properties such as albedo.

4.5 Precomputing Radiance Transfer for 3D
Gaussian Splats

Transfer Vector for Training During training, it is necessary
to iteratively update properties such as roughness and metallic
for Gaussian splats. Consequently, radiance transfer for Gaussian
splats needs to be computed in each iteration with a known view
direction. However, iteratively computing the transfer matrix is
costly. Therefore, we make a slight compromise on the accuracy of
indirect illumination to substantially reduce training time. Given
a view direction 𝑣 , radiance transfer at Gaussian splat x can be
rewritten as:

𝑇 (𝑥, 𝑣, 𝜔𝑖) = (𝑓𝑠 (𝜔𝑖 , 𝑣) + 𝑓𝑑) (𝑣 · 𝑛)𝑉 (𝑣, 𝑥) (28)

which is defined on sphere 𝜔𝑖 since 𝑣 is given. According to equa-
tion 11, we can simply precompute 𝑇 (𝑥, 𝜔𝑖) into a transfer vector
®𝑇 . However, the previously mentioned approach is not applicable
for computing self-transfer. This is due to the inconsistency in
the 𝜔𝑜 for interreflection, leading to exponentially increasing com-
putational complexity. By assuming that all indirect illumination
originates from diffuse surfaces, we can streamline complicated
matrix calculations into vector calculations. Additionally, we pre-
compute the diffuse radiance transfer:

𝑇𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒 (𝑥,𝜔𝑖) = 𝑓𝑑 (𝜔𝑖 · 𝑛)𝑉 (𝜔𝑖 , 𝑥) (29)

into ®𝑇𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒 . In sec 4.4, we precompute the index of other Gauss-
ian splats 𝑥 ′ that exert the greatest contribution on the current
Gaussian splat along direction 𝑑𝑖 , therefore, we can quickly query
its corresponding diffuse radiance transfer ®𝑇𝑑𝑖

𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒
. According to

equation 22, one-bounce self-transfer can be written as:

𝑇 1 = 𝑓 (𝑑𝑖 , 𝑣) (𝑑𝑖 · 𝑛)
∫
Ω
𝑇
𝑑𝑖
𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒

(𝜔1
𝑖 ,−𝑑𝑖)𝑑𝜔

1
𝑖 (30)

and

𝑇
𝑑𝑖
𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒

(𝜔1
𝑖) =

𝑛2∑︁
𝑗=1

𝑡 𝑗𝑌𝑗 (𝜔1
𝑖) = ®𝑇𝑑𝑖

𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒
· ®𝑌 (𝜔1

𝑖
) (31)

then:

𝑇 1 =
∑︁
𝑑𝑖

𝑓 (𝑑𝑖 , 𝑣) (𝑑𝑖 · 𝑛) ®𝑇𝑑𝑖
𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒

· ®𝑌 (𝜔1
𝑖
) (32)

and one-bounce diffuse self-transfer can be written as

𝑇 1
𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒

=
∑︁
𝑑𝑖

𝜌

𝜋
(𝑑𝑖 · 𝑛) ®𝑇𝑑𝑖

𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒
· ®𝑌 (𝜔1

𝑖
) (33)

Recursively, we can compute n-bounce self-transfer.

𝑇𝑛 =
∑︁
𝑑𝑖

𝑓 (𝑑𝑖 , 𝑣) (𝑑𝑖 · 𝑛) ®𝑇𝑑𝑖 ,𝑛−1
𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒

· ®𝑌 (𝜔𝑛
𝑖
) (34)

Finally, the total self-transfer vector is:

®𝑇 =

𝑛∑︁
𝑗=1

®𝑇 𝑗 (35)

Although our method may not address specialized light paths (such
as SDS path), it can efficiently compute simple specular interreflec-
tions (such as SD path) that [7, 16, 27] can’t since current Gaussian
splat is not assumed to be diffuse.

Transfer Matrix for unknown direction During relighting
and other test tasks, we can precompute the transfer matrix for
glossy cases since BRDF and other properties are certain. Given:

𝑇 (𝑥,𝜔𝑖 , 𝜔𝑜) = (𝑓𝑑 + 𝑓𝑠 (𝜔𝑖 , 𝜔𝑜)) (𝜔𝑖 · 𝑛)𝑉 (𝜔𝑖 , 𝑥) (36)

According to equation 9, we have:

𝑡𝑖 (𝜔𝑜) =
∫

𝑇 (𝜔𝑜 , 𝜔𝑖)𝑌𝑖 (𝜔𝑖)𝑑𝜔𝑖 (37)

𝑡𝑖 (𝜔𝑜) is defined on the sphere 𝜔𝑜 , so it can be represented as
another set of basis functions:

𝑡𝑖 (𝜔𝑜) =
𝑛2∑︁
𝑗=1

𝑡 ′𝑖 𝑗𝑌𝑗 (𝜔𝑜) (38)

and 𝑇 (𝜔𝑜 , 𝜔𝑖) can be represented as:

𝑇 (𝜔𝑜 , 𝜔𝑖) =
𝑚2∑︁
𝑖=1

𝑛2∑︁
𝑗=1

𝑡 ′𝑖 𝑗𝑌𝑗 (𝜔𝑜)𝑌𝑖 (𝜔𝑖) (39)

where:

𝑡 ′𝑖 𝑗 =
𝑞∑︁
𝑙=1

𝑝∑︁
𝑘=1

𝑌𝑖 (𝜔𝑙
𝑖)𝑇 (𝜔

𝑙
𝑖 , 𝜔

𝑙
𝑜)𝑌𝑗 (𝜔𝑘

𝑜) (40)

Here we sample 𝜔𝑖 m times and 𝜔𝑜 p times. Then equation 12 can
be written as:

𝐿𝑜 (𝑥) =
𝑚2∑︁
𝑖=0

𝑛2∑︁
𝑗=0

𝑙𝑖𝑡
′
𝑖 𝑗 =

®𝐿 ·𝑇𝑚×𝑛 (41)

Like 34, we can precompute self-transfer by:

𝑡 ′𝑖 𝑗
𝑛 =

∑︁
𝑘

𝛼 (𝑓 (𝑑𝑖 , 𝑣) (𝑑𝑖 · 𝑛)) (𝑡 ′𝑘 𝑗)
𝑛−1
𝑑𝑖

· 𝑌𝑘 (−𝑑𝑖)𝑌𝑗 (𝑑𝑖) (42)

However, we still opt for diffuse self-transfer in most cases due to
its faster computation. Please refer to supplementary materials for
more details.

5 EXPERIMENT
5.1 Implementation Details
Dataset and Metric We conduct experiments using benchmark
datasets of TensorIR Synthetic [9], DTU [8] and Mipnerf-360 [3]
to evaluate our method’s performance on both synthetic and real-
world scene. We evaluate the synthesized novel view and relighting
results in terms of Peak Singal-to-Noise Ratio (PSNR), Structural
Similarity Index Measure (SSIM), and Learned Perceptual Image
Patch Similarity (LPIPS).

Baselines Considering the popularity and performance, we se-
lectedNeRFactor [37], NeRFdiffRec [20], Invrender [38], TesnorIR[9],
Relightable 3DGS[7] and GSIR [16] as our main competitor. We con-
ducted a comprehensive comparison between the aforementioned
methods and our approach in terms of efficiency and quality. Our
method are conducted on a single NVIDIA GeForce RTX 3090 GPU.

2024-04-13 10:21. Page 6 of 1–9.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

PRTGS: Precomputed Radiance Transfer of Gaussian Splats for Real-Time High-Quality Relighting Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Quantatitive Comparison on TensoIR Synthetic dataset. Our method outperforms both previous offline and real-time
methods on Novel view synthesis. Our relighting results rank first in all real-time methods and second in all methods, only
behind TensoIR. Importantly, the average training time of our PRTGS is accelerated by a factor of 25x, and the average training
time is accelerated by a factor of 10000x compared to TensoIR, making its performance acceptable and further demonstrating
the effectiveness of our approach. The best results are marked in red, the second best are marked in blue.

Category Method Novel View Synthesis Relighting
Render time Train timePSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Offline
NeRFactor 24.740 0.916 0.114 23.606 0.902 0.122 >100s days
InvRender 25.879 0.928 0.088 22.754 0.892 0.104 63.49s hours
TensoIR 34.540 0.976 0.039 29.127 0.955 0.065 >100s hours

RealTime

NVDiffrec 28.617 0.958 0.051 20.149 0.877 0.083 0.005s hours
Gsir 35.739 0.975 0.035 25.308 0.884 0.096 - minutes

Relightable 39.204 0.984 0.059 27.017 0.893 0.083 0.022s minutes
Ours 41.985 0.988 0.022 27.76 0.903 0.074 0.013s minutes

L
ig

h
t

T
e

n
s

o
IR

D
T

U
C

o
m

p
o

s
it

e

Figure 4: High-quality relighting results achieved by our proposed method on TensoIR dataset [9], DTU dataset [8] and a
composite scene created by us.

5.2 Results on Synthetic Datasets
We compare our method with previous state-of-the-art offline and
real-time relighting methods. Table 1 shows that our method out-
performs both previous offline and real-time methods on Novel
view synthesis. Our relighting results rank first in all real-time
methods and second in all methods, only behind TensoIR. Taking
both efficiency and quality into account, our approach achieves

optimality. Figure 4 shows visual results on Relighting tasks. We
test our method under different lighting conditions and our method
performs well on all lighting conditions with visually appearing
results. Furthermore, we also test our method on composite syn-
thetic scenes like [7] and the result shows that our method can not
only facilitate material editing like [9, 16, 27] but also support scene
editing and generate photo-realistic results and soft shadow that
[5] can’t.

2024-04-13 10:21. Page 7 of 1–9.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 2: Quantatitive Comparison on Mip-NeRF 360. Our
method surpasses most NeRF variants and Gaussian inverse
rendering method dedicated to novel view synthesis

Method PSNR↑ SSIM↑ LPIPS↓
NeRF++ 26.214 0.659 0.348
Plenoxels 23.625 0.670 0.443
INGP-Base 26.430 0.725 0.339
INGP-Big 26.750 0.752 0.299

Gsir 26.659 0.815 0.229
Ours 28.116 0.865 0.182

5.3 Results on real-world Datasets
We extend our evaluation to real-world dataset [3, 8] with geomet-
ric intricacies inherent and complex lighting conditions. Due to the
lack of data under varying lighting conditions, Tab 2 only presents
the quantitative comparisons on real-world datasets on Novel view
synthesis tasks. From Tab 2 we can conclude that our real-time
relighting approach even surpasses most NeRF variants and the
advanced inverse rendering method dedicated to novel view syn-
thesis. Figure 4 demonstrates reconstructed scene details including
high-frequency appearance, rendering high-fidelity appearance,
and recovering fine geometric details.

5.4 Ablation
Indirect illumination To demonstrate the effectiveness of our
indirect illumination model, we conducted comparisons with two
alternative variants: a model without indirect illumination (w/o
indirect) and a model with ambient occlusion indirect illumina-
tion (AO indirect). We report the average scores on the TensoIR
dataset, as outlined in Tab 3. Our analysis reveals that accurate
indirect illumination plays a pivotal role in estimating accurate
material decomposition and producing photorealistic rendering
results. To prove that our raytracing and indirect illumination esti-
mation method can compute accurate indirect illumination related
to environment light, we compare our method with Relightable
3DGS [7] in different lighting conditions. Figure 5 shows that the
indirect illumination generated by our method not only adapts to
lighting conditions but also adjusts with changes in the scene.

Table 3: Analyses on the impact of indirect illumination.
Our indirect illumination method improves the rendering
quality.

Method TensoIR Synthetic DTU
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

AO indirect 38.681 0.981 0.024 29.192 0.933 0.108
w/o indirect 39.122 0.983 0.022 29.301 0.934 0.108

Ours 41.985 0.988 0.022 29.458 0.935 0.107

Spherical Harmonics Order We investigate the impact of
Spherical Harmonics Order on the relighting quality. We select
orders 2, 3, and 6 and report the quantitative results on Tap 4.
Our analysis indicates that under relatively smooth environmental
lighting conditions, the order of spherical harmonic functions has

Table 4: Analyses on the impact of SH order. SH order has
little influence on relighting quality.

Method PSNR↑ SSIM↑ LPIPS↓ Render time
SH Order 2 27.730 0.904 0.073 0.012
SH Order 3 27.722 0.904 0.073 0.013
SH Order 6 27.720 0.904 0.073 0.050

L
ig

h
t

R
e

li
g

h
ta

b
le

O
u

rs

Reference

Scene

D
if

fe
re

n
c

e

0.0

1.0

0.0

1.0

0.0

1.0

0.0

1.0

Figure 5: Qualitative comparison on TensoIR Synthetic
dataset. We visualize the indirect illumination in differ-
ent lighting conditions. To showcase more details, we have
merged the doubled-scaled indirect illumination results (on
the right half) with the original brightness indirect illumi-
nation results (on the left half). The top-left corner exhibits
a magnified view of the local area. We utilized an edited
scene (Right). In contrast to other methods, our indirect il-
lumination not only aligns well with ambient light but also
accommodates the edited scene effectively (noticeable indi-
rect illumination around the chair legs).

a minor impact on the quality of results but a significant effect on
rendering speed. Hence, to ensure efficiency, we adopt lower orders
of spherical harmonic functions (2 or 3).

6 CONCLUSION
We proposed PRTGS, a real-time high-quality relighting method in
low-frequency lighting environments for 3D Gaussian splatting. In
terms of implementation, we precompute the expensive transport
simulations required for complex transfer functions into sets of
vectors or matrices for every Gaussian splat. We introduce distinct
precomputing methods tailored for training and rendering stages,
along with unique ray tracing and indirect lighting precomputation
techniques for 3D Gaussian splats to accelerate training speed and
compute accurate indirect lighting related to environmental light.
Extensive experiments demonstrate the superior performance of
our proposed method across multiple tasks, highlighting its effi-
cacy and broad applicability in relighting, scene reconstruction and
editing.

2024-04-13 10:21. Page 8 of 1–9.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

PRTGS: Precomputed Radiance Transfer of Gaussian Splats for Real-Time High-Quality Relighting Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Dejan Azinovic, Tzu-Mao Li, Anton Kaplanyan, and Matthias Nießner. 2019.

Inverse path tracing for joint material and lighting estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2447–2456.

[2] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo
Martin-Brualla, and Pratul P Srinivasan. 2021. Mip-nerf: A multiscale repre-
sentation for anti-aliasing neural radiance fields. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 5855–5864.

[3] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter
Hedman. 2022. Mip-nerf 360: Unbounded anti-aliased neural radiance fields. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
5470–5479.

[4] Brent Burley andWalt Disney Animation Studios. 2012. Physically-based shading
at disney. In Acm Siggraph, Vol. 2012. vol. 2012, 1–7.

[5] Yiwen Chen, Zilong Chen, Chi Zhang, Feng Wang, Xiaofeng Yang, Yikai Wang,
Zhongang Cai, Lei Yang, Huaping Liu, and Guosheng Lin. 2023. Gaussianed-
itor: Swift and controllable 3d editing with gaussian splatting. arXiv preprint
arXiv:2311.14521 (2023).

[6] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht,
and Angjoo Kanazawa. 2022. Plenoxels: Radiance fields without neural net-
works. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 5501–5510.

[7] Jian Gao, Chun Gu, Youtian Lin, Hao Zhu, Xun Cao, Li Zhang, and Yao Yao. 2023.
Relightable 3d gaussian: Real-time point cloud relighting with brdf decomposition
and ray tracing. arXiv preprint arXiv:2311.16043 (2023).

[8] Rasmus Jensen, Anders Dahl, George Vogiatzis, Engin Tola, and Henrik Aanæs.
2014. Large scale multi-view stereopsis evaluation. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 406–413.

[9] Haian Jin, Isabella Liu, Peijia Xu, Xiaoshuai Zhang, Songfang Han, Sai Bi, Xiaowei
Zhou, Zexiang Xu, and Hao Su. 2023. Tensoir: Tensorial inverse rendering. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
165–174.

[10] James T Kajiya. 1986. The rendering equation. In Proceedings of the 13th annual
conference on Computer graphics and interactive techniques. 143–150.

[11] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis.
2023. 3d gaussian splatting for real-time radiance field rendering. ACM Transac-
tions on Graphics 42, 4 (2023), 1–14.

[12] Anders Wang Kristensen, Tomas Akenine-Möller, and Henrik Wann Jensen.
2005. Precomputed local radiance transfer for real-time lighting design. In ACM
SIGGRAPH 2005 Papers. 1208–1215.

[13] Manuel Lagunas, Xin Sun, Jimei Yang, Ruben Villegas, Jianming Zhang, Zhixin
Shu, Belen Masia, and Diego Gutierrez. 2021. Single-image full-body human
relighting. arXiv preprint arXiv:2107.07259 (2021).

[14] Yue Li, PabloWiedemann, and KennyMitchell. 2019. Deep precomputed radiance
transfer for deformable objects. Proceedings of the ACM on Computer Graphics
and Interactive Techniques 2, 1 (2019), 1–16.

[15] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. 2021. Neural scene
flow fields for space-time view synthesis of dynamic scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 6498–6508.

[16] Zhihao Liang, Qi Zhang, Ying Feng, Ying Shan, and Kui Jia. 2023. Gs-ir: 3d
gaussian splatting for inverse rendering. arXiv preprint arXiv:2311.16473 (2023).

[17] Xinguo Liu, Peter-Pike J Sloan, Heung-Yeung Shum, and John Snyder. 2004.
All-Frequency Precomputed Radiance Transfer for Glossy Objects. Rendering
Techniques 2004 (2004).

[18] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. 2021. Nerf: Representing scenes as neural radiance
fields for view synthesis. Commun. ACM 65, 1 (2021), 99–106.

[19] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. In-
stant neural graphics primitives with a multiresolution hash encoding. ACM
transactions on graphics (TOG) 41, 4 (2022), 1–15.

[20] Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen,
Alex Evans, Thomas Müller, and Sanja Fidler. 2022. Extracting triangular 3d
models, materials, and lighting from images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 8280–8290.

[21] Minghao Pan, Rui Wang Xinguo Liu, Qunsheng Peng, and Hujun Bao. 2007.
Precomputed radiance transfer field for rendering interreflections in dynamic
scenes. In Computer Graphics Forum, Vol. 26. Wiley Online Library, 485–493.

[22] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Gold-
man, Steven M Seitz, and Ricardo Martin-Brualla. 2021. Nerfies: Deformable
neural radiance fields. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 5865–5874.

[23] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer.
2021. D-nerf: Neural radiance fields for dynamic scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10318–10327.

[24] Gilles Rainer, Adrien Bousseau, Tobias Ritschel, and George Drettakis. 2022.
Neural precomputed radiance transfer. In Computer graphics forum, Vol. 41. Wiley
Online Library, 365–378.

[25] Imari Sato, Yoichi Sato, and Katsushi Ikeuchi. 2003. Illumination from shadows.
IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 3 (2003), 290–
300.

[26] Yoichi Sato, Mark D Wheeler, and Katsushi Ikeuchi. 1997. Object shape and re-
flectance modeling from observation. In Proceedings of the 24th annual conference
on Computer graphics and interactive techniques. 379–387.

[27] Yahao Shi, Yanmin Wu, Chenming Wu, Xing Liu, Chen Zhao, Haocheng Feng,
Jingtuo Liu, Liangjun Zhang, Jian Zhang, Bin Zhou, et al. 2023. Gir: 3d gaussian in-
verse rendering for relightable scene factorization. arXiv preprint arXiv:2312.05133
(2023).

[28] Peter-Pike Sloan, Jan Kautz, and John Snyder. 2002. Precomputed Radiance Trans-
fer for Real-Time Rendering in Dynamic, Low-Frequency Lighting Environments.
(2002).

[29] Pratul P Srinivasan, Boyang Deng, Xiuming Zhang, Matthew Tancik, Ben Milden-
hall, and Jonathan T Barron. 2021. Nerv: Neural reflectance and visibility fields
for relighting and view synthesis. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 7495–7504.

[30] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei,
Wenyu Liu, Qi Tian, and XinggangWang. 2023. 4d gaussian splatting for real-time
dynamic scene rendering. arXiv preprint arXiv:2310.08528 (2023).

[31] Zhiwen Yan, Chen Li, and Gim Hee Lee. 2023. Nerf-ds: Neural radiance fields for
dynamic specular objects. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 8285–8295.

[32] Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu, and Li Zhang. 2023. Real-time
photorealistic dynamic scene representation and rendering with 4d gaussian
splatting. arXiv preprint arXiv:2310.10642 (2023).

[33] Yao Yao, Jingyang Zhang, Jingbo Liu, Yihang Qu, Tian Fang, David McKin-
non, Yanghai Tsin, and Long Quan. 2022. Neilf: Neural incident light field for
physically-based material estimation. In European Conference on Computer Vision.
Springer, 700–716.

[34] Taoran Yi, Jiemin Fang, Guanjun Wu, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu,
Qi Tian, and Xinggang Wang. 2023. Gaussiandreamer: Fast generation from text
to 3d gaussian splatting with point cloud priors. arXiv preprint arXiv:2310.08529
(2023).

[35] Ye Yu and William AP Smith. 2019. Inverserendernet: Learning single image
inverse rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 3155–3164.

[36] Jingyang Zhang, Yao Yao, Shiwei Li, Jingbo Liu, Tian Fang, David McKinnon,
Yanghai Tsin, and Long Quan. 2023. Neilf++: Inter-reflectable light fields for
geometry and material estimation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 3601–3610.

[37] Xiuming Zhang, Pratul P Srinivasan, Boyang Deng, Paul Debevec, William T
Freeman, and Jonathan T Barron. 2021. Nerfactor: Neural factorization of shape
and reflectance under an unknown illumination. ACM Transactions on Graphics
(ToG) 40, 6 (2021), 1–18.

[38] Yuanqing Zhang, Jiaming Sun, Xingyi He, Huan Fu, Rongfei Jia, and Xiaowei
Zhou. 2022. Modeling indirect illumination for inverse rendering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 18643–
18652.

2024-04-13 10:21. Page 9 of 1–9.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Radiance Fields
	2.2 Relighting and Inverse Rendering
	2.3 Precompute Radiance Transfer

	3 Preliminary
	3.1 3D Gaussian splatting
	3.2 Precompute Radiance Transfer

	4 Method
	4.1 Overview
	4.2 BRDF Rendering
	4.3 Lighting and Geometry Modeling
	4.4 3D Gaussian Raytracing
	4.5 Precomputing Radiance Transfer for 3D Gaussian Splats

	5 Experiment
	5.1 Implementation Details
	5.2 Results on Synthetic Datasets
	5.3 Results on real-world Datasets
	5.4 Ablation

	6 Conclusion
	References

