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ABSTRACT

Score-based diffusion models have achieved remarkable empirical performance in
the field of machine learning and artificial intelligence for their ability to generate
high-quality new data instances from complex distributions. Improving our un-
derstanding of diffusion models, including mainly convergence analysis for such
models, has attracted a lot of interests. Despite a lot of theoretical attempts, there
still exists significant gap between theory and practice. Towards to close this gap,
we establish an iteration complexity at the order of d1/3ε−2/3, which is better than
d5/12ε−1, the best known complexity achieved before our work. This convergence
analysis is based on a randomized midpoint method, which is first proposed for
log-concave sampling (Shen & Lee, 2019), and then extended to diffusion models
by Gupta et al. (2024). Our theory accommodates ε-accurate score estimates, and
does not require log-concavity on the target distribution. Moreover, the algorithm
can also be parallelized to run in only O(log2(d/ε)) parallel rounds in a similar
way to prior works.

1 INTRODUCTION

Score-based diffusion models are a class of generative models that have gained prominence in the
field of machine learning and artificial intelligence for their ability to generate high-quality new data
instances from complex distributions (Dhariwal & Nichol, 2021; Ho et al., 2020; Sohl-Dickstein
et al., 2015; Song & Ermon, 2019; Song et al., 2021). These models operate by gradually transform-
ing noise into samples from the target distribution through a denoising process guided by pretrained
neural networks that approximate the score functions. In practice, score-based diffusion models
have demonstrated remarkable performance in generating realistic and diverse content across vari-
ous domains (Croitoru et al., 2023; Ramesh et al., 2022; Rombach et al., 2022; Saharia et al., 2022),
achieving state-of-the-art performance in generative AI.

The development of score-based diffusion models is closely related to the theory of stochastic pro-
cesses. At a high level, we consider a forward process:

X0
add noise→ X1

add noise→ · · · add noise→ XT ,

which draws a sample from the target data distribution (i.e., X0 ∼ pdata), and then progressively
diffuses it to Gaussian noise over time. The key step of the diffusion model is to construct a reverse
process:

YT
denoise→ YT−1

denoise→ · · · denoise→ Y0,

satisfying Yt
d
≈ Xt for all t, which starts with pure Gaussian noise (i.e., YT ∼ N (0, Id)) and

gradually converts it back to a new sample Y0 sharing a similar distribution to X0. Evidently,
the most crucial step of the diffusion model lies in effective design of the reverse process. To
accomplish this goal, Yt−1 in each step is typically obtained from Yt with the aid of score functions
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(s⋆t = ∇ log pXt
), which are pre-trained by means of score matching techniques (e.g., Hyvärinen

& Dayan (2005); Ho et al. (2020); Hyvärinen (2007); Vincent (2011); Song & Ermon (2019); Pang
et al. (2020)).

Due to the impressive empirical success, in the past few years, there have been a lot of works
exploring the convergence of diffusion models (De Bortoli, 2022; Gao et al., 2023; Lee et al., 2022;
2023; Chen et al., 2022; Benton et al., 2023; Chen et al., 2023; Li et al., 2023; 2024c; Gupta et al.,
2024; Chen et al., 2024b; Li et al., 2024a; Li & Yan, 2024a; Huang et al., 2024a; Li & Cai, 2024;
Li & Yan, 2024b; Huang et al., 2024b; Liang et al., 2025; Li et al., 2024b). They typically treat the
score matching stage as a blackbox and study how the sampling steps T and the score estimation
error will affect the sampling accuracy. Given the observation that there still exists a huge gap
between prior theories and practice, this paper is devoted to improving the convergence theory for
diffusion models.

1.1 MOTIVATION

Following the most existing works, let’s focus on the total variation distance between distributions
of the target data and generated samples. Let d be the dimension, and ε denote the accuracy which
means the total variation is smaller than ε. For the general target distribution, Benton et al. (2023)
provides first linear d-dependency rate with an iteration complexity d/ε2. Later on, Li et al. (2024c)
achieves an improved complexity scaling as d/ε, while with a burn-in cost d2.

However, such kind of result is still far away from practical observations. For example, for two
typical image datasets, CIFAR-10 with d = 32 × 32 × 3 = 3072 and ImageNet 256 × 256 with
d = 256× 256× 3 = 196608, it is sufficient to use about 50 steps to generate good samples (Song
et al., 2021; Nichol & Dhariwal, 2021), which is much smaller than the theoretical requirement. To
close this gap, people try to derive faster convergence rate through exploiting extra data distribution
properties, such as low-dimensional structure (Li & Yan, 2024a) and smoothness of score functions
(Gupta et al., 2024; Chen et al., 2024b). Following this line of work, the scope of this paper lies
in establishing some convergence theory for diffusion models towards aligning more closely with
practical requirements.

1.2 OUR CONTRIBUTIONS

Focusing on the diffusion models with L-smooth score functions, this paper develops an improved
iteration complexity as following (up to some logarithmic factors):

Ld1/3ε−2/3,

which is inspired by the randomized mid-point design (Shen & Lee, 2019; Gupta et al., 2024). In
what follows, let us make a brief comparison between our results and the state-of-the-art results
about the convergence rate of score-based generative models.

• Comparison under smoothness condition. Similarly, Chen et al. (2024b) also studied the
convergence theory by assuming smooth score functions. Recently, the iteration complexity
is improved by Gupta et al. (2024); Chen et al. (2024b) in this setting, which, to ensure ε-
accuracy, scales as Õ(L5/3d5/12ε−1). This means that our convergence rate improves prior
works by a factor of L2/3d1/12ε−1/3.

• Comparison under general condition. Without the smoothness condition on score func-
tions, Benton et al. (2023) proved an iteration complexity at the order of dε−2, which first
exhibits linear dependency in the data dimension d. This bound is improved to Õ(d/ε)

by Li et al. (2024c) when the number of steps is larger than Õ(d2). In comparison, to
achieve ε-accuracy, our theory improves these works provided that the Lipschitz condi-
tions of score functions satisfy

L < d2/3ε−4/3, for ε > d−1/2 or L < d2/3ε−1/3, for ε < d−1/2.

Hopefully, such relations can be satisfied in most real cases, for example, considering Im-
ageNet 256 × 256, this requirement becomes L < 3381 for ε ≈ 1 and L < 72845 for
ε ≈ 0.1.
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2 PRELIMINARY

In this section, we introduce some basics and notations of score-based generative models. The
diffusion generative model typically encompasses two processes: a forward process and a reverse
process, as described below.

Forward process. Starting from X0 drawn from some target distribution pdata, the forward pro-
cess evolves as follows:

Xt =
√
αtXt−1 +

√
1− αtWt, 1 ≤ t ≤ T, (1)

where 0 < αt < 1, and {Wt}1≤t≤T is a sequence of independent noise vectors drawn from Wt
i.i.d.∼

N (0, Id). In addition, let’s define

αt :=

t∏
k=1

αk, 1 ≤ t ≤ T, (2)

which will be helpful in our following analysis. Using this definition, Xt can be expressed in closed
form as Xt =

√
αtX0 +

√
1− αt W t with W t ∼ N (0, Id). The diffusion models draw a lot of

motivations from the stochastic differential equations. Hence, let’s also introduce the continuous-
time limit of the forward diffusion process, which can be modeled as

dXτ = − 1

2(1− τ)
Xτdτ +

1√
1− τ

dBτ , for 0 ≤ τ < 1, (3)

where Bτ denotes some Brownian motion.

Reverse process. The core of diffusion models lies in constructing a reverse-time process with

nearly identical marginals as the forward process, namely, Yτ
d
≈ Xτ . Fortunately, it is shown that

there exists some probability flow ODE

dYτ = − 1

2(1− τ)

(
Yτ +∇ log pXτ (Y )

)
dτ, (4)

which can achieve our goal, such that if we start from Yτ0 ∼ pXτ0
for any 0 ≤ τ0 < 1, it can

be ensured that Yτ
d
≈ Xτ for all 0 ≤ τ < 1. Then the design of reverse process is equivalent

to discretize the above ODE process (4), as well as estimate ∇ log pXτ
, which is also called score

function.

Score functions. The score functions are crucial for score-based generative modeling, and the
definition of score function is as follows.
Definition 1. The score function, denoted by s⋆t : Rd → Rd(1 ≤ t ≤ T ), is defined as

s⋆t (x) := ∇ log pXt(x) = − 1

1− αt

∫
x0

pX0 |Xt
(x0 |x)(x−

√
αtx0)dx0, 1 ≤ t ≤ T. (5)

Following the same way as prior analysis, we assume access to faithful estimates of the score func-
tions s⋆t across all intermediate steps t as following.
Assumption 1. We assume access to an estimate st(·) for each s⋆t (·) with the averaged ℓ2 score
estimation error as

ε2score =
1

T

T∑
t=1

Ex∼qt

[
∥st(x)− s⋆t (x)∥22

]
=:

1

T

T∑
t=1

ε2t . (6)

In addition, we mainly focus on the case with smooth score functions in this paper, which is stated
below.
Assumption 2. Assume that s⋆t (x) and st(x) are Lipschitz for all t such that

∥s⋆t (x1)− s⋆t (x2)∥2 ≤ L∥x1 − x2∥2; (7a)
∥st(x1)− st(x2)∥2 ≤ L∥x1 − x2∥2. (7b)
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Target data distribution. Following prior works, we also need the following assumption on the
target data distribution pdata to establish our theory.
Assumption 3. We assume that the target distribution pdata has bounded second-order moment in
the sense that

R := E[∥X0∥22] < T cR (8)

for arbitrarily large constant cR > 0.

Here, this assumption requires the second-order moment of pdata to be exceedingly large (given
that the exponent cR can be arbitrarily large), which is a mild assumption. However, there exist
exceptions including extremely heavy-tailed or non-smooth distributions. For example, densities
decaying slower than 1/x3 or purely discrete data may not align with our theoretical framework.

3 MAIN RESULTS

In this section, we first introduce a new score-based sampler with randomized midpoints, which is
modified from Gupta et al. (2024) for ease of analysis. Then, we prove a faster convergence rate for
this sampler based on a new analysis framework, which might be useful for improving convergence
guarantees for other variations of samplers. Finally, we also provide a parallel sampling strategy for
our sampler following the similar idea from prior works (Gupta et al., 2024; Chen et al., 2024a).

3.1 ALGORITHM

This part is devoted to explaining the details of our score-based sampler with randomized midpoints.
Before proceeding, let’s first specify the choice of learning rates to be used in our sampler.

Randomized schedule. Similar to prior works, we adopt the following randomized learning rate
schedule

αt ∼ Unif(α̂t, α̂t−1), for t = −N

2
+ 1, . . . , T + 1, (9a)

where Unif denotes the uniform distribution, and

α̂T+1 =
1

T c0
, and α̂t−1 = α̂t +

c1α̂t(1− α̂t) log T

T
(9b)

for some sufficiently large constants c0, c1 > 0 obeying c1/c0 sufficiently large.

Moreover, for ease of presentation, we let K = c2L log T for some constant c2 > 0 such that c2
c1

sufficiently large, and N = 2T
K . Then define for n = 0, . . . , N , and k = 0, . . . ,K − 1,

τ̂k,n := 1− α̂T− kN
2 −n and τk,n := 1− αT− kN

2 −n+1, (9c)

which satisfy the following lemma. The detailed proof of this result can be found in Li & Jiao
(2024)(Appendix B.1).
Lemma 1. Our choice of learning schedules (9) satisfies

1− τ0,0 ≤ α̂T ≤ 2

T c0
, τK,0 ≤ 1− α̂1 ≤ 1

T c0
, and

τ̂k,n−1 − τ̂k,n
τ̂k,n−1(1− τ̂k,n−1)

=
c1 log T

T
.

(10)

Sampling procedure. With the learning schedule in hand, we are now ready to introduce the sam-
pling procedure. The algorithm is actually a discretization of the probability ODE flow incorporated
with some stochastic noise, which proceeds as follows. We start from Y0 ∼ N (0, Id), and then for
k = 0, . . . ,K − 1, we keep updating Yk through the formula:

Yk+1 =

√
1− τk+1,0

1− τk,N
Yk,N +

√
τk+1,0 − τk,N

1− τk,N
Zk, (11a)
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where Zk
i.i.d.∼ N (0, I) and for n = 1, . . . , N , we compute

Yk,n√
1− τk,n

=
Yk√

1− τk,0
+

sT− kN
2 +1(Yk)

2(1− τk,0)3/2
(τk,0 − τ̂k,0) +

n−1∑
i=1

sT− kN
2 −i+1(Yk,i)

2(1− τk,i)3/2
(τ̂k,i−1 − τ̂k,i)

+
sT− kN

2 −n+2(Yk,n−1)

2(1− τk,n−1)3/2
(τ̂k,n−1 − τk,n). (11b)

Here, we let Yk,0 = Yk. Notice that for each step to calculate Yk,n, only one additional score
evaluation for sT− kN

2 −n+2(Yk,n−1) is needed. This implies that the total iteration complexity is
KN = 2T .

3.2 CONVERGENCE ANALYSIS

We are now positioned to present the convergence guarantees — measured by the total variation
distance between the forward and the reverse processes — for the proposed sampler (11). The proof
is postponed to Section 4.

Theorem 1. Suppose that Assumptions 1, 2, and 3 hold true. Then the sampling process (11) with
the learning rate schedule (9) satisfies

TV (pdata, pYK
) ≤ CL3/2d1/2 log5/2 T

T 3/2
+ Cεscore log

1/2 T (12)

for some constant C > 0 large enough.

We now take a moment to discuss the main implications of Theorem 1.

Iteration complexity. Let’s focus on the first term in (12), which corresponds to discretization
error, and ignore the score estimation error. To ensure TV (pdata, pYK

) ≤ ε, it is sufficient to choose

T ≳
Ld1/3 log5/3 T

ε2/3
.

As far as we know, the existing iteration complexity guarantees (with sub-linear dependency on
d) are Õ(L5/3d5/12ε−1) achieved in Gupta et al. (2024) and Õ(L2d1/2ε−1) derived in Chen et al.
(2024b). Our theory improves the prior results with at least Õ(L2/3d1/12ε−1/3).

Dependency of score estimation error. Turning attention to the second term, the sampling ac-
curacy scales as εscore log1/2 T , suggesting that our sampler is stable to imperfect score estimation.
In comparison, the existing results (with sub-linear dependency on d) scale as L1/2d1/12εscore log T
and L1/2εscore log T in Gupta et al. (2024) and Chen et al. (2024b), respectively. Our theory exhibits
a better dependency on score estimation error, which is similar to the results in Chen et al. (2022)
and Benton et al. (2023).

Lipschitz condition of score functions. It is noteworthy that our better iteration complexity holds
under the condition of Lipschitz continuity for score functions. Without this condition, the best
results are Õ(dε−2) and Õ(dε−1 + d2), which are achieved in Benton et al. (2023) and Li et al.
(2024c), respectively. Our theory is better than such result when the Lipschitz constant for the score
functions satisfies L < d2/3ε−4/3 for ε > d−1/2, or L < d2/3ε−1/3 for ε < d−1/2, and it is still
unknown how to achieve sub-linear dependency on d in the general case.

Finally, we remark that the extension to non-Lipschitz settings is significantly more challenging due
to the critical role the smoothness assumption plays in our analysis. Previous analysis on diffusion
models focus primarily on stepwise error propagation, analyzing how errors at one step affect the
next. In contrast, our randomized design requires tracking error propagation across multiple steps
simultaneously, which necessitates uniform control over these errors. Without smoothness, only a
high-probability bound that depends on the dimension d can be established, which is hard to use
compared to the uniform bound and may result in worse bound since it scales with d.
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3.3 PARALLEL SAMPLING

In this section, we provide a way to do parallel sampling for our proposed sampler that needs the
similar number of parallel rounds as prior works (Gupta et al., 2024), while the number of parallel
processors here is significantly reduced. In the following, we first introduce the parallel sampling
procedure, and then present the theoretical guarantee. The analysis is postponed to the Section 5.

Details of parallel sampling procedure. In the parallel sampling, all procedures are the same
as the above sampler (11), except that we will update Yk,n for n = 1, · · · , N at the same time.
Specifically, we first initialize

Y0,k,n√
1− τk,n

=
Yk√

1− τk,0
, n = 1, · · · , N. (13a)

Then we update all Yk,n for M rounds simultaneously: at the m-th round, we update Ym,k,n for
n = 1, . . . , N in the following way:

Ym,k,n√
1− τk,n

=
Yk√

1− τk,0
+

sT− kN
2 +1(Yk)

2(1− τk,0)3/2
(τk,0 − τ̂k,0) +

n−1∑
i=1

sT− kN
2 −i+1(Ym−1,k,i)

2(1− τk,i)3/2
(τ̂k,i−1 − τ̂k,i)

+
sT− kN

2 −n+2(Ym−1,k,n−1)

2(1− τk,n−1)3/2
(τ̂k,n−1 − τk,n). (13b)

Finally, we compute

Yk+1 =

√
1− τk+1,0

1− τk,N
YM,k,N +

√
τk+1,0 − τk,N

1− τk,N
Zk, (13c)

and we complete the update from Yk to Yk+1 in the parallel way. In this parallel setting, the total
number of parallel rounds to yield sample YK is MK, and N parallel processors are needed. We
remark that the implementation of this parallel algorithm assumes that the GPU memory is capable
of supporting score estimations for a large batch of data simultaneously. Parallelizing across multiple
GPUs introduces additional communication overhead, which may impact efficiency.

Theoretical guarantee of parallel sampling. The convergence guarantees for the above parallel
sampling is as follows, whose proof can be found in Section 5:
Theorem 2. With the same setting as Theorem 1, it is sufficient to choose

N ≳
d1/3 log2/3 T

ε2/3
, MK ≳ L log2 T, and ε2score ≲ ε2 log−1 T (14)

to achieve TV (pdata, pYK
) ≲ ε for the sampler (13).

Finally, let us briefly compare our theory with the prior works. This theorem states that the parallel
sampler achieves ε-accuracy with respect to total variation distance through using O(log2(Ld/ε))
parallel rounds, which is similar to Gupta et al. (2024); Chen et al. (2024a). In addition, we only
need Õ(d1/3ε−2/3) parallel processors, which improves their results significantly.

4 ANALYSIS

This section is devoted to establishing Theorem 1. Before proceeding, we find it helpful to introduce
the following notations. Without abuse of notations, we use Xτ to denote the continuous process as
follows:

Xτ
d
=

√
1− τX0 +

√
τZ, with Z ∼ N (0, I), for 0 ≤ τ ≤ 1, (15)

and the corresponding score function is

s⋆τ (x) := ∇ log pXτ
(x) = −1

τ

∫
x0

pX0 |Xτ
(x0 |x)(x−

√
1− τx0)dx0.
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In addition, we rewrite the sampling process with the continuous index as following:

Yτk,n√
1− τk,n

=
Yk√

1− τk,0
+

sτk,0
(Yk)

2(1− τk)3/2
(τk,0 − τ̂k,0) +

n−1∑
i=1

sτk,i
(Yτk,i

)

2(1− τk,i)3/2
(τ̂k,i−1 − τ̂k,i)

+
sτk,n−1

(Yτk,n−1
)

2(1− τk,n−1)3/2
(τ̂k,n−1 − τk,n),

and

Yk+1 =

√
1− τk+1,0

1− τk,N
Yτk,N

+

√
τk+1,0 − τk,N

1− τk,N
Zk,

where Y0 ∼ N (0, I) and Zk
i.i.d.∼ N (0, I). Here, Yτk,n

corresponds to the Yk,n in the discrete case.
In the following, it is enough to consider T > c3L log T for some constant c3 > 0 large enough;
otherwise, the desired bound holds trivially.

Before diving into the details of the proof, we provide some core institution of our algorithm and
the overview of the proof. Our algorithm is designed based on the following institution. First,
by injecting noise into the probability flow ODE (cf. (16)), we transfer the sampling task to one of
discretizing the ODE with small error (see Lemma 2). This step contributes to the main improvement
of our work over prior works, which provides a simple framework for transferring the sampling task
to discretizing the ODE (16) with a small error. Once this reduction is established, we make use
of the techniques proposed by Shen & Lee (2019) and Gupta et al. (2024), utilizing randomized
midpoints to improve efficiency in estimating the ODE solution (see Lemma 3). The final algorithm
is designed based on the discretization form of ODE (16), where estimates of Xτk,i

are iteratively
computed using this form and are inserted into the subsequent estimates.

In our algorithm, the main sources of error include discretization error controlled in Lemma 3,
estimation error arising from the approximation of Xτk,i

, which is bounded in Lemma 4, and the
initialization and early stopping errors, which are controlled in Lemma 5 using techniques similar
to prior works. The proof can be divided into three steps.

4.1 STEP 1: INTRODUCE THE AUXILIARY SEQUENCE

Let Φτ1→τ2(x) := xτ2 | xτ1
=x defined through the following ODE

d
xτ√
1− τ

= − s⋆τ (xτ )

2(1− τ)3/2
dτ. (16)

Then, we have the following result. The detailed proof can be found in Li & Jiao (2024)(Appendix
B.2).
Lemma 2. It can be shown that

Φτ1→τ2(Xτ1)
d
= Xτ2 . (17)

Moreover, assume that X̂0
d
= Xτ0,0 . Then we have for 0 ≤ k < K,

X̂k+1 =

√
1− τk+1,0

1− τk,N
Φτk,0→τk,N

(X̂k) +

√
τk+1,0 − τk,N

1− τk,N
Zk

d
= Xτk+1,0

, (18)

where Zk
i.i.d.∼ N (0, I).

Given the definition of X̂k, we make the following decomposition:

TV
(
pdata, pYK

)
≤ TV

(
pdata, pX̂K

)
+ TV

(
pX̂K

, pYK

)
, (19a)

and

TV2
(
pX̂K

, pYK

)
≤ 1

2
KL
(
pX̂K

∥pYK

)
≤ 1

2
KL
(
pX̂0,...,X̂K

∥pY0,...,YK

)
7



Published as a conference paper at ICLR 2025

=
1

2
KL
(
pX̂0

∥pY0

)
+

1

2

K−1∑
k=0

Exk∼p
X̂k

[
KL
(
pX̂k+1|X̂k

( · |xk) ∥ pYk+1|Yk
( · |xk)

)]
,

(19b)

where we make use of Pinsker’s inequality and the data-processing inequality. In the next step,
we will bound the divergence between pX̂k+1|X̂k

and pYk+1|Yk
, and the remaining terms can be

controlled easily, which is left to the final step.

4.2 STEP 2: CONTROL THE DIVERGENCE BETWEEN pX̂k+1|X̂k
AND pYk+1|Yk

Based on the update rule for Yτk,n
, we let

yτk,n√
1− τk,n

=
yτk,0√
1− τk,0

+
sτk,0

(yτk,0
)

2(1− τk)3/2
(τk,0 − τ̂k,0) +

n−1∑
i=1

sτk,i
(yτk,i

)

2(1− τk,i)3/2
(τ̂k,i−1 − τ̂k,i)

+
sτk,n−1

(yτk,n−1
)

2(1− τk,n−1)3/2
(τ̂k,n−1 − τk,n),

for n = 1, . . . , N . Then notice that X̂k+1|X̂k and Yk+1|Yk are both normal distributions with the

same variance τk+1,0−τk,N

1−τk,N
and different means

√
1−τk+1,0

1−τk,N
Φτk,0→τk,N

(X̂k) and
√

1−τk+1,0

1−τk,N
yτk,N

,
respectively. This tells us that

KL
(
pX̂k+1|X̂k

( · |xk) ∥ pYk+1|Yk
( · |xk)

)
=

1− τk+1,0

2(τk+1,0 − τk,N )
∥yτk,N

− xτk,N
∥22, (20)

when we set xτk,0
, yτk,0

= xk, and xτk,N
is defined as xτk,N

= Φτk,0→τk,n
(xk).

Towards controlling the difference between yτk,N
and xτk,N

, let’s consider the ODE trajectory be-
ginning from xτk,0

= xk, and define

ξk,n(xk) :=
xτk,n√
1− τk,n

−
xτk,0√
1− τk,0

−
sτk,0

(xτk,0
)

2(1− τk,0)3/2
(τk,0 − τ̂k,0)

−
n−1∑
i=1

sτk,i
(xτk,i

)

2(1− τk,i)3/2
(τ̂k,i−1 − τ̂k,i)−

sτk,n−1
(xτk,n−1

)

2(1− τk,n−1)3/2
(τ̂k,n−1 − τk,n),

(21)

which denotes the discretization and estimation error of the ODE process (16).

Given an initialization point xτk,0
= xk, the term θ(τ ;xk) :=

s⋆τ (xτ )

2(1−τ)3/2
depends only on τ . Solving

(16) is equivalent to calculating the integral of θ(τ ;xk). Consequently, it is natural for the algorithm
to approximate the integral by discretizing τ and estimating θ(τ ;xk) at some discrete time points.
The following lemma controls the estimation error, and the underlying intuition lies in controlling
the error between the true value and its estimation obtained through this discretization as defined in
(21). The detailed proof can be found in Li & Jiao (2024)(Appendix A.1). Similar errors are also
analyzed in Gupta et al. (2024) (Appendix A.1) under an exponential integrator formulation. Our
derivation adapts these ideas to the context of the probability flow ODE discretization in this work.
Lemma 3. For any k and n, it can be seen that with probability at least 1− T−100,

Exk∼p
X̂k

[
∥ξk,n(xk)∥22

]
≲

n∑
i=1

L2d log4 T

(1− τ̂k,i−1)2T 3
(τ̂k,i−1 − τ̂k,i)

+
N log2 T

T 2

n−1∑
i=0

τ̂k,i(1− τ̂k,i)
−1ε2

T− kN
2 −i+1

, (22)

where ε2
T− kN

2 −i+1
is defined in (6).

With the above relation, we can bound the divergence as following. The detailed proof can be found
in Li & Jiao (2024)(Appendix A.2).
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Lemma 4. According to Lemma 3, it can be shown that

Exk∼p
X̂k

[
KL
(
pX̂k+1|X̂k

( · |xk) ∥ pYk+1|Yk
( · |xk)

)]
≲

L2d log4 T

T 3
+

log T

T

N−1∑
i=0

ε2
T− kN

2 −i+1
,

(23)

where ε2
T− kN

2 −i+1
is defined in (6).

4.3 STEP 3: PUTTING EVERYTHING TOGETHER

The remaining terms in (19) can be bounded through the following lemma. The detailed proof can
be found in Li & Jiao (2024)(Appendix B.3).

Lemma 5. Under our choice of learning schedule (9), we have

TV
(
pdata, pX̂K

)
≤ 1

T 10
and KL

(
pX̂0

∥pY0

)
≤ 1

T 10
. (24)

Inserting (24) and (23) into (19) leads to

TV (pdata, pYK
) ≲

1

T 10
+

√
1

T 10
+

L3d log5 T

T 3
+ ε2score log T ≲

L3/2d1/2 log5/2 T

T 3/2
+ εscore log

1/2 T,

and we conclude the proof here.

5 ANALYSIS FOR PARALLELIZATION (THEOREM 2)

By comparing the update rules for Yk,n and Ym,k,n, it is natural to control the difference of the
following two sequences:

yτk,n√
1− τk,n

=
yτk,0√
1− τk,0

+
sτk,0

(yτk,0
)

2(1− τk,0)3/2
(τk,0 − τ̂k,0) +

n−1∑
i=1

sτk,i
(yτk,i

)

2(1− τk,i)3/2
(τ̂k,i−1 − τ̂k,i)

+
sτk,n−1

(yτk,n−1
)

2(1− τk,n−1)3/2
(τ̂k,n−1 − τk,n),

and

ym,τk,n√
1− τk,n

=
yτk,0√
1− τk,0

+
sτk,0

(yτk,0
)

2(1− τk,0)3/2
(τk,0 − τ̂k,0) +

n−1∑
i=1

sτk,i
(ym−1,τk,i

)

2(1− τk,i)3/2
(τ̂k,i−1 − τ̂k,i)

+
sτk,n−1

(ym−1,τk,n−1
)

2(1− τk,n−1)3/2
(τ̂k,n−1 − τk,n).

The above update rules, together with the Lipschitz condition of score estimates, lead to∥∥ym,τk,n
− yτk,n

∥∥
2√

1− τk,n
≲

L log T

T

n−1∑
i=1

∥∥ym−1,τk,i
− yτk,i

∥∥
2√

1− τk,i
.

Applying the above relation recursively gives

max
n

∥∥yM,τk,n
− yτk,n

∥∥
2√

1− τk,n
≤
(
NL log T

T

)M

max
n

∥∥y0,τk,n
− yτk,n

∥∥
2√

1− τk,n
≤ 1

poly(T )
,

provided that M ≳ log T and T ≳ NL log T . Thus as long as N ≳ d1/3 log2/3 T
ε2/3

, which guarantees

that T ≳ Ld1/3 log5/3 T
ε2/3

, we can get the desired result immediately through just inserting the above
error boound into Lemma 4. We omit the details here due to the similarity.
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6 DISCUSSION

In this paper, we establish a faster convergence rate for diffusion probabilistic models, which scales
as Ld1/3ε−2/3, assuming smooth score functions. Our theory achieves at least L2/3d1/12ε−1/3 im-
provement over prior works (Gupta et al., 2024; Chen et al., 2024b), and thereby aligns more closely
with practical requirements. Recent researches (Benton et al., 2023; Li et al., 2024c) have shown
an O(dε−1) dependence for diffusion models without the assumption of smoothness. However, it
remains unclear whether any algorithm can achieve a sub-linear dependence on d in the absence of
smoothness. We leave this as an open question for future research. Moreover, the benefit of the
randomized design in our work relies heavily on the deterministic nature of ODE process. It is still
unclear for us how to adapt this approach to deal with the inherent stochasticity in SDEs while main-
taining similar improvements. This will also be left as future work. In addition, it may be feasible
to apply your analysis framework to improve the bound for other variants of samplers such as the
Langevin algorithm. Furthermore, estimating the Lipschitz constant in real-world cases would be
highly beneficial, potentially broadening the applicability of our results.
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