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PRTGS: Precomputed Radiance Transfer of Gaussian Splats for
Real-Time High-Quality Relighting
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Figure 1: An edited complex scene with over 1000000 Gaussian splats relighted by dynamic lights. (Right) Offline result (less
than 1 FPS) from Relightable 3DGS [7]. (Middle) Real-time results conducted by our PRGS. (Left) Real-time results from
Relightable 3DGS. All methods run equally on a Nvidia RTX 3090 GPU. Note that for comparable rendering times to the current
real-time relighting method, we achieve similar quality to their offline rendering results.

ABSTRACT
We proposed Precomputed Radiance Transfer of Gaussian Splats
(PRTGS), a real-time high-quality relighting method for Gauss-
ian splats in low-frequency lighting environments that captures
soft shadows and interreflections by precomputing 3D Gaussian
splats’ radiance transfer. Existing studies have demonstrated that 3D
Gaussian splatting (3DGS) outperforms neural fields in efficiency
for dynamic lighting scenarios. However, the current relighting
method based on 3DGS still struggling in computing high-quality
shadow and indirect illumination in real time for dynamic light,
leading to unrealistic rendering results. We solve this problem by
precomputing the expensive transport simulations required for
complex transfer functions like shadowing, the resulting transfer
functions are represented as dense sets of vectors or matrices for
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every Gaussian splat. We introduce distinct precomputing methods
tailored for training and rendering stages, along with unique ray
tracing and indirect lighting precomputation techniques for 3D
Gaussian splats to accelerate training speed and compute accurate
indirect lighting related to environment light. Experimental analy-
ses demonstrate that our approach achieves state-of-the-art visual
quality while maintaining competitive training times and impor-
tantly allows high-quality real-time (30+ fps) relighting for dynamic
light and relatively complex scenes at 1080p resolution.Weprovide
a video that shows more details of our real-time rendering
results under dynamic lighting conditions in supplementary
materials.

CCS CONCEPTS
• Computing methodologies→ Rendering; Ray tracing; Point-
based models; Machine learning algorithms.

KEYWORDS
Precomputed Radiance Transfer, Radiance Field, 3D Gaussian Splat-
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1 INTRODUCTION
3D Gaussian Splatting [11] has garnered significant attention from
the community as a promising approach for various tasks in 3D
scene reconstruction. The utilization of 3DGS presents the potential
for individuals to reconstruct their surrounding environment us-
ing contemporary technological devices such as smartphones and
computers in minutes. Furthermore, individuals can modify their
reconstructed world according to their unique preferences, which
makes it particularly attractive for multimedia applications and
could potentially spur innovation within the multimedia industry.
The foundation for achieving this lies in a real-time and high-quality
inverse rendering, relighting, and scene editing method.

The achievement of real-time inverse rendering and relighting
has been a long-standing problem. Method based on Neural Radi-
ance Fields (NeRF) [9, 20, 37] have exhibited noteworthy accom-
plishments in high-quality material editing, illumination comput-
ing, and shadow estimation. However, these techniques struggle
with the computational overhead and cannot achieve the desired
quality in dynamic environments. The integration of MLPs within
these methods gives rise to inherent obstacles owing to their re-
stricted expressive capacity and substantial computational demands.
These obstacles engender a considerable curtailment of the effective-
ness and efficiency of inverse rendering. Current works [7, 16, 27]
introduce 3DGS to inverse rendering instead of NeRF, achieving
high-performance inverse rendering and relighting by employing a
set of 3D Gaussian splats to represent a 3D scene. However, they
still face challenges in the real-time computation of high-quality
indirect lighting and shadows in dynamic environmental lighting
conditions, primarily due to the utilization of ray tracing or am-
bient occlusion techniques. The former struggles with balancing
quality and speed because of the immense number of Gaussian
splats involved [7], while the latter have difficulty in computing
realistic indirect lighting [16].

In this paper, we solve the aforementioned challenge by introduc-
ing Precomputed Radiance Transfer (PRT) [28] to 3DGS. Starting
with assigning each 3D Gaussian splat with normal (geometry), visi-
bility, and BRDF attributes, we precompute the expensive transport
simulation required by complex transfer functions like shadowing
and interreflection for given 3d Gaussian splats. The precomputed
transfer functions and incident radiance are encoded as either a
dense set of vectors (diffuse cases) or matrices (glossy cases), utiliz-
ing a low-order spherical harmonic (SH) basis for each Gaussian
splats distribution. This approach allows for an efficient represen-
tation of the complex transfer functions while maintaining a high
level of accuracy. Leveraging the linearity inherent in light trans-
port, we streamline the light integration process to a straightfor-
ward dot product operation between their coefficient vectors for
diffuse surfaces, or a compact transfer matrix for glossy surfaces,
significantly reducing computational overhead.

Our approach not only enhances real-time rendering quality in
dynamic lighting but also opens up new possibilities for interac-
tive multimedia applications. we developed unique precomputing
and ray tracing methods that are specifically tailored to accommo-
date the unique geometry and rendering pipeline of 3DGS. This
ensures that our approach is optimized to provide high-quality
results while maintaining computational efficiency. Specifically,

during the training stage, we carefully designed different reflection
strategies for various surfaces under different conditions, ensuring
the quality of interreflection while significantly reducing training
time. Our unique ray tracing method allows us to perform only
one-bounce ray tracing throughout the whole training or testing
stage, resulting in real-time photorealistic rendering results. Exten-
sive experimental analyses have demonstrated that our proposed
approach significantly outperforms existing methods on synthetic
and real-world datasets across multiple tasks. We summarize our
main contributions as follows:

• We applied PRT to 3DGS for the first time, achieving high-
quality real-time relighting in complex scenes under dynamic
lighting conditions, while also supporting high-quality scene
editing.

• For efficiency, we designed distinct precomputing methods
for both training and rendering. Additionally, we devised
unique ray tracing and indirect lighting precomputation
methods for 3DGS to accelerate training speed and com-
pute accurate indirect illumination related to environmental
lighting.

• Through comprehensive experimentation, we have demon-
strated that our approach outperforms relevant schemes.
The experimental results highlight that our method not only
facilitates high-quality real-time relighting but also excels
in supporting high-quality scene editing.

2 RELATEDWORK
2.1 Radiance Fields
Neural Radiance Field (NeRF) [18] has arisen as a significant devel-
opment in the field of Computer Vision and Computer Graphics,
used for synthesizing novel views of a scene from a sparse set of
images by combining machine learning with geometric reason-
ing. Recently, a plethora of research and methodologies built upon
NeRF have been proposed. For example, [15, 22, 23, 31] extend NeRF
to dynamic and non-grid scenes, [2, 3] significantly improve the
rendering quality of NeRF. Recently, researchers have collectively
recognized that the bottleneck in efficiency lies in querying the neu-
ral field, prompting efforts to address it. InstantNGP [19] combines
a neural network with a multiresolution hash table for efficient eval-
uation while Plenoxels [6] replaces neural networks with a sparse
voxel grid. 3D Gaussian splatting [11] further adopts a discrete 3D
Gaussian representation of scenes, significantly accelerating the
training and rendering of radiance fields. It has attracted consider-
able research interest in the field of generation [5, 34], relighting
[7, 16, 27] and dynamic 3D scene reconstruction [30, 32].

2.2 Relighting and Inverse Rendering
Inverse rendering [25, 26] aims to decompose the image’s appear-
ance into the geometry, material properties, and lighting conditions.
Most traditional methods simplified the problem by assuming con-
trollable lighting conditions [1, 35]. Works based on Nerf explore
more complex lighting models to cope with realistic scenarios and
extensively utilize MLPs to encode lighting andmaterials properties.
NeRV [29] and Invrender [38] train an additional MLP to model the
light visibility. NeILF [33] expresses the incident lights as a neural
incident light field. NeILF++ [36] integrates VolSDF with NeILF
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and unifies incident light and outgoing radiance. TensoIR [9] intro-
duces TensoRF representation which enables the computation of
visibility and indirect lighting by raytracing. Works based on 3DGS
[7, 16, 27] have significantly accelerated training and rendering,
enabling real-time relighting and editing. However, these meth-
ods still face challenges in real-time high-quality indirect lighting
computation, dynamic relighting, and shadow estimation.

2.3 Precompute Radiance Transfer
The fundamental concept of Precompute Radiance Transfer (PRT)
[28] involves selecting an angular basis comprised of continuous
functions, notably Spherical Harmonics (SH), and conducting all
light transport operations within this domain. However, Spherical
Harmonics are limited in terms of high frequencies, Sloan [17]
then replace it with Haar wavelet. Kristensen [12] further extends
PRT to local lighting and pan [21] extends it to dynamic scenes.
Recently there has been a growing interest in using deep learning
tools within traditional PRT frameworks [14, 24], and ideas from
PRT have been used in the context of the radiance field [13].

3 PRELIMINARY
3.1 3D Gaussian splatting
Distinct from the widely adopted Neural Radiance Field, 3D Gauss-
ian Splatting is an explicit 3D scene representation in the form of
point clouds, where Gaussian splats are utilized to represent the
structure of the scene. In this representation, every Gaussian splat
𝐺 is defined by a full 3D covariance matrix Σ as well as the center
(mean) 𝑥 ∈ 𝑅3.

𝐺 (𝑥) = 𝑒−1/2(𝑥 )
𝑇 Σ−1 (𝑥 ) (1)

The covariance matrix Σ of a 3D Gaussian splat can be likened to
characterizing the shape of an ellipsoid. Therefore, we can describe
it using a rotation matrix R and a scale matrix S and independently
optimize of both them.

Σ = 𝑅𝑆𝑆𝑇𝑅𝑇 (2)

To project our 3D Gaussian splats to 2D for rendering, the method
of splatting is utilized for positioning the Gaussian splats on the
camera planes:

Σ′ = 𝐽𝑊 Σ𝑊𝑇 𝐽𝑇 (3)

Where J is the Jacobian of the affine approximation of the projective
transformation and W is the viewing transformation. Following
this, the pixel color is obtained by alpha-blending N sequentially
layered 2D Gaussian splats from front to back:

𝐶 =
∑︁
𝑖∈𝑁

𝑐𝑖𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 ) (4)

Where 𝑐𝑖 is the color of each point and 𝛼𝑖 is given by evaluating a
2D Gaussian with covariance Σ multiplied with a learned per-point
opacity.

3.2 Precompute Radiance Transfer
According to [10], the outgoing radiance 𝐿𝑜 at a point 𝑥 with normal
𝑛 observed by the camera in direction 𝜔𝑜 is given by the Rendering

Equation:

𝐿𝑜 (𝜔𝑜 , 𝑥) = 𝐿𝑒 +
∫
Ω
𝑓 (𝑥, 𝜔𝑖 , 𝜔𝑜 )𝐿𝑖 (𝜔𝑖 , 𝑥) (𝜔𝑖 , 𝑛)𝑉 (𝜔𝑖 , 𝑥)𝑑𝜔𝑖 (5)

where 𝐿𝑖 corresponds to the incident light coming from direction𝜔𝑖 ,
and 𝑓 represents the Bidirectional Reflectance Distribution Function
(BRDF) properties of the point corresponding to 𝜔𝑖 and outgoing
direction 𝜔𝑜 . If we assume that objects in the scene do not have
self-emission. Further, we have:

𝐿𝑜 (𝜔𝑜 , 𝑥) =
∫
Ω
𝑇 (𝑥, 𝜔𝑖 , 𝜔𝑜 )𝐿𝑖 (𝜔𝑖 · 𝑥)𝑑𝜔𝑖 (6)

where

𝑇 (𝑥, 𝜔𝑖 , 𝜔𝑜 ) = 𝑓 (𝑥,𝜔𝑖 , 𝜔𝑜 ) (𝜔𝑖 · 𝑛)𝑉 (𝜔𝑖 , 𝑥) (7)

corresponds to the radiance transfer. Our goal is to precompute
incident light 𝐿𝑖 and radiance transfer 𝑇 and project them into
SH domain. Any function 𝐹 (𝑠) defined on the sphere 𝑆 can be
represented as a set of SH basis functions:

𝐹 (𝑠) =
𝑛−1∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑓𝑚
𝑙
𝑌𝑚
𝑙
(𝑠) (8)

where n denotes the degree of SH and 𝑌𝑚
𝑙
(𝑠) is a set of real basis

of SH. Because the SH basis is orthonormal, the scalar function 𝐹

can be projected into its coefficients via the integral:

𝑓𝑚
𝑙

=

∫
𝐹 (𝑠)𝑌𝑚

𝑙
(𝑠)𝑑𝑠 (9)

Then, 𝐿𝑖 (𝜔𝑖 ) at 𝑥 defined on 𝜔𝑖 can be represented as:

𝐿𝑖 (𝜔𝑖 ) =
𝑛−1∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑙𝑚
𝑙
𝑌𝑚
𝑙
(𝜔𝑖 ) =

𝑛2∑︁
𝑗=1

𝑙 𝑗𝑌𝑗 (𝜔𝑖 ) (10)

and for diffuse cases, 𝑓 (𝑥, 𝜔𝑖 , 𝜔𝑜 ) = 𝜌/𝜋 which is not related to 𝜔𝑜 ,
We have:

𝑇𝑖 (𝜔) =
𝑛−1∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑡𝑚
𝑙
𝑌𝑚
𝑙
(𝜔𝑖 ) =

𝑛2∑︁
𝑗=1

𝑡 𝑗𝑌𝑗 (𝜔𝑖 ) (11)

because 𝑇 is also defined only on 𝜔𝑖 . Equation 5 can be written as:

𝐿𝑜 (𝑥) =
𝑛2∑︁
𝑝=1

𝑛2∑︁
𝑞=1

𝑙𝑝𝑡𝑞

∫
Ω
𝑌𝑝 (𝜔𝑖 )𝑌𝑞 (𝜔𝑖 )𝑑𝜔𝑖 (12)

Considering: ∫
Ω
𝑌𝑝 (𝜔𝑖 )𝑌𝑞 (𝜔𝑖 )𝑑𝜔𝑖 =

{
1 if 𝑞 = 𝑝

0 otherwise
(13)

Then equation 12 can be written as:

𝐿𝑜 (𝑥) =
𝑛2∑︁
𝑖=0

𝑙𝑖𝑡𝑖 = ®𝐿 · ®𝑇 (14)

where ®𝑇={𝑡1,. . . ,𝑡𝑛2 } and ®𝐿={𝑙1,. . . ,𝑙𝑛2 }. In summary, we can project
the lighting and radiance transfer to the basis to obtain ®𝐿 and ®𝑇 .
Rendering at each point is reduced to a dot product. For glossy
cases, light transport will be obtained as a transfer matrix. Please
refer to sec 4.5 and supplementary for more details.

2024-04-13 10:21. Page 3 of 1–9.
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Figure 2: The proposed rendering pipeline. Starting with a collection of 3D Gaussian splats that embody geometry, visibility,
and BRDF attributes along with incident lighting, We first compute the radiance transfer for every Gaussian splat by executing
equation 28, the direct transfer matrix by equation 40 and the incident vector by equation 10. Following this, we conduct
one-bounce 3D Gaussian ray tracing (Sec 4.4) to get the index matrix and precompute self-transfer for every Gaussian splat
recursively to estimate indirect illumination based on the index matrix. Finally, we conduct a straightforward dot product
between the radiance transfer matrix and incident vector in the spherical harmonics domain and compute the final rendering
result with Gaussian splatting. Note that during the testing stage, only dot product and Gaussian splatting (red background) are
executed iteratively while the rest are precomputed once. All stages except ray tracing are differentiable for training.

4 METHOD
4.1 Overview
In this section, we present our precomputed Gaussian splats ra-
diance transfer framework, shown in Fig 2, which decomposes
geometry, materials, and illumination for Gaussian splats (sec 4.2
and 4.3). In addition, we developed unique precomputing and ray
tracing methods that are specifically tailored to accommodate the
unique geometry and rendering pipeline of 3DGS (sec 4.4). Finally,
we recursively compute self-transfer and project radiance transfer
into SH coefficients for fast rendering (sec 4.5).

4.2 BRDF Rendering
To facilitate the physically based rendering of 3D Gaussian splats,
we introduce a parametrization scheme that includes an additional
set of terms for optimization purposes, i.e. albedo 𝜌 ∈ [0, 1], rough-
ness r ∈ [0, 1] and metallic m ∈ [0, 1]. According to Disney BRDF
model [4], the BRDF property 𝑓 (𝜔𝑖 , 𝜔𝑜 ) of a material can be de-
composed into two components: roughness BRDF 𝑓𝑑 and specular

BRDF 𝑓𝑠 .

𝑓 (𝜔𝑖 , 𝜔𝑜 ) = (1 −m) 𝜌
𝜋
+ 𝐷𝐹𝐺

4(𝜔𝑖 · 𝑛) (𝜔𝑜 · 𝑛) = 𝑓𝑑 + 𝑓𝑠 (15)

where D is the microfacet distribution function, F is the Fresnel
reflection and G is the geometric shadowing factor all of which are
related to the roughness r. Then equation 5 can be written as

𝐿𝑜 (𝜔𝑜 ) = 𝐿𝑠𝑜 (𝜔𝑜 ) + 𝐿𝑑𝑜 (16)

where:

𝐿𝑑𝑜 = 𝑓𝑑

∫
Ω
𝐿𝑖 (𝜔𝑖 , 𝑥) (𝜔𝑖 , 𝑛)𝑑𝜔𝑖 (17)

𝐿𝑠𝑜 (𝜔𝑜 ) =
∫
Ω
𝑓𝑠 (𝑥,𝜔𝑖 , 𝜔𝑜 )𝐿𝑖 (𝜔𝑖 , 𝑥) (𝜔𝑖 , 𝑛)𝑑𝜔𝑖 (18)

4.3 Lighting and Geometry Modeling
Lighting Modeling The majority of existing methods decompose
the incident light 𝐿𝑖 at point x into two components: direct illumi-
nation 𝐿𝑑𝑖𝑟

𝑖
and indirect illumination 𝐿𝑖𝑛

𝑖
. Equation 6 can be further
2024-04-13 10:21. Page 4 of 1–9.
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written as:

𝐿𝑜 (𝜔𝑜 ) =
∫
Ω
𝑇 (𝜔𝑖 , 𝜔𝑜 ) (𝐿𝑑𝑖𝑟𝑖 (𝜔𝑖 ) + (𝐿𝑖𝑛𝑖 (𝜔𝑖 ))𝑑𝜔𝑖 (19)

However, computing accurate indirect illumination in real-time
for 3D Gaussian splats is a challenging task. We precompute self-
transfer instead of directly computing indirect illumination. Con-
sidering:

𝐿𝑖𝑛𝑖 (−𝜔𝑖 ) =
∫
Ω
𝑇 1 (𝜔1

𝑖 ,−𝜔𝑖 ) (𝐿𝑑𝑖𝑟𝑖 (𝜔1
𝑖 ) + (𝐿𝑖𝑛𝑖 (𝜔1

𝑖 ))𝑑𝜔
1
𝑖 (20)

where 𝑇 1 (𝜔1
𝑖
,−𝜔𝑖 ) is the light transfer at point (splat) 𝑥1 which is

hit by one-bounce ray tracing. Recursively, we have:

𝐿𝑜 (𝜔𝑜 ) =
∫
Ω
𝑇 ′ (𝜔𝑖 , 𝜔𝑜 )𝐿𝑑𝑖𝑟𝑖 (𝜔𝑖 )𝑑𝜔𝑖 (21)

where

𝑇 ′ (𝜔𝑖 , 𝜔𝑜 ) = 𝑇 (𝜔𝑖 , 𝜔𝑜 ) +𝑇 (𝜔𝑖 , 𝜔𝑜 )
∫
Ω
𝑇 1 (𝜔1

𝑖 ,−𝜔𝑖 )𝑑𝜔1
𝑖 (22)

+ · · · +𝑇 (𝜔𝑖 , 𝜔𝑜 )
∫
Ω
· · ·

∫
Ω
𝑇𝑛 (𝜔𝑛

𝑖 ,−𝜔
𝑛−1
𝑖 )𝑑𝜔𝑛

𝑖

and the global direct light term 𝐿𝑑𝑖𝑟 is parameterized as a globally
shared SH, denoted as ®𝑙𝑑𝑖𝑟 , and indirect light is represented as the
direct light multiplied by self-transfer.

Geometry Modeling Same as [7, 9, 16, 37], we utilize the depth
gradient to derive pseudo-normals, which in turn serve as guidance
for optimizing normals within the 3D Gaussian splats. Given the
distance from the corresponding 3D Gaussian splat to the image
plane 𝑑𝑖 and the 𝛼𝑖 by evaluating a 2D Gaussian with covariance
Σ multiplied with a learned per-point opacity, we obtain pseudo
depth D derived from equation 4:

𝐷 =
∑︁
𝑖∈𝑁

𝑑𝑖𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 ) (23)

The pseudo-normal 𝑁 ′ ∈ 𝐻𝑥𝑊 can be computed from D. However,
calculating the normal 𝑛𝑖 for each Gaussian from 𝑁 through inter-
polation is highly inaccurate. Therefore, like [7, 9], we initialize a
random normal ni for each Gaussian splat and constrain it using
normal loss 𝐿𝑛𝑜𝑟𝑚𝑎𝑙 . Here:

𝐿𝑛𝑜𝑟𝑚𝑎𝑙 = ∥𝑁 − 𝑁 ′∥ (24)

and

𝑁 =
∑︁
𝑖∈𝑁

𝑛𝑖𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 ) (25)

4.4 3D Gaussian Raytracing
In the context of 3D Gaussian splats, the computational overhead
of ray tracing is notably increased. Because ray tracing cannot be
initiated directly from screen space, multiple sampling is required
for each Gaussian splat to achieve noise-free results. Moreover,
rays need to bounce recursively between Gaussian splats, as the
number of bounces increases, the computation for tracing and
rendering grows exponentially with the sample amount. In this
paper, we present a novel ray tracing technique integrated with
self-transfer precomputation. Our approach streamlines the pro-
cess by doing one-bounce ray tracing during the whole training or

Direction1:G2

G1
G2

G3
G4

Normal selected

> >

Figure 3: 3D Gaussian raytracing. Ray from 𝐺1 at direction 1
hits 3 Gaussian splats 𝐺2, 𝐺3 and 𝐺4, we compute the weight
for each Gaussian splat by equation 26 and select the Gauss-
ian splat with the biggest weight (𝐺2). Note that𝑊4 = 0 be-
cause 𝑛4 · 𝑑1 < 0 and direction 2 are labeled as -1 because the
ray at this direction doesn’t hit any Gaussian splat.

rendering stage and updating self-radiance transfer iteratively and
recursively. As a result, we achieve precise computation of indirect
illumination for multiple bounces under diverse dynamic environ-
ment lighting. Like [5, 7, 16], our proposed ray tracing technique
on 3D Gaussian splats is constructed upon the Bounding Volume
Hierarchy (BVH), facilitating efficient querying of visibility along a
ray. Unlike conventional ray tracing methods, our approach does
not involve computing irradiance during the ray tracing process.
Instead, we solely compute the weights𝑊𝑖 of the Gaussian splat
intersected along each direction and record the index of the Gauss-
ian splat with the maximum weight for each direction. Same as 4,
our weight can be written as:

𝑊𝑖 = 𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 )𝑚𝑎𝑥 (−𝑟𝑑 · 𝑛𝑖 , 0) (26)

where 𝑟𝑑 is the normalized ray direction and 𝑛𝑖 is the normal of hit
Gaussian splat and𝑚𝑎𝑥 (−𝑟𝑑 · 𝑛𝑖 , 0) prevents one Gaussian splat
from being illuminated by the backside of another Gaussian splat.
𝛼𝑖 is given by evaluating a 3D Gaussian splat with covariance Σ
multiplied with a learned per-splat opacity.

𝛼𝑖 =
𝑟𝑇 Σ𝑟𝑑
𝑟𝑑

𝑇 Σ𝑟𝑑
𝜎𝑖 (27)

where 𝜎𝑖 is the opacity of hit Gaussian. To avoid illumination from
other Gaussian splats on the same surface, we filter out all points
when

∏𝑖−1
𝑗=1 (1 − 𝛼 𝑗 ) > 𝑡 and 𝑡 is a hyperparameter that can be

adjusted. Although we only performed one-bounce ray tracing,
we can recursively compute n-bounce indirect illumination using
equation 22, with minimal additional computational cost in terms
of time. please refer to section 4.5 for a detailed explanation of this.
In summary, we performed one-bounce ray tracing in n directions
for each Gaussian splat and generated an index matrix. This matrix
records the index of other Gaussian splats that exert the greatest
contribution on the current Gaussian splat along n directions (if
no splat is hit along a direction, it is recorded as -1). This index
matrix is utilized for computing self-transfer. Note that we no longer
update the positions and other geometric properties of Gaussian
splats after ray tracing. Our training stage is performed on a set of

2024-04-13 10:21. Page 5 of 1–9.
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stable Gaussian splats trained by using [11] but without additional
properties such as albedo.

4.5 Precomputing Radiance Transfer for 3D
Gaussian Splats

Transfer Vector for Training During training, it is necessary
to iteratively update properties such as roughness and metallic
for Gaussian splats. Consequently, radiance transfer for Gaussian
splats needs to be computed in each iteration with a known view
direction. However, iteratively computing the transfer matrix is
costly. Therefore, we make a slight compromise on the accuracy of
indirect illumination to substantially reduce training time. Given
a view direction 𝑣 , radiance transfer at Gaussian splat x can be
rewritten as:

𝑇 (𝑥, 𝑣, 𝜔𝑖 ) = (𝑓𝑠 (𝜔𝑖 , 𝑣) + 𝑓𝑑 ) (𝑣 · 𝑛)𝑉 (𝑣, 𝑥) (28)

which is defined on sphere 𝜔𝑖 since 𝑣 is given. According to equa-
tion 11, we can simply precompute 𝑇 (𝑥, 𝜔𝑖 ) into a transfer vector
®𝑇 . However, the previously mentioned approach is not applicable
for computing self-transfer. This is due to the inconsistency in
the 𝜔𝑜 for interreflection, leading to exponentially increasing com-
putational complexity. By assuming that all indirect illumination
originates from diffuse surfaces, we can streamline complicated
matrix calculations into vector calculations. Additionally, we pre-
compute the diffuse radiance transfer:

𝑇𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒 (𝑥,𝜔𝑖 ) = 𝑓𝑑 (𝜔𝑖 · 𝑛)𝑉 (𝜔𝑖 , 𝑥) (29)

into ®𝑇𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒 . In sec 4.4, we precompute the index of other Gauss-
ian splats 𝑥 ′ that exert the greatest contribution on the current
Gaussian splat along direction 𝑑𝑖 , therefore, we can quickly query
its corresponding diffuse radiance transfer ®𝑇𝑑𝑖

𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒
. According to

equation 22, one-bounce self-transfer can be written as:

𝑇 1 = 𝑓 (𝑑𝑖 , 𝑣) (𝑑𝑖 · 𝑛)
∫
Ω
𝑇
𝑑𝑖
𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒

(𝜔1
𝑖 ,−𝑑𝑖 )𝑑𝜔

1
𝑖 (30)

and

𝑇
𝑑𝑖
𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒

(𝜔1
𝑖 ) =

𝑛2∑︁
𝑗=1

𝑡 𝑗𝑌𝑗 (𝜔1
𝑖 ) = ®𝑇𝑑𝑖

𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒
· ®𝑌 (𝜔1

𝑖
) (31)

then:

𝑇 1 =
∑︁
𝑑𝑖

𝑓 (𝑑𝑖 , 𝑣) (𝑑𝑖 · 𝑛) ®𝑇𝑑𝑖
𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒

· ®𝑌 (𝜔1
𝑖
) (32)

and one-bounce diffuse self-transfer can be written as

𝑇 1
𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒

=
∑︁
𝑑𝑖

𝜌

𝜋
(𝑑𝑖 · 𝑛) ®𝑇𝑑𝑖

𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒
· ®𝑌 (𝜔1

𝑖
) (33)

Recursively, we can compute n-bounce self-transfer.

𝑇𝑛 =
∑︁
𝑑𝑖

𝑓 (𝑑𝑖 , 𝑣) (𝑑𝑖 · 𝑛) ®𝑇𝑑𝑖 ,𝑛−1
𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒

· ®𝑌 (𝜔𝑛
𝑖
) (34)

Finally, the total self-transfer vector is:

®𝑇 =

𝑛∑︁
𝑗=1

®𝑇 𝑗 (35)

Although our method may not address specialized light paths (such
as SDS path), it can efficiently compute simple specular interreflec-
tions (such as SD path) that [7, 16, 27] can’t since current Gaussian
splat is not assumed to be diffuse.

Transfer Matrix for unknown direction During relighting
and other test tasks, we can precompute the transfer matrix for
glossy cases since BRDF and other properties are certain. Given:

𝑇 (𝑥,𝜔𝑖 , 𝜔𝑜 ) = (𝑓𝑑 + 𝑓𝑠 (𝜔𝑖 , 𝜔𝑜 )) (𝜔𝑖 · 𝑛)𝑉 (𝜔𝑖 , 𝑥) (36)

According to equation 9, we have:

𝑡𝑖 (𝜔𝑜 ) =
∫

𝑇 (𝜔𝑜 , 𝜔𝑖 )𝑌𝑖 (𝜔𝑖 )𝑑𝜔𝑖 (37)

𝑡𝑖 (𝜔𝑜 ) is defined on the sphere 𝜔𝑜 , so it can be represented as
another set of basis functions:

𝑡𝑖 (𝜔𝑜 ) =
𝑛2∑︁
𝑗=1

𝑡 ′𝑖 𝑗𝑌𝑗 (𝜔𝑜 ) (38)

and 𝑇 (𝜔𝑜 , 𝜔𝑖 ) can be represented as:

𝑇 (𝜔𝑜 , 𝜔𝑖 ) =
𝑚2∑︁
𝑖=1

𝑛2∑︁
𝑗=1

𝑡 ′𝑖 𝑗𝑌𝑗 (𝜔𝑜 )𝑌𝑖 (𝜔𝑖 ) (39)

where:

𝑡 ′𝑖 𝑗 =
𝑞∑︁
𝑙=1

𝑝∑︁
𝑘=1

𝑌𝑖 (𝜔𝑙
𝑖 )𝑇 (𝜔

𝑙
𝑖 , 𝜔

𝑙
𝑜 )𝑌𝑗 (𝜔𝑘

𝑜 ) (40)

Here we sample 𝜔𝑖 m times and 𝜔𝑜 p times. Then equation 12 can
be written as:

𝐿𝑜 (𝑥) =
𝑚2∑︁
𝑖=0

𝑛2∑︁
𝑗=0

𝑙𝑖𝑡
′
𝑖 𝑗 =

®𝐿 ·𝑇𝑚×𝑛 (41)

Like 34, we can precompute self-transfer by:

𝑡 ′𝑖 𝑗
𝑛 =

∑︁
𝑘

𝛼 (𝑓 (𝑑𝑖 , 𝑣) (𝑑𝑖 · 𝑛)) (𝑡 ′𝑘 𝑗 )
𝑛−1
𝑑𝑖

· 𝑌𝑘 (−𝑑𝑖 )𝑌𝑗 (𝑑𝑖 ) (42)

However, we still opt for diffuse self-transfer in most cases due to
its faster computation. Please refer to supplementary materials for
more details.

5 EXPERIMENT
5.1 Implementation Details
Dataset and Metric We conduct experiments using benchmark
datasets of TensorIR Synthetic [9], DTU [8] and Mipnerf-360 [3]
to evaluate our method’s performance on both synthetic and real-
world scene. We evaluate the synthesized novel view and relighting
results in terms of Peak Singal-to-Noise Ratio (PSNR), Structural
Similarity Index Measure (SSIM), and Learned Perceptual Image
Patch Similarity (LPIPS).

Baselines Considering the popularity and performance, we se-
lectedNeRFactor [37], NeRFdiffRec [20], Invrender [38], TesnorIR[9],
Relightable 3DGS[7] and GSIR [16] as our main competitor. We con-
ducted a comprehensive comparison between the aforementioned
methods and our approach in terms of efficiency and quality. Our
method are conducted on a single NVIDIA GeForce RTX 3090 GPU.

2024-04-13 10:21. Page 6 of 1–9.
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Table 1: Quantatitive Comparison on TensoIR Synthetic dataset. Our method outperforms both previous offline and real-time
methods on Novel view synthesis. Our relighting results rank first in all real-time methods and second in all methods, only
behind TensoIR. Importantly, the average training time of our PRTGS is accelerated by a factor of 25x, and the average training
time is accelerated by a factor of 10000x compared to TensoIR, making its performance acceptable and further demonstrating
the effectiveness of our approach. The best results are marked in red, the second best are marked in blue.

Category Method Novel View Synthesis Relighting
Render time Train timePSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Offline
NeRFactor 24.740 0.916 0.114 23.606 0.902 0.122 >100s days
InvRender 25.879 0.928 0.088 22.754 0.892 0.104 63.49s hours
TensoIR 34.540 0.976 0.039 29.127 0.955 0.065 >100s hours

RealTime

NVDiffrec 28.617 0.958 0.051 20.149 0.877 0.083 0.005s hours
Gsir 35.739 0.975 0.035 25.308 0.884 0.096 - minutes

Relightable 39.204 0.984 0.059 27.017 0.893 0.083 0.022s minutes
Ours 41.985 0.988 0.022 27.76 0.903 0.074 0.013s minutes
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Figure 4: High-quality relighting results achieved by our proposed method on TensoIR dataset [9], DTU dataset [8] and a
composite scene created by us.

5.2 Results on Synthetic Datasets
We compare our method with previous state-of-the-art offline and
real-time relighting methods. Table 1 shows that our method out-
performs both previous offline and real-time methods on Novel
view synthesis. Our relighting results rank first in all real-time
methods and second in all methods, only behind TensoIR. Taking
both efficiency and quality into account, our approach achieves

optimality. Figure 4 shows visual results on Relighting tasks. We
test our method under different lighting conditions and our method
performs well on all lighting conditions with visually appearing
results. Furthermore, we also test our method on composite syn-
thetic scenes like [7] and the result shows that our method can not
only facilitate material editing like [9, 16, 27] but also support scene
editing and generate photo-realistic results and soft shadow that
[5] can’t.

2024-04-13 10:21. Page 7 of 1–9.
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Table 2: Quantatitive Comparison on Mip-NeRF 360. Our
method surpasses most NeRF variants and Gaussian inverse
rendering method dedicated to novel view synthesis

Method PSNR↑ SSIM↑ LPIPS↓
NeRF++ 26.214 0.659 0.348
Plenoxels 23.625 0.670 0.443
INGP-Base 26.430 0.725 0.339
INGP-Big 26.750 0.752 0.299

Gsir 26.659 0.815 0.229
Ours 28.116 0.865 0.182

5.3 Results on real-world Datasets
We extend our evaluation to real-world dataset [3, 8] with geomet-
ric intricacies inherent and complex lighting conditions. Due to the
lack of data under varying lighting conditions, Tab 2 only presents
the quantitative comparisons on real-world datasets on Novel view
synthesis tasks. From Tab 2 we can conclude that our real-time
relighting approach even surpasses most NeRF variants and the
advanced inverse rendering method dedicated to novel view syn-
thesis. Figure 4 demonstrates reconstructed scene details including
high-frequency appearance, rendering high-fidelity appearance,
and recovering fine geometric details.

5.4 Ablation
Indirect illumination To demonstrate the effectiveness of our
indirect illumination model, we conducted comparisons with two
alternative variants: a model without indirect illumination (w/o
indirect) and a model with ambient occlusion indirect illumina-
tion (AO indirect). We report the average scores on the TensoIR
dataset, as outlined in Tab 3. Our analysis reveals that accurate
indirect illumination plays a pivotal role in estimating accurate
material decomposition and producing photorealistic rendering
results. To prove that our raytracing and indirect illumination esti-
mation method can compute accurate indirect illumination related
to environment light, we compare our method with Relightable
3DGS [7] in different lighting conditions. Figure 5 shows that the
indirect illumination generated by our method not only adapts to
lighting conditions but also adjusts with changes in the scene.

Table 3: Analyses on the impact of indirect illumination.
Our indirect illumination method improves the rendering
quality.

Method TensoIR Synthetic DTU
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

AO indirect 38.681 0.981 0.024 29.192 0.933 0.108
w/o indirect 39.122 0.983 0.022 29.301 0.934 0.108

Ours 41.985 0.988 0.022 29.458 0.935 0.107

Spherical Harmonics Order We investigate the impact of
Spherical Harmonics Order on the relighting quality. We select
orders 2, 3, and 6 and report the quantitative results on Tap 4.
Our analysis indicates that under relatively smooth environmental
lighting conditions, the order of spherical harmonic functions has

Table 4: Analyses on the impact of SH order. SH order has
little influence on relighting quality.

Method PSNR↑ SSIM↑ LPIPS↓ Render time
SH Order 2 27.730 0.904 0.073 0.012
SH Order 3 27.722 0.904 0.073 0.013
SH Order 6 27.720 0.904 0.073 0.050
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Figure 5: Qualitative comparison on TensoIR Synthetic
dataset. We visualize the indirect illumination in differ-
ent lighting conditions. To showcase more details, we have
merged the doubled-scaled indirect illumination results (on
the right half) with the original brightness indirect illumi-
nation results (on the left half). The top-left corner exhibits
a magnified view of the local area. We utilized an edited
scene (Right). In contrast to other methods, our indirect il-
lumination not only aligns well with ambient light but also
accommodates the edited scene effectively (noticeable indi-
rect illumination around the chair legs).

a minor impact on the quality of results but a significant effect on
rendering speed. Hence, to ensure efficiency, we adopt lower orders
of spherical harmonic functions (2 or 3).

6 CONCLUSION
We proposed PRTGS, a real-time high-quality relighting method in
low-frequency lighting environments for 3D Gaussian splatting. In
terms of implementation, we precompute the expensive transport
simulations required for complex transfer functions into sets of
vectors or matrices for every Gaussian splat. We introduce distinct
precomputing methods tailored for training and rendering stages,
along with unique ray tracing and indirect lighting precomputation
techniques for 3D Gaussian splats to accelerate training speed and
compute accurate indirect lighting related to environmental light.
Extensive experiments demonstrate the superior performance of
our proposed method across multiple tasks, highlighting its effi-
cacy and broad applicability in relighting, scene reconstruction and
editing.
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