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Abstract

Commonsense question answering (QA) are001
widely used to evaluate the commonsense abil-002
ities of large language models. However, an-003
swering commonsense questions correctly re-004
quires not only knowledge but also reason-005
ing—even for seemingly simple questions. We006
demonstrate that such hidden reasoning at-007
tributes in commonsense questions can lead008
evaluation accuracy differences of up to 24.8%009
across different difficulty levels in the same010
benchmark. Current benchmarks overlook011
these hidden reasoning attributes, making it012
difficult to assess a model’s specific levels of013
commonsense knowledge and reasoning abil-014
ity. To address this issue, we introduce Re-015
ComSBench, a novel framework that reveals016
hidden reasoning attributes behind common-017
sense questions by leveraging the knowledge018
generated during the reasoning process. Ad-019
ditionally, ReComSBench proposes three new020
metrics for decoupled evaluation: Knowledge021
Balanced Accuracy, Marginal Sampling Gain,022
and Knowledge Coverage Ratio. Experiments023
show that ReComSBench provides insights into024
model performance that traditional benchmarks025
cannot offer. The difficulty stratification based026
on revealed hidden reasoning attributes per-027
forms as effectively as the model-probability-028
based approach but is more generalizable and029
better suited for improving a model’s common-030
sense reasoning abilities. By uncovering and031
analyzing the hidden reasoning attributes in032
commonsense data, ReComSBench offers a new033
approach to enhancing existing commonsense034
benchmarks.035

1 Introduction036

The study of commonsense involves both knowl-037

edge and reasoning (Brachman and Levesque,038

2022). Large language models (LLMs) can store039

and retrieve commonsense knowledge effectively040

(Bosselut et al., 2019; Davison et al., 2019; Zhao041

et al., 2023b). In commonsense reasoning tasks,042

Quesion  Where do all animals live?
Options  (A). the moon; (B). fairgrounds; (C). surface of earth; 

Reasoning

Reasoning process
1. Hypothesis:           , assume        .
2. Check                              . 
3. If                                , reject   .
4. If no contradictions, accept        .

Known knowledge
Animals need air, water 
and sustenance; The moon 
does not have air or water; 
The fairgrounds ...

Novel knowledge
The moon cannot support 
animals; The Surface of 
Earth satisfies universal 
habitat conditions; ...

Question and Options

 (D). meadow; (E). zoos.

Variables
                              : set of places 
from options.
       : x is an animal.
          : animal x can live in place p.
       : p is a universal habitat.

Figure 1: A QA case from CommonsenseQA, showing
knowledge transformation during reasoning. Correct
answers to simple commonsense questions still require
reasoning.

LLMs further exhibit the ability to make infer- 043

ences based on their stored knowledge (Bhagavat- 044

ula et al., 2020; Zhao et al., 2023a). To evaluate 045

and enhance LLMs’ commonsense capabilities, re- 046

searchers have utilized diverse benchmarks to mea- 047

sure their performance across both knowledge re- 048

trieval and reasoning tasks. Despite dividing the di- 049

mensions, commonsense knowledge and reasoning 050

are intertwined, with tasks involving simple reason- 051

ing often categorized as commonsense knowledge 052

alone (Davis, 2024). This makes it difficult to deter- 053

mine the individual levels of LLMs’ commonsense 054

knowledge and commonsense reasoning abilities. 055

Without this clarity, it is challenging to pinpoint 056

whether a model’s errors in handling commonsense 057

tasks stem from one or both of these factors. As a 058

result, efforts to improve both aspects simultane- 059

ously often require significant investment but yield 060

limited results. 061
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Another major reason is that crowdsourcing062

workers naturally ignore the hidden reasoning at-063

tributes of commonsense data due to the ambiguity064

and naturalness of commonsense. This leads to065

task-irrelevant noise in datasets and causes unex-066

pected overlaps between tasks (Do et al., 2024).067

Researchers underestimate the impact of this ne-068

glect because even when the model answers ques-069

tions without explicit reasoning, it internally per-070

forms hidden reasoning processes before generat-071

ing responses, which are not directly reflected in072

the model’s output (Ye et al., 2024). As a result, ex-073

isting benchmarks only provide a macro-evaluation074

of the commonsense performance of LLMs and075

cannot effectively differentiate between common-076

sense knowledge and reasoning abilities. This not077

only undermines the clarity and effectiveness of078

commonsense assessment but also limits opportu-079

nities for targeted improvements through feedback.080

This causes current benchmarks to often over-081

look two key points. First, even the simplest082

commonsense questions may involve reasoning at-083

tributes that require inference to answer correctly.084

Second, different questions vary in their reason-085

ing attributes and difficulty levels. For example,086

as shown in Figure 1, a sample from the Com-087

monsenseQA dataset demonstrates one symbolic088

reasoning process required to answer correctly. To089

answer "Where do all animals live?", one must090

identify exceptions among location options. But091

CommonsenseQA is a benchmark focused on com-092

monsense knowledge questions.093

To address these challenges, we introduce Re-094

ComSBench, a framework designed to enhance tra-095

ditional benchmarks by making hidden reasoning096

attributes explicit. By defining reasoning as the097

process of generating new knowledge from known098

knowledge (as shown in Figure 1), ReComSBench099

quantifies reasoning difficulty based on the amount100

of knowledge required to answer questions cor-101

rectly. Furthermore, it decouples the evaluation102

of models’ commonsense knowledge and reason-103

ing abilities through three novel metrics: Knowl-104

edge Balanced Accuracy for assessing common-105

sense knowledge, and Marginal Sampling Gain and106

Knowledge Coverage Ratio for evaluating overall107

domain reasoning and single inference quality.108

We refine and experiment with four benchmarks:109

CommonsenseQA (Talmor et al., 2019), Open-110

BookQA (Mihaylov et al., 2018), ARC (Clark111

et al., 2018), and QASC (Khot et al., 2020). Ex-112

periments confirm that hidden reasoning attributes113

significantly impact model evaluations on existing 114

benchmarks. Data with varying reasoning difficul- 115

ties within the same benchmark consistently shows 116

lower accuracy for models on high-difficulty data, 117

with up to an 24.8% difference across datasets. 118

This highlights the challenge of distinguishing 119

whether model limitations stem from insufficient 120

knowledge or weak reasoning abilities. The three 121

new metrics provide fine-grained insights into mod- 122

els’ knowledge and reasoning capabilities, with 123

results aligning with expectations as model ver- 124

sions evolve, demonstrating their reference value. 125

Using hidden reasoning attributes—measured by 126

the amount of knowledge required during infer- 127

ence—as a basis for data difficulty outperforms 128

the model-probability-based approach. This un- 129

derscores the practicality of leveraging reasoning 130

attributes for benchmark optimization. 131

The main contributions of this work are: 132

• We reveal and validate the importance of hid- 133

den reasoning attributes in commonsense data, 134

experimentally demonstrating their impact on 135

model evaluation. 136

• We propose ReComSBench, a framework that 137

improves existing benchmarks by making hid- 138

den reasoning attributes explicit. It introduces 139

three novel metrics for decoupled evaluations 140

of commonsense knowledge and reasoning 141

capabilities. 142

• Through experiments with ReComSBench, we 143

confirm its effectiveness in enhancing evalua- 144

tion and training, showing that organizing data 145

based on hidden reasoning attributes improves 146

models’ commonsense abilities. 147

2 Related works 148

2.1 Challenges of commonsense benchmarks 149

There are now over 100 commonsense benchmarks 150

to test AI’s knowledge and reasoning abilities 151

(Davis, 2024). While human-annotated datasets 152

are generally high-quality, researchers have found 153

many flaws, such as grammatical errors, incorrect 154

answers, and noisy data. Do et al. (2024) points out 155

that these benchmarks often focus on referenced 156

knowledge rather than true commonsense, harm- 157

ing the accurate measurement of commonsense 158

reasoning. Srivastava et al. (2023) argues that cur- 159

rent benchmarks emphasize memory and factual 160

knowledge, calling for "breakthrough" tasks to pre- 161

pare for future models. Sakaguchi et al. (2021) 162
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highlights spurious biases in datasets, leading to163

overestimation of machines’ true commonsense ca-164

pabilities. Veselovsky et al. (2023) shows crowd165

workers using LLMs to generate annotations, low-166

ering dataset quality. Fixing these flaws helps us167

better understand and improve models’ true capabil-168

ities. While complex problems get more attention,169

simple ones often involve deep reasoning processes.170

Even if LLMs lacks specific knowledge, it might171

infer correct answers through reasoning. Thus, we172

need to decouple knowledge and reasoning in com-173

monsense data to evaluate models more accurately.174

2.2 Hidden biases in commonsense data175

The latent biases in commonsense data have sig-176

nificant impacts on model performance and evalua-177

tion. Existing studies reveal various types of biases.178

Bauer et al. (2023) identifies cultural biases using179

causal social commonsense knowledge. Liao and180

Naghizadeh (2023) investigates fairness algorithms181

through social and data biases. Biester (2025) high-182

lights gender biases in LLMs within the context183

of Olympic sports. Lee and Kim (2024) reduces184

bias and performance gaps in commonsense knowl-185

edge by replacing demographic-specific words with186

generic terms (e.g., "Chinese -> Asian -> Peo-187

ple"). Davis (2024) points out issues in common-188

sense benchmarks, such as incorrect questions, un-189

natural language, and expert-knowledge require-190

ments. While research often focuses on linguis-191

tic or cultural biases in reasoning datasets, under-192

lying reasoning attributes and differences in non-193

reasoning commonsense datasets remain an over-194

looked source of bias. Therefore, it is necessary195

to clarify the reasoning attributes in commonsense196

questions and evaluate their impact on the training197

and assessment of commonsense benchmarks.198

2.3 Evaluation reliability for benchmarks199

Multiple-choice question answering (MCQA) is200

widely used in existing benchmarks to evaluate the201

capabilities of language models (Guo et al., 2023),202

but its reliability is increasingly being questioned.203

Wang et al. (2025) found that language models204

tend to select the least incorrect option rather than205

the distinctly correct answer when responding to206

MCQA. Additionally, Balepur et al. (2024) demon-207

strated that models can solve MCQA tasks even208

without the actual question, suggesting the need209

for stronger benchmark tests. To better understand210

model behavior, Wang et al. (2024) proposed di-211

rectly analyzing the freely generated textual out-212

puts of models instead of relying solely on the 213

probability of the first token. In tasks involving rea- 214

soning, the quality of the reasoning process (Cobbe 215

et al., 2021; Weng et al., 2023) and the number of 216

samples (Wang et al., 2023; Lin et al., 2024) are 217

closely related to the test results. Notably, most 218

evaluation methods focus on numerical problems 219

because their intermediate steps are easier to ver- 220

ify. However, this approach does not apply well 221

to commonsense questions, which are mostly non- 222

numerical knowledge-based problems. Therefore, 223

there is a need for an automated method tailored 224

to the characteristics of commonsense tasks to im- 225

prove existing benchmarks and develop new evalu- 226

ation metrics that comprehensively measure both 227

knowledge and reasoning abilities. 228

3 Methodology 229

Commonsense benchmarks typically evaluate 230

LLMs using multiple-choice questions to assess 231

both knowledge and reasoning abilities. However, 232

commonsense benchmarks are crafted with data 233

that contains varying degrees of hidden reasoning 234

attributes. This makes it challenging to determine 235

whether a model’s shortcomings lie in knowledge 236

or reasoning. To address this issue, we propose 237

ReComSBench, a framework that explicating hid- 238

den reasoning attributes based on the principle 239

that "knowledge reasoning is the process of using 240

known knowledge to infer new knowledge"(Chen 241

et al., 2020), thereby enabling a deeper and more 242

balanced evaluation of these abilities. 243

3.1 Reasoning attributes explicating 244

Given a commonsense question Q with options 245

A = {A1, A2, . . . , An}, we aim to find the most 246

representative reasoning path S∗ from the set of 247

generated paths S = {S1, S2, . . . , Sn}. Each path 248

Si consists of reasoning steps {si1, si2, . . . , sim} 249

and produces an answer Âi. The knowledge behind 250

the reasoning steps is represented by the set of 251

extracted knowledge triplets K(Si). To ensure both 252

correctness and conciseness, the optimal reasoning 253

path S∗ is defined as: 254

S∗ = arg min
Si∈S

|K(Si)| subject to A(Si) = Agt

(1) 255

where: 256

• A(Si) denotes the answer derived from rea- 257

soning path Si, 258

• Agt is the ground-truth answer, 259

3



Quesion  Where do all animals live?
Options  (A). the moon; (B). fairg-
rounds; (C). surface of earth; (D). 
meadow; (E). zoos. Reasoning sample  

Knowledge extraction

B
C
C

[(S1, R1, O1), ...]

[(S1, R1, O1), (S2, R2, O2), ...]

Deduplication

Quesion  & Options

Optimal Reasoning
Prior Knowledge &

Benchmark Data Explicit Benchmark Data

Disorganized Data 

Organized Data

Organize by reasoning attribute

Refining Training Refining Evaluation 

Basic Accuracy

Refining Benchmark

Explicating Reasoning Attributes

Knowledge Balanced Accuracy

Acc. 

Balanced curve 

Basic curve 

Reasoning attributes 

Reasoning Insufficient

Training

Training

Marginal Sampling Gain

Pass@1 Pass@K-1 Pass@K

...
78% Acc. 80% 81% 

1% accuracy gain at
sampling level K 

Knowledge Coverage Ratio

60% Converage for sample 

64

68 Knowledge in 

Prior knowledge for  

Prior Knowledge

Figure 2: An overview of ReComSBench, which refines benchmarks with new metrics and hidden reasoning
attributes. It explicates hidden reasoning attributes through optimal reasoning and prior knowledge for QA.

• |K(Si)| measures the size of the knowledge260

set extracted from Si.261

This ensures that the selected reasoning path262

satisfies correctness (A(Si) = Agt) while minimiz-263

ing the amount of generated knowledge (|K(Si)|),264

minimizing the provision of unnecessary knowl-265

edge that chat-oriented LLMs tend to provide (Bian266

et al., 2024a). As shown in Figure 2, we gener-267

ate reasoning paths using Chain-of-Thought (Wei268

et al., 2022) and Rejection Sampling. Knowledge269

involved in the reasoning process is extracted by270

LLM. For detailed prompts templates, please re-271

fer to Table 4 in Appendix A. From the path Si,272

we extract knowledge K(Si) and deduplicate over-273

lapping knowledge with the question’s inherent274

knowledge K(Q), yielding novel knowledge:275

Knew(Si) = K(Si) \ K(Q) (2)276

Importantly, only the Knew derived from the opti-277

mal reasoning path S∗ is regarded as Kprior, which278

represents the prior knowledge required to answer279

the question Q. This distinction ensures that the280

extracted knowledge is both minimal and essential281

for reasoning.282

Then the reasoning difficulty of Q is defined as283

d(Q) = |Kprior|. This metric quantifies the com-284

plexity of inference required to answer Q, guiding285

subsequent evaluation and training. While the ran-286

domness inherent in the generation of new knowl-287

edge during reasoning does not directly represent288

the problem itself, it can still be used on a macro- 289

scopic level to compare the differences in acquired 290

knowledge from questions to measure their reason- 291

ing attributes (Bian et al., 2024b). 292

3.2 Refining benchmark in evaluation 293

In commonsense questions, knowledge attributes 294

and reasoning attributes are tightly intertwined, 295

and the underlying differences in reasoning 296

attributes can vary significantly. To disentangle the 297

model’s actual performance on the benchmark, we 298

designed distinct indicators focusing on knowledge 299

evaluation and reasoning evaluation separately. 300

301

Knowledge Balanced Accuracy The Knowl- 302

edge Balanced Accuracy (KBA) explicitly prompts 303

the model with the knowledge required for the an- 304

swer, avoiding the hidden reasoning attributes of 305

the question and model’s hidden reasoning. 306

We augment the original question Q with Kprior 307

to construct Qaug = Q⊕Kprior. The KBA is com- 308

puted as: 309

KBA =
1

N

N∑
i=1

I

(
argmax

A∈A
P (A|Q(i)

aug) = A
(i)
gt

)
(3) 310

where I(·) is the indicator function, N is the 311

total number of samples, and A
(i)
gt is the ground- 312

truth answer for the i-th question. This metric 313

provides necessary knowledge to isolate the 314

model’s reasoning ability. It allows for a purer 315
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evaluation of the model’s ability to retrieve correct316

answers based on question knowledge and prior317

knowledge, excluding the reasoning attributes.318

Compared to the Accuracy, it can also assess the319

impact of reasoning attributes on model perfor-320

mance. We further discuss this point in Section 4.3.321

322

Marginal Sampling Gain By sampling, we can323

start from the question, generate diverse interme-324

diate reasoning processes, and eventually arrive at325

a solution. However, sampling not only increases326

computational costs but also does not guarantee327

that the correct answer will be obtained. To ad-328

dress this issue, we introduce Marginal Sampling329

Gain (MSG) as a metric to evaluate the overall sam-330

pling performance of the model in the sampling331

reasoning space.332

MSG(K) = Acc(K)− Acc(K − 1) (4)333

Here, Acc(K) represents the accuracy achieved334

after K sampling trials per question in the dataset.335

When MSG(K) < τ (a predefined threshold), it336

indicates that the model has reached its limit of rea-337

soning capacity improvement through additional338

sampling. This implies that the accuracy gain for339

the given benchmark is approximately bounded340

by Acc(K) at the marginal gain threshold τ .341

Consequently, K serves as a reasonable threshold342

for the number of sampling trials, beyond which343

further sampling returns in an unacceptable level344

of diminishing returns.345

346

Knowledge Coverage Ratio The evaluation of347

the quality of single reasoning sampling is also crit-348

ical. Numerical validation methods for assessing349

reasoning steps are not applicable to most common-350

sense problems, as these are mostly non-numerical.351

Therefore, the coverage of essential knowledge in352

the reasoning steps becomes a natural choice for353

evaluation.354

For single sampling, the Knowledge Coverage355

Ratio (KCR) evaluates single-path reasoning qual-356

ity:357

KCR(Si) =
|K(Si) ∩ Kprior|

|Kprior|
(5)358

Here, the formula calculates the ratio of the inter-359

section between the knowledge set K(Si) derived360

from the reasoning path Si and the prior knowledge361

set Kprior, relative to the size of Kprior. A higher362

KCR value indicates that the reasoning paths align363

more closely with the critical knowledge required364

for the task, ensuring high-quality reasoning.365

3.3 Refining benchmark in training 366

To further improve training effectiveness, we parti- 367

tion the data into individual difficulty levels based 368

on reasoning attributes. Inspired by curriculum 369

learning (Bengio et al., 2009), we design a pro- 370

gressive training strategy that allows the model 371

to transition gradually from simpler to more com- 372

plex commonsense question-answering tasks. This 373

structured approach outperforms random shuffled 374

data distribution in handling data with varying rea- 375

soning difficulties. 376

Specifically, we define L difficulty levels 377

D1,D2, . . . ,DL, where: 378

Dl = {Q | d(Q) = l}. (6) 379

The training sequence follows: 380

Dtrain = D1 → D2 → · · · → DL. (7) 381

During sampling, we use dynamic weighting to 382

address data imbalance and ensure diversity. 383

4 Experiments and Analysis 384

4.1 Datasets and experimental setup 385

We evaluate our framework on two categories of 386

commonsense benchmarks, which are knowledge- 387

oriented and reasoning-oriented. Common- 388

senseQA (Talmor et al., 2019) and OpenBookQA 389

(Mihaylov et al., 2018) focus on factual knowl- 390

edge retrieval. Specifically, CommonsenseQA tests 391

minimal reasoning over factual knowledge, while 392

OpenBookQA combines core scientific facts with 393

crowdsourced multiple-choice questions. In con- 394

trast, ARC (Clark et al., 2018) and QASC (Khot 395

et al., 2020) emphasize complex multi-step reason- 396

ing. ARC contains challenging science questions 397

requiring multi-step inference, and QASC involves 398

integrating multiple facts for multi-hop inference. 399

All datasets exhibit varying levels of hidden rea- 400

soning attributes, and only the challenge subset of 401

ARC is used in our evaluation. 402

All experiments employ consistent prompts and 403

are conducted on Llama3.1-8B (Dubey et al., 404

2024), Gemma2-9B (Rivière et al., 2024), Gemma- 405

7b (Mesnard et al., 2024), and Llama2-7B (Touvron 406

et al., 2023). We employ LoRA (Hu et al., 2022) 407

for efficient training. For sampling, both greedy 408

and random (with temperature 0.7) methods are 409

used. Hidden reasoning attributes of commonsense 410

data are generated by Llama3.1-8B and serve as 411

the sole basis. Knowledge similarity for coverage 412
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Figure 3: Sliding window accuracy of Llama3.1 and Gemma2 on commonsense benchmarks. The x-axis represents
the knowledge number required to answer questions, calculated from Kprior.

calculation is computed using all-MiniLm-L6-v2413

(Wang et al., 2020).414

4.2 Impact analysis of hidden reasoning415

attributes416

We analyze the accuracy changes of different mod-417

els across reasoning difficulties d(Q) to examine418

the impact of hidden reasoning attributes. The vali-419

dation set is sorted by d(Q), from easy to hard. A420

sliding window approach is used to calculate LLM421

accuracy without reasoning: the window length422

is one-third of the dataset size, and the step size423

is one-third of the window length. The accuracy424

difference between the first window (starting point,425

Easy part) and the last window (endpoint, Hard426

part) reflects model performance on data with vary-427

ing hidden reasoning attributes. The Easy part con-428

tains more low-reasoning data, while the Hard part429

contains more high-reasoning data.430

In Figure 3, the y-axis shows accuracy, and the431

x-axis shows knowledge levels corresponding to432

d(Q). Both Llama3.1 and Gemma2 exhibit de-433

clining accuracy as d(Q) increases across datasets.434

This highlights the consistent correlation between435

hidden reasoning difficulty and lower accuracy in436

LLM benchmarks. Traditional benchmarks often437

overlook this, making it hard to analyze reasoning438

and knowledge proportions in incorrect responses439

based on basic accuracy alone.440

Further experiments in Table 1 and Table 3 show441

that the accuracy gap between Easy and Hard cases442

persists post-training. In CommonsenseQA, for443

Llama3.1, the accuracy gap is 24.8% pre-training444

and 12.7% post-training, with accuracy dropping445

from 84.1% (Easy) to 59.3% (Hard). Significant446

differences exist for both knowledge-oriented and447

reasoning-oriented benchmarks, emphasizing the448

importance of hidden reasoning properties. These449

findings confirm that hidden reasoning influences 450

all aspects of model evaluation and training. 451

Dataset Model
Accuracy (%)

Difference (%)
Easy Hard

CommonsenseQA

llama3.1 84.1 59.3 24.8
llama3.1† 88.1 75.4 12.7
gemma2 87.3 67.7 19.6
gemma2† 85.1 74.7 10.4

OpenBookQA

llama3.1 88.6 67.5 21.1
llama3.1† 92.8 80.1 12.7
gemma2 92.8 83.1 9.7
gemma2† 96.4 88.6 7.8

ARC

llama3.1 88.9 74.7 14.2
llama3.1† 88.9 84.8 4.1
gemma2 96.0 88.9 7.1
gemma2† 94.9 86.9 8.0

QASC

llama3.1 83.4 68.8 14.6
llama3.1† 87.7 79.9 7.8
gemma2 84.1 70.5 13.6
gemma2† 90.3 78.9 11.4

Table 1: Sliding window accuracy of Llama3.1 and
Gemma2 on different datasets (†indicates trained mod-
els). The sliding window progresses from Easy (first
window) to Hard (last window).

4.3 New metrics in ReComSBench 452

Metric 1: Knowledge Balanced Accuracy 453

KBA evaluates models’ commonsense knowledge 454

capabilities by decoupling the assessment of com- 455

monsense knowledge from reasoning demands 456

through explicit knowledge prompting. During 457

prompting, necessary prior knowledge is explicitly 458

passed to the model to support factual common- 459

sense answering, thereby bypassing hidden reason- 460

ing. 461

We systematically tested Llama2, Llama3.1, 462

Gemma, and Gemma2 models. To mitigate vari- 463

ance from stochastic knowledge selection, all 464

knowledge generated as standard snippets was in- 465

corporated into prompts. KBA demonstrates its 466

ability to evaluate knowledge while mitigating the 467
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Figure 4: KBA curves and basic accuracy curves of Llama and Gemma families on commonsense benchmarks

influence of hidden reasoning attributes in the data.468

As Figure 4 demonstrates, The KBA curve consis-469

tently surpasses and is flatter than the basic accu-470

racy curve across all datasets, confirming its effec-471

tiveness in isolating knowledge assessment from472

reasoning demands. The alignment of KBA and473

basic accuracy curve trends across model genera-474

tions confirms KBA’s equivalent analytical power.475

By analyzing the differences between KBA and476

basic accuracy curves at easy and hard parts, we477

can identify whether knowledge or reasoning has478

a greater impact on accuracy. Larger gaps in the479

easy part indicate insufficient knowledge, while480

larger gaps in the hard part suggest insufficient rea-481

soning. On commonsense benchmarks, previous-482

generation models had deficiencies in both areas,483

while advanced-generation models show more rea-484

soning limitations. These all confirm that KBA485

has unique diagnostic value and can evaluate the486

model from a broader and deeper perspective. For487

more numerical details, please refer to Table 5 in488

Appendix B.489

Dataset Model
MSG(K) (%)

Sum
K=2 K=3 K=4 K=5

CommonsenseQA

llama2 13.4 6.5 4.7 3.0 27.6
llama3.1 9.4 4.0 2.4 1.9 17.7
gemma 5.4 3.1 1.9 0.9 11.3
gemma2 5.8 3.0 1.1 1.1 11.0

OpenBookQA

llama2 11.2 8.0 4.2 2.4 25.8
llama3.1 8.6 3.4 2.8 0.6 15.4
gemma 6.4 3.8 2.2 3.4 15.8
gemma2 7.8 2.6 1.4 0.8 12.6

ARC

llama2 12.0 9.3 5.1 6.0 32.4
llama3.1 7.7 2.4 1.3 0.7 12.1
gemma 6.7 1.6 1.7 2.0 12.0
gemma2 6.4 3.0 1.0 1.0 11.4

QASC

llama2 12.6 6.7 4.1 4.3 27.7
llama3.1 14.7 4.5 2.3 1.0 22.5
gemma 6.2 3.4 1.7 1.6 12.9
gemma2 9.9 4.9 1.6 1.4 17.8

Table 2: MSG and sum for different models on com-
monsense benchmarks

Metric 2: Marginal Sampling Gain An ideal 490

high-performance model maintains low MSG val- 491

ues at high accuracy levels, demonstrating confi- 492

dence. Conversely, the combination of low accu- 493

racy with high MSG indicates suboptimal model 494

performance. We sample K times of inference on 495

models in the commonsense benchmark, where the 496

first sampling is greedy sampling, and calculate the 497

model accuracy under pass@K and MSG(K). As 498

show in Table 2, our analysis of Llama and Gemma 499

model families reveals progressively diminishing 500

MSG values across iterations. Specifically, when 501

K = 5, the improvement in accuracy is close to 1%. 502

Notably, advanced models in each series demon- 503

strate lower MSG values indicating enhanced confi- 504

dence (e.g., MSG(3): Llama3.1 at 2.3% vs. Llama2 505

at 9.3% in ARC). The difference in MSG metric is 506

consistent with the performance differences of dif- 507

ferent generations of models. This is because MSG 508

metric effectively evaluate the model’s sampling 509

level in the reasoning sampling space. 510

Metric 3: Knowledge Coverage Ratio KCR 511

can effectively evaluate the quality of sampled com- 512

monsense reasoning. In our experiments, we cal- 513

culated the knowledge coverage of all inferences 514

made by the Llama3.1 model on the commonsense 515

benchmarks, with a sampling size of 5. The similar- 516

ity threshold for determining whether knowledge 517

is similar was set to 0.75. Based on the correctness 518

of answer, we grouped the data into correct and 519

incorrect groups and plotted the boxplots shown 520

in Figure 5. In the boxplots, the median knowl- 521

edge coverage of the correct group is consistently 522

higher than that of the incorrect group across all 523

four datasets. Additionally, the U-statistic test indi- 524

cates a substantial advantage for the correct group, 525

with p < 0.05. These results demonstrate the ef- 526

fectiveness of knowledge coverage as a metric for 527
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Method
CommonsenseQA (%) OpenBookQA (%) ARC (%) QASC (%)

Acc. KBA ∆ ∆∗ Acc. KBA ∆ ∆∗ Acc. KBA ∆ ∆∗ Acc. KBA ∆ ∆∗

Base 73.2 83.8 24.8 6.9 79.4 87.2 21.1 10.8 81.3 92.0 14.1 0.0 78.0 88.2 14.6 6.2
RandSample 82.4 87.1 14.6 8.9 86.4 92.8 9.6 6.0 81.9 90.6 7.1 2.0 84.4 89.0 8.4 6.8
Score-CL 81.4 87.1 15.1 7.9 86.4 93.2 12.7 5.4 85.6 90.7 5.1 4.0 86.3 90.2 9.7 2.6
Reason-CL 82.7 88.2 13.4 7.9 86.8 92.8 7.2 5.4 85.3 92.3 1.0 5.1 86.6 88.0 7.5 4.5

Table 3: Performance comparison of different training strategies (Score-CL: score-based curriculum learning using
model’s negative log-likelihood scores; Reason-CL: reasoning-based curriculum learning) across four datasets.
Metrics include: Accuracy (Acc.), Knowledge Balanced Accuracy (KBA), Easy/Hard accuracy difference (∆), and
its knowledge balanced version (∆∗).

CommonsenseQA OpenBookQA ARC QASC

K
C

R

Correct Incorrect

100%

80%

60%

40%

20%

0%

Figure 5: Boxplot of Knowledge Coverage Ratio differ-
ences between correct and incorrect reasoning groups
on commonsense benchmarks

evaluating reasoning quality and highlight the im-528

portance of knowledge generation during the rea-529

soning process.530

4.4 Stratified data for training531

To evaluate the effectiveness of difficulty stratifica-532

tion based on reasoning attributes, we conducted533

experiments using the Llama3.1 model as the base534

model. We compared four training strategies: (1)535

base model performance, (2) random sampling, (3)536

curriculum learning based on data score difficulty,537

and (4) curriculum learning based on data reason-538

ing difficulty. Here, data reasoning difficulty was539

defined by the number of knowledge elements in540

hidden reasoning attributes (proposed in this study),541

while data score difficulty was calculated using the542

negative log-likelihood scores of correct answers543

from Llama3.1, following the approach of Maha-544

rana and Bansal (2022).545

As shown in Table 3, training with difficulty546

stratification based on reasoning attributes achieves547

performance improvements comparable to those of548

model-probability-based stratification. By leverag-549

ing the hidden reasoning attributes in the data, the550

model performs stronger on datasets (e.g., Com-551

monsenseQA, OpenBookQA) that require hidden552

reasoning perception. Notably, across all datasets,553

the model trained with hidden reasoning attributes554

exhibits the smallest difference δ between Easy 555

and Hard accuracies, indicating its enhanced focus 556

on high-reasoning-difficulty samples. This demon- 557

strates the method’s generality and effectiveness 558

in improving reasoning capabilities. Thus, these 559

results indicate that integrating hidden reasoning 560

attributes into data organization strategies may en- 561

hance model performance and reasoning capabili- 562

ties. 563

5 Conclusion 564

Simple commonsense data may still require reason- 565

ing to arrive at the correct answer, which aligns 566

with the hidden reasoning phenomena observed 567

in LLMs. This characteristic makes existing com- 568

monsense benchmarks insufficient for distinguish- 569

ing whether a model’s poor performance is due to a 570

lack of commonsense knowledge or inadequate rea- 571

soning ability. In this study, we explored the hidden 572

reasoning attributes within commonsense bench- 573

marks. Our findings confirmed that these attributes 574

significantly impact the evaluation and training of a 575

model’s commonsense capabilities. To address this 576

challenge, we proposed ReComSBench, a frame- 577

work for refining existing commonsense bench- 578

marks. ReComSBench transforms the differences 579

in hidden reasoning attributes within benchmark 580

data into explicit representations of reasoning and 581

knowledge. It not only identifies variations in rea- 582

soning difficulty of "simple" commonsense QA but 583

also introduces three specialized metrics designed 584

to decouple and deeply evaluate a model’s common- 585

sense knowledge and reasoning abilities. Through 586

experiments, we validated the effectiveness of these 587

metrics and demonstrated the feasibility of leverag- 588

ing the hidden reasoning attributes in benchmark 589

data to enhance a model’s commonsense capabili- 590

ties. 591
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Limitations592

The limitations of the proposed method lie in the593

fact that a Large Language Model is used to au-594

tomatically generate the prior knowledge required595

for answering questions. Thus, this approach is596

still not entirely model-independent. Compared597

to methods that assess question difficulty based598

on model probabilities, the difference in overall599

performance improvement is less significant than600

expected, although it still shows advantages on601

reasoning-related data. Moreover, the prior knowl-602

edge generated by the model does not fully rep-603

resent the actual prior knowledge required for the604

questions. However, within the scope of bench-605

mark data, it can still reflect the overall reasoning606

properties and differences of the data. Addition-607

ally, the Marginal Sampling Gain (MSG) metric608

involves randomness in sampling, leading to poten-609

tial result fluctuations, though these still indicate610

model sampling performance. For future work, ex-611

tending ReComSBench to areas such as empathetic612

dialogue or legal reasoning could test its generaliz-613

ability and improve the metrics.614

Ethical Considerations615

Our work aims to improve the evaluation of LLMs’616

commonsense abilities, which could lead to more617

reliable and robust AI systems. However, there are618

potential ethical concerns that warrant discussion.619

First, the use of LLMs for generating prior knowl-620

edge may inadvertently propagate biases present621

in the training data. To mitigate this, we recom-622

mend incorporating diverse datasets and regularly623

auditing model outputs for fairness and inclusiv-624

ity. Second, our framework relies on benchmark625

datasets that may not fully represent real-world626

scenarios. Therefore, when applying the evalua-627

tion results to real-world application scenarios, the628

specific needs and limitations of the target domain629

need to be carefully considered.630
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A Prompt Templates1118

In this appendix, as show on Figure 4, we list the1119

prompt templates used in this document along with1120

their corresponding purposes. Large language mod-1121

els may be sensitive to differences in prompts, so1122

we use a consistent prompt template.1123

Prompt Template and Purpose

Template: Please read the multiple-choice question below
carefully and select ONE of the listed options. Provide the
final answer starting with ’The correct answer is OPTION’.
{QA}.
Purpose: To guide the model directly choose the answer.

Template: Please read the multiple-choice question below
carefully and select ONE of the listed options. Let’s think
step by step. Each step should start with ’THOUGHT:’.
After all thoughts, provide the final answer starting with
’The correct answer is OPTION’. {QA}.
Purpose: To guide the model choose the answer inferen-
tially.

Template: "Please read the multiple-choice question below
carefully and select ONE of the listed options. Provide the
final answer starting with ’The correct answer is OPTION’.
Knowledge hints: {HINT}\n{QA}".
Purpose: To guide the model choose the answer under the
knowledge hints.

Template: You are an expert in knowledge extraction.
Please extract knowledge from text in the form of triples
(subject, predicate, object).
Guidelines:
1. Extract only knowledge explicitly stated in the text.
Do not infer or derive information from context, common
sense, or options unless explicitly mentioned.
2. Avoid overgeneralization or assumptions. Stick strictly
to what is directly expressed in the text.
3. If no knowledge is extractable, return an empty list.
Format:
Return the extracted knowledge in JSON format under
the key extracted_knowledge. Use an empty list if no
knowledge is extractable.
Examples:
{FEW_SHOT}
Now, extract knowledge from the following text:
{TEXT}.
Purpose: To guide the model so that it can extract knowl-
edge properly and in a valid style.

Table 4: Prompt templates and their purposes

B Details of Experiments1124

We provide additional details of the experimen-1125

tal results here. Table 5 shows the numerical data1126

corresponding to Figure 4. By comparing the differ-1127

ences (diff), we observe that the accuracy changes1128

are generally smaller after knowledge balancing.1129

Moreover, the improvement in KBA overall accu-1130

racy is more concentrated in the Hard part, where1131

the Hard part’s accuracy increases more than the1132

Easy part, making the KBA curve in Figure 4 flatter.1133

We define the Easy and Hard parts as the first and 1134

last window values, rather than the maximum and 1135

minimum values within the sliding window. These 1136

findings demonstrate that the KBA metric provides 1137

additional insights into model performance beyond 1138

standard accuracy. 1139

Table 6 additionally shows the pass@K 1140

(Acc(K)) required before computing MSG. For the 1141

Knowledge Coverage Ratio, the U statistic is signif- 1142

icant, as shown in Figure 7. The horizontal axis is 1143

the similarity threshold that measures whether the 1144

knowledge is similar. It can be seen that the advan- 1145

tage is significant under most thresholds. We also 1146

analyzed the redundancy of knowledge, defined as 1147

the proportion of dissimilar knowledge generated 1148

during inference. As shown in Figure 6, correct 1149

groups have higher redundancy. However, since 1150

redundancy has no upper limit and increases with 1151

more generated knowledge, its reference value is 1152

slightly lower than coverage. 1153
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Figure 6: Boxplot of Knowledge Redundancy Ratio differences between correct and incorrect reasoning groups on
commonsense benchmarks

(a) CommonsenseQA Dataset (b) OpenBookQA Dataset

(c) ARC Dataset (d) QASC Dataset

Figure 7: U statistic for knowledge coverage (upper) and redundancy (lower) under different similarity thresholds in
four datasets. The left axis shows statistical advantage, while the right axis shows P values.
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Dataset Model
Accuracy (%) KBA (%)

Overall Easy Hard Diff Overall Easy Hard Diff

CommonsenseQA

llama2 47.4 52.6 43.7 8.9 60.3 66.0 50.6 15.4
llama3.1 73.2 84.1 59.3 24.8 83.8 87.8 80.9 6.9
gemma 66.6 71.0 59.3 11.7 70.6 75.9 64.0 11.9
gemma2 79.7 87.3 67.7 19.6 83.6 83.1 82.9 0.2

OpenBookQA

llama2 42.8 52.4 31.3 21.1 56.4 66.3 46.4 19.9
llama3.1 79.4 88.6 67.5 21.1 87.2 90.4 79.5 10.8
gemma 61.0 66.3 57.2 9.1 65.8 67.5 63.3 4.2
gemma2 87.0 92.8 83.1 9.7 88.4 92.8 83.1 9.6

ARC

llama2 45.8 50.5 40.4 10.1 56.2 58.6 47.5 11.1
llama3.1 81.3 88.9 74.7 14.1 92.0 91.9 91.9 0.0
gemma 65.2 61.6 68.7 -7.1 74.9 73.7 74.7 -1.0
gemma2 91.3 96.0 88.9 7.1 92.3 93.9 92.9 1.0

QASC

llama2 43.5 46.1 37.7 8.4 62.7 66.9 52.6 14.3
llama3.1 78.0 83.4 68.8 14.6 88.2 89.9 83.8 6.2
gemma 65.0 70.5 56.5 14.0 67.8 68.5 64.6 3.9
gemma2 79.6 84.1 70.5 13.6 81.4 76.0 80.8 -4.9

Table 5: Accuracy and KBA for different models on commonsense benchmarks

Dataset Model
Accuracy (%) MSG(K) (%)

pass@1 pass@2 pass@3 pass@4 pass@5 K=2 K=3 K=4 K=5

CommonsenseQA

llama2 52.8 66.2 72.7 77.4 80.4 13.4 6.5 4.7 3.0
llama3.1 71.0 80.4 84.4 86.8 88.7 9.4 4.0 2.4 1.9
gemma 65.4 70.8 73.9 75.8 76.7 5.4 3.1 1.9 0.9
gemma2 75.4 81.2 84.2 85.3 86.4 5.8 3.0 1.1 1.1

OpenBookQA

llama2 53.4 64.6 72.6 76.8 79.2 11.2 8.0 4.2 2.4
llama3.1 79.8 88.4 91.8 94.6 95.2 8.6 3.4 2.8 0.6
gemma 61.6 68.0 71.8 74.0 77.4 6.4 3.8 2.2 3.4
gemma2 80.0 87.8 90.4 91.8 92.6 7.8 2.6 1.4 0.8

ARC

llama2 50.2 62.2 71.5 76.6 82.6 12.0 9.3 5.1 6.0
llama3.1 82.9 90.6 93.0 94.3 95.0 7.7 2.4 1.3 0.7
gemma 65.9 72.6 74.2 75.9 77.9 6.7 1.6 1.7 2.0
gemma2 83.6 90.0 93.0 94.0 95.0 6.4 3.0 1.0 1.0

QASC

llama2 43.1 55.7 62.4 66.5 70.8 12.6 6.7 4.1 4.3
llama3.1 69.9 84.6 89.1 91.4 92.4 14.7 4.5 2.3 1.0
gemma 61.4 67.6 71.0 72.7 74.3 6.2 3.4 1.7 1.6
gemma2 66.8 76.7 81.6 83.2 84.6 9.9 4.9 1.6 1.4

Table 6: Accuracy and MSG for different models on commonsense benchmarks
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