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ABSTRACT

Traditional language model-based theorem proving assumes that by training on a
sufficient amount of formal proof data, a model will learn to prove theorems. Our
key observation is that a wealth of informal information that is not present in formal
proofs can be useful for learning to prove theorems. For instance, humans think
through steps of a proof, but this thought process is not visible in the resulting code.
We present Lean-STaR, a framework for training language models to produce
informal thoughts prior to each step of a proof, thereby boosting the model’s
theorem-proving capabilities. Lean-STaR uses retrospective ground-truth tactics to
generate synthetic thoughts for training the language model. At inference time, the
trained model directly generates the thoughts prior to the prediction of the tactics
in each proof step. Building on the self-taught reasoner framework, we then apply
expert iteration to further fine-tune the model on the correct proofs it samples and
verifies using the Lean solver. Lean-STaR significantly outperforming base models
(43.4% → 46.3%, Pass@64). We also analyze the impact of the augmented
thoughts on various aspects of the theorem proving process, providing insights into
their effectiveness.

1 INTRODUCTION

Theorem proving is a fundamental aspect of mathematics, and mathematical reasoning is an important
part of artificial intelligence (Newell & Simon, 1956; Zhou, 2023). Formalized mathematics in
particular provides a challenging testbed for assessing mathematical reasoning capabilities. Since
theorems and proofs in this setting can be represented in the form of checkable source code, it is easy
to evaluate proofs of arbitrary complexity (De Moura et al., 2015). Automated theorem proving, if
successful, can also help discover unknown errors in previous proofs1, and make it easier to guarantee
that new proofs are correct. More broadly, formal mathematics coupled with powerful automation
may unlock new forms of education and collaboration, mathematical insights, and applications to
verifying critical software (Avigad, 2023; First, 2023; Buzzard, 2024; of Sciences, 2023).

Recently, language models have shown promising progress in formal theorem proving (Polu &
Sutskever, 2020; Rabe et al., 2020; Wu et al., 2021; Han et al., 2021; Lample et al., 2022; Yang
et al., 2023; Li et al., 2024). Existing approaches typically train a model solely based on the proofs
in a formal language (code) such as Lean (De Moura et al., 2015), Isabelle (Nipkow et al., 2002),
or Coq (Coq, 1996). Our key observation is that such approaches ignore a wealth of informal
information that may be useful for learning to prove theorems (Welleck et al., 2021; 2022). For

∗Work done during the visit at CMU.
1For example, Terence Tao found a non-trivial error while using Lean to formalize a project (Tao, 2023).
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Figure 1: The illustration of tactic prediction in one proof step with and without thought.

instance, the underlying thought process prior to each step of a proof is not present in formal source
code. Based on this insight, we propose to train a language model that can produce a natural language
chain-of-thought (“thought”) prior to each step (“tactic”) of a formal proof.

We introduce Lean-STaR, a framework for learning to interleave informal thoughts with steps of
formal proving. Building on the Self-Taught Reasoner (STaR) framework (Zelikman et al., 2022),
we enable language models to interleave step-by-step rationales (i.e., thoughts) (Nye et al., 2021;
Wei et al., 2022) with formal proving in a two-stage process. In an initial phase, we prompt a
sufficiently capable language model, such as GPT-4 (Achiam et al., 2023), and generate retrospective
thoughts based on a dataset of human-written proofs, such as Mathlib, the largest collection of human-
written proofs in Lean (mathlib Community, 2020). Subsequently, we fine-tune a thought-augmented
tactic predictor (Bohme & Nipkow, 2010; Blanchette et al., 2016; Gloeckle et al., 2023; Czajka &
Kaliszyk, 2018) that, given a Lean state, can generate a thought and predict the subsequent tactic. In a
second phase, we optimize this thought-augmented tactic predictor with the expert iteration algorithm
(Anthony et al., 2017; Singh et al., 2023), using multi-step success rate in theorem proving as the
reward.

Our work presents a new link between informal and formal mathematics, complementary to prior
explorations that translate standalone mathematical statements (Szegedy, 2020; Wang et al., 2020;
Wu et al., 2022) or translate informal proofs into formal proofs (Agrawal et al., 2022; Jiang et al.,
2022; Azerbayev et al., 2023a; Zhou et al., 2024a; Huang et al., 2024). Lean-STaR generates
natural language thoughts specifically for each proof step, improving formal proving capabilities by
interleaving natural and formal languages.

We instantiate Lean-STaR by generating roughly 50,000 thought-augmented examples from Lean’s
Mathlib (mathlib Community, 2020), then synthesize an additional 50k examples through two
iterations of expert iteration. To the best of our knowledge, this yields the first thought-augmented
dataset for theorem proving. After fine-tuning an InternLM2-7b base model (Ying et al., 2024) on
our thought-augmented data, our final Lean-STaR model can solve 34.8% (pass@32) or 36.1%
(pass@64) of the problems on miniF2F-test (Zheng et al., 2021). Using stronger base model
InternLM2-7b-plus, Lean-STaR can achieve 45.4% (pass@32), significantly surpassing the previous
results of 43.4% (pass@32). In summary, Lean-STaR offers a framework for teaching language
models to interleave informal thoughts with formal verification, advancing the capabilities of language
models in automated theorem proving.

2 RELATED WORK

Automatic Theorem Proving & Autoformalization. Previous work on learning-based theorem
proving typically follows the GPT-f framework (Polu & Sutskever, 2020), which trains a language
model on (proof state, next-tactic) pairs, then proves theorems by using the model within a best-first
tree search. Subsequent work has explored several directions, including data augmentation (Han
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et al., 2022), novel proof search methods (Lample et al., 2022; Wang et al., 2023b), further training
through curriculum learning (Polu et al., 2022), retrieval augmentation (Yang et al., 2023), or practical
tools (Welleck & Saha, 2023). Others use prompted models to generate tactics (Azerbayev et al.,
2023b; Thakur et al., 2023), or fine-tune models to generate a full proof (First et al., 2023). A second
auto-formalization (Wu et al., 2022) thread incorporates informal mathematics into formal theorem
proving. Draft-Sketch-Prove (Jiang et al., 2022) shows that language models have some ability to
use informal proofs to improve a model’s formal proving abilities, by drafting an informal proof,
translating into a formal proof sketch, then completing the proof with tools like Sledgehammer
(Bohme & Nipkow, 2010). Draft-Sketch-Prove and related methods (Wang et al., 2023a; Zhao et al.,
2024; Zhou et al., 2024b) are limited to the Isabelle prover, since they use powerful automatic proving
tools like Sledgehammer. Lean lacks these tools, so generating the entire proof at once would be more
unlikely in Lean. We focus on Lean, and train language models to generate a thought and predict
the subsequent tactic in each proof step. To the best of our knowledge, we are the first to introduce
thought-augmented reasoning in automatic theorem proving.

Rationale-augmented Reasoning. Recently, many works demonstrated that letting language
models reason before an answer can improve their performance on tasks including math, science, and
code (Nye et al., 2021; Wei et al., 2022; Chen et al., 2022). Although the corresponding techniques
(e.g., Scratchpad and Chain-of-Thought) have proven to be effective, they require either extensive
annotated training examples or exposure to numerous similar examples during pre-training (Brown
et al., 2020). The scarcity of natural language reasoning in formal theorem proving, coupled with the
impracticality of manually annotating rationales for formal mathematics, thus presents a challenge.
We propose a new Lean-STaR framework for synthesizing training examples by taking advantage of
the correctness signal from the formal system.

Bootstrapping Language Model Reasoning. Recently, several works suggest that language models
may be taught to reason via synthetic data that they generate themselves, akin to a reinforcement
learning method that improves a policy through self-play. Polu et al. (2022) showed that a simple RL
algorithm, expert iteration, paired with curriculum learning can improve a formal theorem proving
model. Self-Taught Reasoner (STaR) (Zelikman et al., 2022) showed that we can iteratively fine-tune
the language model on the correct (reasoning, answer) pairs generated by itself to gradually improve
performance. Singh et al. (2023) proposed ReST-EM, which filters data generated by language
model with a binary feedback signal rather than using fully manually annotated data (similar to
expert iteration in (Polu et al., 2022)). Our work builds on these ideas, providing the first study of
bootstrapped thought-augmented proving.

3 OUR METHOD: LEAN-STAR

We introduce Lean-STaR, a new method for combining informal thoughts with formal theorem
proving. First, we recap interactive theorem proving (§3.1). Then we present Lean-STaR’s data-
generation (§3.2.1, §3.2.2) and reinforcement learning (§3.2.3) phases. Finally, we present our
evaluation protocols (§3.3).

3.1 PRELIMINARIES

Interactive Theorem Provers (ITPs) are typically used for step-by-step automatic theorem proving in
formal mathematics. At each step, we can provide the ITP with a high-level “tactic” to simplify the
current goal state (e.g., the initial goal theorems to be proven) into subgoals. These subgoals will
form new states, and proving all the subgoals results in a complete proof of the given theorem. We
use Lean (De Moura et al., 2015), a popular interactive theorem prover. An example formal proof in
Lean and its explanation are shown in Appendix D.

3.2 DATA GENERATION & TRAINING

We describe the data generation and training of the direct tactic prediction model (SFT), the thought-
augmented tactic prediction model trained with synthetic data (Lean-CoT), and the final model trained
with expert iteration (Lean-STaR).
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Figure 2: An example of Lean proof and thoughts generated by Lean-STaR. Note that there
is a calculation error in the thought (in red), but this does not affect the correctness of the proof
because the calculation task is actually completed by the interactive theorem prover (i.e., Lean’s
nlinarith) instead of the language model. This shows a benefit of combining neural and symbolic
systems.

3.2.1 DIRECT TACTIC PREDICTION

We define the theorem-proving problem as a Markov Decision Process (MDP) (S,A, Pa, Ra) where
proof states serve as states in MDP and tactics serve as actions. From this perspective, a proof is a
trajectory (s1, a1, r1), (s2, a2, r2), · · · of states si, tactics ai, and rewards ri ∈ R, and the ITP (e.g.,
Lean) provides each new state si+1.

In the typical setting (Polu & Sutskever, 2020), proving a theorem consists of providing a proof state
s to the language model and then generating a tactic from the language model M , i.e., πM (a|s). The
language model can be fine-tuned for this task using a dataset of (proof state, next-tactic) pairs from
successful proof trajectories, i.e. D = {(si, ai) : i = 1, · · · ,M}, where final states have a reward of
1. We refer to a language model fine-tuned on such a dataset as a supervised fine-tuning (SFT) model.

3.2.2 THOUGHT-AUGMENTED TACTIC PREDICTION

Existing approaches typically train only on formal states and tactics (Polu & Sutskever, 2020). We
hypothesize that incorporating a latent thought can improve a model’s ability to predict the next
tactic. Formally, we introduce a hidden “thought” variable ti prior to each tactic, and then extend the
model to the form πM (ai, ti|si) = πM (ai|ti, si)πM (ti|si). In thought-augmented tactic prediction,
the distribution over the next tactic can then be expressed as:

πM (ai|si) =
∑
ti

πM (ai|ti, si)πM (ti|si).

The key challenge is obtaining (state, thought, tactic) pairs for training a model. To this end, we
introduce retrospective rationale generation. Our motivating observation is that the distribution
of natural language thoughts in theorem-proving πM (ti|si) is scarce in the pre-training corpus
of large language models. In turn, we find that even the most powerful GPT-4 model does not
perform well in generating the correct rationale through few-shot prompting (Brown et al., 2020). To
develop a language model capable of generating thoughts and tactics ai, ti|si, we need an entirely
new dataset DT = {(si, ti, ai) : i = 1, · · · , N}. However, in Lean, we only have a dataset of
DS = {(si, ai) : i = 1, · · · , N} where (si, ai) is one step in some successful proof trajectories.
Given a powerful large language model G, which we refer to as the oracle model2, we give the oracle

2For instance, in our experiments we use the best available large language model, GPT-4.
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Figure 3: The diagram of our pipeline. (1) Produce CoT dataset through GPT-4. (2) Fine-tune the
SFT model with the CoT dataset to obtain Lean-CoT. (3) Use expert iteration to generate the STaR
dataset through the model in the last iteration (Lean-CoT in the first iteration) and then fine-tune
Lean-CoT on the updated STaR dataset to obtain the model in the next iteration. We continue
performing this step until a stopping condition is met (e.g., a fixed number of iterations).

model the ground-truth tactic ai and let the oracle model produce the thought ti given the current
state si and ground-truth tactic ai. This helps improve the pass rate and produce thought-augmented
data more efficiently. Our few-shot prompt is provided in Appendix G. The design principle of the
prompt is to prevent the oracle model from generating hindsight-like thoughts.

We randomly select M pairs (si, ai) ∈ DS . Then the oracle model is used to produce a thought ti for
each pair (si, ai) to create a new dataset DT {(si, ti, ai) : i = 1, · · · ,M}. With this retrospectively
annotated dataset by the oracle model DT , we obtained our first thought-augmented tactic prediction
model, Lean-CoT, by fine-tuning from the SFT model.

3.2.3 BOOTSTRAPPING THOUGHT-AUGMENTED THEOREM PROVING

We propose to apply expert iteration to further improve the performance of Lean-CoT. Specifically,
we start from the initial Lean-CoT model M0 and the initial dataset D = {si : i = 1, · · · ,M},
which consists of all initial states si of the theorems to be proved. In iteration 1, we use
model M to sample K times per problem. Each time the model will produce a proof trajectory
[(s0, t0, a0), (s1, t1, a1), · · · , (sn, tn, an)]. Then we create a new dataset D1 by filtering the gener-
ated trajectories to include only the successful ones. De-duplication is then applied to the collected
trajectories. Now, we can further fine-tune the SFT model M on dataset DT ∪ D1 to produce
Lean-STaR model M1. Then we can use M1 as initial model to produce dataset D2 and further
fine-tune to obtain model M2 in the next iteration.

This method can be seen as an offline RL method (Singh et al., 2023) in the theorem proving MDP.
In this MDP, the cumulative reward R ((s0, t0, a0), (s1, t1, a1), · · · , (sn, tn, an)) = 1 if and only if
the proof trajectory is successful. The total expected reward is

J(M,D) =
∑
i

E(s0,t0,a0),··· ,(sn,tn,an)∼πM (·|si)R ((s0, t0, a0), · · · , (sn, tn, an)) ,

and Lean-STaR’s expert iteration can be seen as optimizing this reward (Singh et al., 2023).

3.3 EVALUATION

Setup. We evaluate the model on formal theorem proving – given a theorem statement, produce a
theorem that is correct according to the formal system. This requires an algorithm for producing a
full proof by interacting with Lean. As a new form of theorem-proving system, it is unclear what the
best strategy is when we have informal thoughts. Our preliminary experiments indicate that best-first
search with beam search does not work well for the thoughts in the natural language format. Thus we
describe the traditional strategy (best-first search), and our new approach based on sampling.
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Figure 4: The visualization of Best-first Search (K = 1) and Sampling (S = 1). Search method
maintains a search tree and explores S tactics on each expanded node. Sampling method explores K
tactic trajectories from the root and ignores illegal tactics in the trajectories.

Best-First Search. The most popular method to evaluate the theorem proving ability of a language
model M is to use best-first search like GPT-f (Polu & Sutskever, 2020; Yang et al., 2023; Azerbayev
et al., 2023b; Welleck & Saha, 2023). In best-first search, we keep all unexpanded states si. Each
time, we expand the “best” state si and use the language model to sample S next tactics ai,1···S for
the current state si. For each legal tactic ai,j , a new state can be obtained by applying tactic ai,j on
state si. Following standard practice (Polu & Sutskever, 2020; Yang et al., 2023; Welleck & Saha,
2023), we assume the state with maximum negative log-probabilities is the “best”s. Specifically,

we select state si with maximum
i−1∑
j=0

− log p(aj , sj), where (s0, a0), · · · , (si−1, ai−1) is the proof

trajectory before state si and log p(aj , sj) is the average log probability of each generated token.
We expand up to N states and we get a successful proof search when we reach any proof state with
no goals. Then, we can attempt the search K times to obtain a pass rate pass@K. However, we
found that the best-first search method performed poorly in the Lean-CoT and Lean-STaR models, as
detailed in the Appendix E. We attribute this to using average log probabilities, which may not be a
reliable quality indicator when the thought sequence tj is generated.

Sampling. Motivated by these issues with applying best-first search to thought-augmented proving,
we develop a new method based on sampling trajectories in parallel. Specifically, our method samples
K times in parallel for each problem, each time generating at most N tactics. Also, illegal sampled
tactics will be ignored during sampling. Specifically, in a sample, suppose our current state is si, the
proof trajectory before si is (s0, a0), · · · , (si−1, ai−1) and the sampled tactic is ai. If ai is a legal
tactic, (si, ai) will be added to the proof trajectory and we will reach a new state obtained by applying
tactic ai,j on state si. Otherwise, we ignore this ai and use language model M to sample a new tactic
given state si. We limit the number of times a tactic can be generated by language model M to a total
of N per time in K sampling times. The sampling method is roughly equivalent to the search with
S = 1, except that the sampling ignores illegal tactics. We assume that in the sampling method we
have S = 1. In this setting, evaluating our sampling method and best-first search with equal S ×K
took approximately the same amount of GPU time. This sampling method can easily accommodate
hidden variable “thoughts” tj . Figure 4 compares best-first search and our sampling method.
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Table 1: Pass rates on the minif2f-test and Leandojo dataset with Lean. This table shows the pass
rates of previous works and our work. S is the number of tactics attempted at each expanded node
(assumed to be 1 in sampling) and K is the total number of search or sampling attempts per problem.
In sampling we use temperature 0.7, and in search we use beam search when generating the next
tactic. We use a random subset of Leandojo4-v9-test (novel premises) with a size of 320 as test set of
leandojo. Note that we sample 32 examples twice when K = 64 in sampling.

APPROACH DECODING N K S MINIF2F LEANDOJO

GPT-3.5 ACHIAM ET AL. (2023) (FEW-SHOT) SAMPLING 50 1 1 2.8% -

GPT-4 ACHIAM ET AL. (2023) (FEW-SHOT) SAMPLING 50 1 1 11.9% -

TRANSFORMER POLU ET AL. (2022) (W/O RL) SEARCH 512 1 8 24.6% -

LLEMMA-34B AZERBAYEV ET AL. (2023B) SEARCH 50 1 32 25.8% -

LLEMMA-7B AZERBAYEV ET AL. (2023B) SEARCH 50 1 32 26.2% -

REPROVER YANG ET AL. (2023) SEARCH 50 1 64 26.5% -

TRANSFORMER POLU ET AL. (2022) (W/ RL) SEARCH 512 1 8 29.6% -

INTERNLM2-34B YING ET AL. (2024) SEARCH 50 1 32 29.5% -

COPRA (WITH GPT-4) THAKUR ET AL. (2023) CUSTOMIZED - 60 1 29.9% -

COPRA (WITH GPT-4) THAKUR ET AL. (2023) CUSTOMIZED - 100 1 30.7% -

INTERNLM2-7B YING ET AL. (2024) SAMPLING 50 32 1 28.7% 29.7%

INTERNLM2-7B YING ET AL. (2024) SEARCH 50 1 32 30.3% -

SFT (INTERNLM2-7B) SAMPLING 50 32 1 29.5% 30.6%

SFT (INTERNLM2-7B) SEARCH 50 1 32 30.7% -

LEAN-COT (INTERNLM2-7B) SAMPLING 50 32 1 32.8% 35.6%

LEAN-STAR (ITER-1) (INTERNLM2-7B) SAMPLING 50 32 1 34.0% 38.4%

LEAN-STAR (ITER-2) (INTERNLM2-7B) SAMPLING 50 32 1 34.8% 39.4%

LEAN-STAR (ITER-2) (INTERNLM2-7B) SAMPLING 50 64 1 36.1% -

4 EXPERIMENTS

We instantiate Lean-STaR using the best available open language model pre-trained on the Lean
corpus (InternLM2-Math-base-7b (Ying et al., 2024)), and follow standard practice in using Lean’s
Mathlib as the underlying training set (via the Lean Dojo dataset (Yang et al., 2023)). We generate an
initial set of thoughts for Mathlib using GPT-4, perform two rounds of expert iteration, then evaluate
the model on miniF2F (Zheng et al., 2021) and leandojo (Yang et al., 2023), the de-facto standard
benchmark for evaluating language-model based theorem provers. Our experimental results show that
both retrospective rationale generation and expert iteration significantly improve the theorem-proving
capabilities of language models in this setting. We describe our setup and findings in detail below.

4.1 EXPERIMENTAL SETUP

We use LeanDojo Benchmark 4 v9 as the supervised fine-tuning (SFT) dataset containing 231, 240
data examples. We fine-tune for 1 epoch to obtain the SFT model. For the learning rate, we use a
warmup in the first 20% steps from 0 to 2× 10−5, followed by a cosine schedule decaying to zero.

We randomly select 17, 256 different successful proof trajectories from LeanDojo Benchmark 4
dataset (Yang et al., 2023), and use GPT-4-0125 (OpenAI, 2023) to annotate 52, 438 thoughts from
those proof trajectories. We filtered out all proof steps (si, ai) for which ai contains the newline
symbol “\n” before annotating. We perform two iterations of expert iteration, and provide the details
in Appendix A.1 due to space.

We evaluate our method on the MiniF2F benchmark (Zheng et al., 2021). We use a similar evaluation
setting as previous works (Yang et al., 2023; Welleck & Saha, 2023; Ying et al., 2024), but use our
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Table 2: Pass rates about InternLM2-Plus-7B on the minif2f-test dataset with Lean. This table
shows the pass rates of previous works and our work. The evaluation setting is the same as Table 1.

APPROACH DECODING N K S PASS RATE

INTERNLM2-PLUS-7B (YING ET AL., 2024) (FROM PAPER) SEARCH 1000 1 32 43.4%

INTERNLM2-PLUS-7B (YING ET AL., 2024) (REPRODUCED) SEARCH 1000 1 32 42.6%

INTERNLM2-PLUS-7B (YING ET AL., 2024) SAMPLING 50 32 1 40.9%

SFT (INTERNLM2-PLUS-7B) (YING ET AL., 2024) SAMPLING 50 32 1 41.3%

LEAN-COT (INTERNLM2-PLUS-7B) SAMPLING 50 32 1 43.4%

LEAN-STAR (ITER-1) (INTERNLM2-PLUS-7B) SAMPLING 50 32 1 45.4%

INTERNLM2-PLUS-7B (YING ET AL., 2024) SAMPLING 50 64 1 42.2%

SFT (INTERNLM2-PLUS-7B) (YING ET AL., 2024) SAMPLING 50 64 1 43.4%

LEAN-COT (INTERNLM2-PLUS-7B) SAMPLING 50 64 1 45.5%

LEAN-STAR (ITER-1) (INTERNLM2-PLUS-7B) SAMPLING 50 64 1 46.3%

sampling method instead of best-first search for the evaluation of our thought-augmented theorem
proving model as discussed in (§3.3). We choose these settings to resemble the inference budget
used in our baselines, which follow previous work (Welleck & Saha, 2023; Azerbayev et al., 2023b;
Ying et al., 2024). Namely, for best-first search baselines we use beam search to generate the next
tactic with S = 32,K = 1 (Welleck & Saha, 2023; Azerbayev et al., 2023b; Ying et al., 2024). We
do not compare with methods designed for other formal languages such as Jiang et al. (2022); Xin
et al. (2023) since language differences greatly influence the pass rate due to the different tactics and
automation. We also do not compare with Lample et al. (2022) since they only report S = 32,K = 64
on best-first search, which is approximately equivalent to S = 1,K = 512 for the sampling method,
which is too computationally expensive for us.

4.2 MAIN RESULTS

Our main results are reported in Table 1. Lean-STaR gives a significant improvement over the base
model. For instance, with a similar inference budget, Lean-STaR achieves 34.8% versus 30.3% in
InternLM2 (Ying et al., 2024) using best-first search and 30.7% in COPRA (Thakur et al., 2023)
using GPT-4. With a larger compute budget, Lean-STaR’s performance improves further to 36.1%.

Thought augmentation improves theorem proving. The first phase of Lean-STaR trains a model
to interleave thoughts and tactics, by fine-tuning on a synthesized dataset of thought-augmented
examples. The fine-tuned model from this phase, denoted LEAN-COT in Table 1, achieves a pass rate
of 32.8%, which is higher than the model prior to this phase, denoted SFT (29.5%). We conclude
that the first phase of Lean-STaR can improve the theorem proving ability of a language model, even
one that is already specialized for generating tactics in Lean such as the SFT model.

Bootstrapping improves thought-augmented theorem proving. The second phase of Lean-STaR
consists of generating new thoughts and tactics with the current language model, saving those that
result in correct proofs, and training on the union of the initial thought-augmented dataset and the
saved examples (i.e., expert iteration (Polu et al., 2022; Zelikman et al., 2022; Singh et al., 2023)).
Refer to Appendix A.1 for details.

We perform two iterations of expert iteration, and present the results in Table 1, denoted LEAN-STAR.
Each iteration improves the model’s theorem proving performance, from 32.8% (the initial model)
to 34% (LEAN-STAR after iteration 1) to 34.8% (LEAN-STAR after iteration 2). Furthermore, we
find that the model is amenable to further improvement via additional sampling, achieving 36.1%
by doubling the sampling budget. We conclude that Lean-STaR’s second phase can further improve
a model’s ability to generate thoughts and tactics that lead to correct proofs. We include three
qualitative examples in the Appendix, which show the model interleaving thoughts and proof steps.

8



Published as a conference paper at ICLR 2025

Table 3: Results for the InternLM2-plus-7b and our Lean-CoT, Lean-STaR, and expert iteration
without CoT. We use sampling with N = 50,K = 32,& T = 0.7.

APPROACH Pass@32 OF INTERNLM-BASE Pass@32 OF INTERNLM-PLUS

FEW-SHOT 28.7% 40.9%

SFT 29.5%(+0.8%) 41.3%(+0.4%)

LEAN-COT 32.8%(+3.3%) 43.4%(+2.1%)

LEAN-STAR 34.0%(+1.2%) 45.5%(+2.1%)

EXPERT ITERATION (SFT) 30.7%(+1.2%) 43.0%(+1.7%)

4.3 EXPERIMENTS WITH STRONGER BASE MODEL AND MORE DATA

We instantiate Lean-STaR using a stronger language model (InternLM2-Math-plus-7b (Ying et al.,
2024)), which was released after the experiment above. We follow a similar setup to the previous
experiment.

In this experiment, we used 140, 000 thoughts annotated by GPT-4o (OpenAI, 2023) to fine-tune a
model (“Lean-CoT”). Then we performed only one iteration of expert iteration and collected about
60, 000 (proof state, thoughts, next-tactic) pairs in data, named “STaR dataset” D1. We further
fine-tuned the Lean-CoT model on dataset D1 to get the Lean-STaR model.

Our new results are reported in Table 2. We can see that Lean-STaR still gives a significant improve-
ment over the baseline. For instance, Lean-STaR achieves 45.4% versus 40.9% in InternLM-plus
using sampling with a similar inference budget and 43.4% using best-first search with more inference
budget reported in (Ying et al., 2024). This results show that both retrospective rationale generation
and expert iteration can improve the theorem-proving capabilities on a stronger base model.

4.4 EXPERIMENTS ON EXPERT ITERATION WITHOUT COT

Table 3 shows the result of expert iteration without CoT (i.e., using (state, tactic) pairs only) as well
as the result of Lean-CoT and Lean-STaR. Expert iteration alone achieves 43.0%, which is less than
Lean-STaR (45.4%) in InternLM-plus and achieves 30.7% verus 34.0% in InternLM-base. This
shows that Lean-STaR’s performance gains do not only come from the use of expert iteration.

5 CONCLUSION & LIMITATIONS

In this paper, we presented Lean-STaR, a novel approach that significantly enhances the theorem-
proving capabilities of language models in formal mathematics by integrating Chain-of-Thought
(CoT) rationales into each proof step. Our method begins with generating synthetic rationales using
ground-truth tactics retrospectively, followed by fine-tuning the language model to generate these
rationales and predict subsequent tactics, resulting in the Lean-CoT model. We further improved
this model using expert iteration, fine-tuning it on correct proofs it samples and verifies using the
Lean solver. Our contributions include the introduction of the first thought-augmented theorem
proving dataset, demonstrating that expert iteration can further improve performance, and achieving
new results on the miniF2F-test benchmark, increasing the pass rate from 30.3% to 36.1%. These
advancements are not only about improving the accuracy of automated theorem proving, but also
offer a scalable and efficient framework for advancing human understanding of mathematics, which
may lead to significant impacts in education, scientific discovery, and program verification (Carter &
Monks, 2013; Kang et al., 2020; Szegedy, 2020; Avigad, 2023; First, 2023; of Sciences, 2023).

The primary limitation of our method is that its performance may be constrained by issues of
computational scalability. Both Lean-CoT and Lean-STaR have been fine-tuned on a dataset that
is not very large. Additionally, the use of GPT-4 to generate synthetic data may incur a significant

9
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cost and possibly introduce biases. Also, expert iteration could face a bottleneck due to CPU and IO
limitations, which might slow down the process due to a sluggish speed of Lean ITP.
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A ADDITIONAL EXPERIMENT SETUP

A.1 LEAN-STAR EXPERT ITERATION

The second phase of Lean-STaR consists of generating new thoughts and tactics with the current
language model, saving those that result in correct proofs, and training on the union of the initial
thought-augmented dataset and the saved examples (i.e., expert iteration (Polu et al., 2022; Zelikman
et al., 2022; Singh et al., 2023)). We perform two iterations of expert iteration, and provide details on
our specific experimental setup below.

In each iteration we use sampling on the LeanDojo Benchmark 4 dataset, and save the (state, thought,
tactic) examples that are part of successful proofs. For each problem, we sample K = 32 times
in parallel with temperature T = 1.0, and limit the number of times a tactic can be generated to a
total of N = 5 per problem. Also, sampling is limited to 1 minute per problem. In this setup, each
problem needs on average about 0.5 A100 minutes. We collect successfully sampled trajectories to
produce a “STaR dataset” D1, and up to 3 proof trajectories were collected for each problem. We
collected 32, 231 different (proof state, thoughts, next-tactic) pairs in successful proof trajectories
during expert iteration, which takes about 4 days with 8×A100 GPUs. Then, we further fine-tune
SFT model for 1 epoch on the combination of GPT-4 annotated reasoning data and expert iteration
data DT ∪D1 to get the Lean-STaR model. We use the same learning rate setup that was used for the
SFT model. In the second iteration, we generate a dataset D2 in a similar fashion. Then, we chose to
further fine-tune model from iteration 1, M1, on the generated dataset D2 (roughly 19k pairs).

The setup of experiment about InternLM2-plus is slightly different. The details are shown in Section
4.3 and Appendix F.

B STATISTICS FOR OUR METHODS AS WELL AS THE BASELINES

Table 4: Statistics for the baselines and our Lean-CoT, Lean-STaR on MiniF2F dataset. We use
sampling method with hyperparameters N = 50 &K = 32 & T = 0.7.

APPROACH # (CONTINUAL) TRAINING DATA Pass@32

INTERNLM2-MATH-7B (FEW-SHOT) - 28.7% -

SFT 231, 240 29.5% +0.8%

LEAN-COT 52, 438 32.8% +3.3%

LEAN-STAR (ITER-1) 32, 231 34.0% +1.2%

LEAN-STAR (ITER-2) 19, 324 34.8% +0.8%
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C DATA LEAKAGE

A risk of using GPT-4 for generating thought annotations is data leakage. Sine miniF2F has been
used as a dataset for formal theorem proving for a while, it is possible that miniF2F dataset is already
seen by GPT-4 or internLM during pre-training process. However, there are several reasons to believe
that data leakage is not likely to be true.

First, our experimental setting (fine-tuning on Mathlib, evaluating on miniF2F) follows a widely
used experimental setup in benchmark evaluations in neural theorem proving and InternLM was also
evaluated on miniF2F. Therefore, we believe that InternLM has not been exposed to miniF2F.

Also, we observed that most of the proofs generated by Lean-STaR are completely different from the
manually written proofs in the miniF2F test dataset. Table 5 shows the analysis of proof generated
by Lean-STaR on miniF2F test dataset for Lean. From Table 5 we can see that almost all proofs
generated by LeanSTaR are different from the proofs mentioned in the miniF2F. If we set aside
straightforward simple cases, there is only one proof generated by LeanSTaR is the same as the proofs
mentioned in the miniF2F.

Table 5: Analysis of proof generated by Lean-STaR on miniF2F test dataset for Lean. Similar to the
analysis in Thakur et al. (2024).

Proofs found in miniF2F-test
Proofs
NOT in
miniF2F

Total

Single-Tactic
Simple Proofs

Two-Tactic
Proofs

Longer
OR

Complex
Proofs

Total

Tactics
Used linarith norm_num nlinarith two tactics

> 2 tactics
OR

1 tactic
multi-args

sorry

Proof
Count 11 12 2 18 39 82 162 244

Exact
Match

Successful
Proof
Count

2 4 0 0 1 7 0 7

1st
Tactic
Match

Successful
Proof Count

2 4 0 0 1 7 0 7

Distinct
Successful

Proof
Count

5 7 2 14 19 47 43 90 / 112 (80.36%)

Distinct
Successful

Proof
Count

ex Single-Tactic

- - - 6 12 18 20 38

All
Successful

Proof
Count

11 12 2 17 22 64 48 112

D AN EXAMPLE AND EXPLANATION OF A FORMAL PROOF IN LEAN

An example of a formal proof in Lean with its visualization is shown in Figure 5, taken from
(Lample et al., 2022). In the proof, the tactic induction k is is applied to the initial state
(n ≤ m ⇒ n+ k ≤ m+ k) and the ITP converts the current state to subgoals case 0 ∧ case
ih: n ≤ m∧n+k ≤ m+k ⇒ n+(k+1) ≤ m+(k+1). The case 0: n ≤ m is our hypothesis
h0 so it can be proven by case 0:exact h0 tactic. Then, we rewrite the case ih through the
nat.succ_le_succ_iff which is a theorem in Lean library means n ≤ m ⇔ n+ 1 ≤ m+ 1.
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After tactics case 0:exact h0 and case ih:rw nat.succ_le_succ_iff, the goal state
is converted to n+ k ≤ m+ k which is the hypothesis introduced by induction. Therefore, we can
complete this proof using tactic exact k_ih.

theorem add_le_add_right (m n k : N) (h0 : n ≤ m)
: n + k ≤ m + k :=
induction k with
| zero =>

exact h0

| succ k ih =>
rw Nat.succ_le_succ_iff
exact ih

Figure 5: A example proof and its visualization of n ≤ m ⇒ n + k ≤ m + k in Lean,
taken from (Lample et al., 2022). The induction tactic reduces the initial statement to two
subgoals. Then tactics case 0:exact h0 and case ih:rw nat.succ_le_succ_iff,
case ih:exact k_ih can be applied in turn to complete the proof.
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Table 6: Counts of problems successfully proved in minif2f-test benchmark, split by type and
difficulty. The methods use sampling with N = 50,K = 32. Thought-augmented methods improve
performance on all categories, while Lean-STaR significantly improves Number Theory performance.

TOTAL TEST SET
SIZE

INTERNLM2-7B SFT LEAN-COT LEAN-STAR
(ITER-2)

IMO 20 0 0 0 0
AIME 15 2 1 2 3
AMC 45 3 3 7 5

MATH

ALGEBRA

LEVEL 5 14 1 2 3 3
LEVEL 4 14 7 7 7 7
LEVEL 3 14 9 9 11 11
LEVEL 2 14 10 10 9 11
LEVEL 1 14 9 10 10 10

NUMBER THEORY

LEVEL 5 16 6 6 6 7
LEVEL 4 11 5 5 4 5
LEVEL 3 11 4 5 5 6
LEVEL 2 11 6 5 5 6
LEVEL 1 11 8 8 9 9

CUSTOM
ALGEBRA 18 0 1 1 1

NUMBER THEORY 8 0 0 0 0
INDUCTION 8 0 0 1 1

sectionPerformance Analysis by Types and Difficulties Tasks in minif2f-test are manually formalized
from Olympiad type problems, drawn from multiple sources including AIME, AMC, IMO problems,
and problems from the MATH dataset (Hendrycks et al., 2021). These problems can have different
levels of difficulty and types. Table 6 reports the number of problems successfully proved, partitioned
by type and difficulty. We see that Lean-CoT improves performance in solving difficult problems
on all categories, especially those from mathematics competitions. On top of these improvements,
Lean-STaR’s improvements come mainly in Number Theory.

D.1 PERFORMANCE ANALYSIS BY TYPES AND DIFFICULTIES USING INTERNLM2-PLUS-7B

Table 7 reports the number of problems successfully proved, partitioned by type and difficulty using
InternLM2-plus. We see that Lean-CoT improves performance mainly in Number Theory and Lean-
STaR improves performance in solving difficult problems on all categories, which is the opposite of
the performance of the InternLM2-base.

E COMPARISON BETWEEN SEARCH METHOD AND SAMPLING METHOD

17



Published as a conference paper at ICLR 2025

Table 7: Counts of problems successfully proved in minif2f-test benchmark using InternLM2-plus-7b,
split by type and difficulty. The methods use sampling with N = 50,K = 32.

TOTAL TEST SET
SIZE

INTERNLM2-PLUS-7B LEAN-COT LEAN-STAR
(ITER-1)

IMO 20 0 0 0
AIME 15 3 3 4
AMC 45 9 9 10

MATH

ALGEBRA

LEVEL 5 14 6 6 6
LEVEL 4 14 9 9 9
LEVEL 3 14 11 13 13
LEVEL 2 14 11 11 11
LEVEL 1 14 10 10 10

NUMBER THEORY

LEVEL 5 16 7 7 7
LEVEL 4 11 6 8 8
LEVEL 3 11 6 7 9
LEVEL 2 11 7 9 9
LEVEL 1 11 10 10 10

CUSTOM
ALGEBRA 18 4 3 4

NUMBER THEORY 8 0 0 0
INDUCTION 8 1 1 1

Table 8: Comparison between search method and sampling method. We use sampling method with
hyperparameters N = 50 & S = 1 & K = 32 and BFS method with N = 50 & S = 32 & K = 1.
All sampling decoding in the paper uses a temperature of 0.7. We use BFS to denotes Best-First
Search.

APPROACH BFS (SAMPLING) BFS (BEAM SEARCH) SAMPLING

TACTIC PREDICTION IN PROVING BFS BFS SAMPLING

TOKEN DECODING IN TACTICS SAMPLING BEAM-SEARCH SAMPLING

INTERNLM2-7B (FEW-SHOT) 29.1% 30.3% 28.7%

SFT 29.9% 30.7% 29.5%

LEAN-COT 27.0% 25.4% 32.8%

LEAN-STAR (ITER-1) 29.1% 26.2% 34.0%

LEAN-STAR (ITER-2) 29.5% 26.2% 34.8%

F PERFORMANCE DIFFERENCE OF JOINT TRAINING AND CONTINUE TRAINING

As shown in Table 9, the joint training method performs better using InternLM2-base but training
method performs much better using InternLM2-plus. It seems that there are no difference between
these two methods. Therefore, this performance can be depend on the quantity of data or the model.
(We use much more data when using InternLM2-plus and the quantity of "STaR data" is relatively
small.)

F.1 SEARCH AND SAMPLING BUDGET

Table 10 reports the trends of the pass rate against the search size or sampling budget S ×K. We
find that Lean-STaR benefits more as K increases, especially when K is relatively large. The result
suggests that additional sampling with thoughts improves performance, while additional sampling
without thoughts may saturate. We believe this is because thoughts increase the diversity of outputs
and contribute to exploration in the theorem proving space. Therefore, Lean-STaR is more scalable
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Table 9: Performance difference of joint training and continue training on Lean-STaR. We use
sampling method with hyperparameters N = 50 & K = 32 & T = 0.7. In continue training, we
further fine-tune the Lean-CoT model on "STaR data" to get Lean-STaR model and in joint training
we fine-tune the SFT model on combination of GPT-4 annotated reasoning data and "STaR data".

APPROACH INTERNLM2-BASE-7B INTERNLM2-PLUS-7B

LEAN-COT 32.8% 43.4%

LEAN-STAR (ITER-1)
(JOINT TRAINING) 34.0% 43.9%

LEAN-STAR (ITER-1)
(CONTINUE TRAINING) 33.2% 45.5%

Table 10: Performence of SFT-Direct and our Lean-STaR at different search size or sampling times
S ×K. We fix N = 50. We use beam search in search and temperature T = 0.7 in sampling when
generating the next tactic. We have K = 1 in search and S = 1 in sampling. Note that we sample 32
examples twice when K = 64 in sampling.

SFT-DIRECT (SEARCH) SFT-DIRECT (SAMPLING) LEAN-STAR (ITER-2) (SAMPLING)

S ×K = 1 13.5% 20.9% 21.7%

S ×K = 2 18.0% (+4.5%) 22.5% (+1.6%) 24.6%(+2.9%)

S ×K = 4 23.3% (+5.3%) 25.0% (+2.5%) 27.5%(+2.9%)

S ×K = 8 27.5% (+4.2%) 27.0% (+2.0%) 30.7% (+3.2%)

S ×K = 16 29.9% (+2.4%) 28.3% (+1.3%) 33.6% (+2.9%)

S ×K = 32 30.7% (+0.8%) 29.5% (+1.2%) 34.8% (+1.2%)

S ×K = 64 30.7% (+0.0%) 30.3% (+0.8%) 36.1% (+1.3%)

(in terms of inference-time compute), and may be amenable to further improvements with additional
iterations of expert iteration.

G RETROSPECTIVE RATIONALE GENERATION PROMPT OF GPT-4

Please act as a professional mathematician.
Your goal is to accurately prove a math theorem in Lean4.
You are given the first tactic that should be taken to prove the Given

Theorem.

# Example:

Given Theorem:
```lean4
X : Type u_1
Y : Type u_2
inst✝1 : TopologicalSpace X
inst✝ : TopologicalSpace Y
f : X →. Y
h : PContinuous f
⊢IsOpen (PFun.preimage f Set.univ)
```
Given Tactic:
```lean4
exact h _ isOpen_univ
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### State
a b n : N
⊢ ¬(n ̸= 0 ∧ a ̸= 0) ↔ n = 0 ∨ a = 0
### Tactic
```lean4

simp only [not_and_or, ne_eq, not_not]
```

### Reasoning
To prove the equivalence between the negation of a conjunction and a disjunction, we utilize logical

equivalences, specifically the negation of a conjunction ¬(`(P ∧ Q)`) being equivalent to the disjunction
of the negations (`P = 0 ∨ Q = 0`) and simplifications related to negation and inequality.

Figure 6: Examples of (input, output) pairs of retrospective rationale generation with GPT-4. The full
prompt is given in Appendix G. See §3.2.2 for the detailed explanation.

```
Assistant Output:
### PLANNING OF REASONING
Given the above goal and the given the target tactic `exact h _

isOpen_univ`, I should produce a reasoning that only based on the goal
, and conclude to the `exact h _ isOpen_univ`, but not in the
hindsight format.

### REASONING

By directly using the hypothesis `h : PContinuous f`, we state that for
any open set, its preimage via `f` is also open, and this applies to `
Set.univ` as well.

### TACTIC

```lean4
exact h _ isOpen_univ
```

To achieve the goal, you have three jobs.
# Write down the planning of reasoning.
# Write down the reasoning that can result in the selection of the Given

Tactic.
# Write down the Given Tactic.
You have four principles to do this.
# Craft reasoning that is comprehensive yet concise, contained ideally

within two sentences.
# Begin reasoning with the objective of the Given Theorem, ensuring

logical progression, rather than constructing it retrospectively from
the Given Tactic.

# Avoid mentioning the Given Tactic and specific statement names from the
Given Tactic throughout your reasoning.

# Position the conclusion of the tactic after presenting all reasons,
ensuring that details regarding the Given Tactic are not introduced
at the start of your reasoning.

Your output should be strictly in the following format and should not
contain extra content:

### PLANNING OF REASONING

Given the above goal and the given the target tactic <Given Tactic>, I
should produce a reasoning that only based on the goal, and conclude
to the exact <Given Tactic>, but not in the hindsight format.

### REASONING
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<your reasoning to the Given Tactic>

### TACTIC

<Given Tactic>

# Given Theorem:
```lean4
{theorem["state_before"]}
```

# Given Tactic:
```lean4
{theorem["tactic"]}
```
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H EXAMPLES OF GENERATED LEAN PROOFS WITH THOUGHTS

theorem aime_1990_p4 (x : R) (h0 : 0 < x) (h1 : x ^ 2 - 10 * x - 29 ̸= 0)
(h2 : x ^ 2 - 10 * x - 45 ̸= 0) (h3 : x ^ 2 - 10 * x - 69 ̸= 0)
(h4 : 1 / (x ^ 2 - 10 * x - 29) + 1 / (x ^ 2 - 10 * x - 45) - 2 / (x
^ 2 - 10 * x - 69) = 0)
: x = 13 :=
norm_num at h1 h2 h3 -- Reasoning: To prove `x = 13`, we examine the
conditions under which the given equation holds, specifically
focusing on the non-equality of the expressions involving `x ^ 2 - 10
* x - 29`, `x ^ 2 - 10 * x - 45`, and `x ^ 2 - 10 * x - 69`.
Simplifying these expressions using properties of real numbers and
algebra allows us to directly compare them with their respective
values, ultimately identifying `x = 13` as the unique solution that
satisfies all constraints.
field_simp at * -- Reasoning: To prove \(x = 13\), we leverage the
given equalities involving rational fractions of \(x^2 - 10x - c\)
for various constants \(c\), where \(0 < x\) and each \(x^2 - 10x -
c\) is non-zero. By algebraically manipulating these expressions, we
aim to derive a relationship among \(x\) and these constants,
specifically focusing on \(13\), under the given non-zero conditions
for the quadratic expressions.
ring_nf at h4 ⊢ -- Reasoning: To establish the equality `x = 13`
under the given conditions, we need to manipulate the algebraic
expression given by `h4` to reveal its dependence on `x`, recognizing
that the presence of `x` in the expressions may affect the equation's
truth value. The application of algebraic transformations on both
sides of the equation will facilitate the identification of `x`'s
value, taking into consideration the inequality conditions provided
(`h1`, `h2`, `h3`).
nlinarith -- Reasoning: To prove \(x = 13\), we must manipulate the
equation given by \(h4\) to isolate \(x\), using the algebraic
properties of equality and the assumption \(h0\) which states \(0 <
x\). This requires careful rearrangement and application of
algebraic identities to simplify and rearrange terms, facilitating
the direct application of the properties of real numbers to reach
the desired conclusion.

theorem amc12a_2002_p6 (n : N) (h0 : 0 < n)
: ∃ m, m > n ∧ ∃ p, m * p ≤ m + p :=
use n + 1, by linarith only [h0] -- Reasoning: To demonstrate the
existence of such an `m` and `p` that satisfy the given inequalities,
we leverage the property of natural numbers that ensures an increase
in `n` from `0` leads to the possibility of finding such `m` and `p`.
This approach is supported by the fundamental property of natural
numbers and their arithmetic operations, suggesting that for a given
`n` greater than `0`, there exists a successor `m` and a number `p`
that satisfy the conditions outlined.
exact 〈0, by simp 〉 -- Reasoning: To demonstrate that there exists
an \(n \in N\) such that \((n + 1) * p \leq n + 1 + p\) holds for
some \(p \in N\), we recognize that setting \(p = 0\) satisfies the
inequality by the properties of zero in arithmetic. This is because
\(n + 1 > 0\) by assumption, ensuring the left-hand side is
non-negative and the right-hand side simplifies to \(n + 1\), making
the inequality trivially true.
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