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ABSTRACT

Adversarial training has emerged as a popular approach for training models that
are robust to inference time attacks. However, our theoretical understanding of
why and when it works remains limited. Prior work has offered convergence
analysis of adversarial training, but they are either restricted to the Neural Tangent
Kernel (NTK) regime or make restrictive assumptions about data such as linearly
realizability. In this work, we provide convergence and generalization guarantees
for adversarial training of two-layer networks of any width on non-separable data.
Our analysis goes beyond the NTK regime and holds for both smooth and non-
smooth activation functions. We support our theoretical findings with an empirical
study on synthetic and real-world data.

1 INTRODUCTION

Machine learning models are ubiquitous in real-world applications, achieving state-of-the-art perfor-
mance on various tasks such as image classification and speech recognition. However, several recent
studies have shown that these models, especially those based on deep neural networks, are highly
vulnerable to small, nearly imperceptible, albeit strategic, perturbation of data. These perturbations,
called adversarial examples, are abundant and easy to find computationally (Bubeck et al., 2021;
Wang et al., 2022). The potential of such adversarial attacks to substantially degrade the performance
of an otherwise well-performing model has been a source of significant concern regarding deploying
machine learning models in real-world systems. It is no surprise, then, that developing algorithms that
can provably defend against such attacks and are guaranteed to improve the robustness of machine
learning has gained tremendous traction in recent years.

One of the most prominent empirical defense algorithms against inference-time attacks is the adver-
sarial training method of Madry et al. (2018). Adversarial training proceeds by simulating attacks as
part of training — generating adversarial examples from (clean) training examples and using them to
train a neural network. We can view adversarial training as a two-player game, wherein the learner
seeks to minimize their error on the training set while an adversary strives to maximize the error by
crafting small strategic corruptions of the input training examples. Several empirical studies show
that by using adversarial training, the learner returns a model that is more resilient to perturbations in
the input space (Madry et al., 2018; Shafahi et al., 2019b; Dong et al., 2020; Pang et al., 2021).

Despite the empirical success of adversarial training, our understanding of its theoretical under-
pinnings is far from complete. Several prior works study statistical and computational aspects of
adversarial training but in somewhat restrictive settings; e.g., assuming linear separability of data (Mi-
anjy and Arora, 2022), or essentially assuming away nonconvexity of neural networks by considering
an overly parametrized regime wherein the trajectory dynamics are in the lazy regime (aka, the neural
tangent kernel or the NTK setting) (Gao et al., 2019; Zhang et al., 2020; Li and Telgarsky, 2023).
In this paper, we forego these simplifying assumptions and present theoretical convergence and
generalization guarantees for adversarial training on two-layer neural networks, of any width, on
non-separable data. Our key contributions are as follows.

1. We establish convergence guarantees for adversarial training of two-layer neural networks. We
allow the network to be of arbitrary width thereby extending our results to networks beyond the
NTK regime. Furthermore, we do not make any assumptions about the separability or robust
realizability of data.
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2. We provide generalization guarantees on both the clean test error and the robust test error. For
a moderately large network, we show that for norm-bounded additive adversarial attacks, if the
perturbation budget is not too large, the robust test error approximates the label noise rate. For
adversarial attacks with a large perturbation budget, we show that the robust test error is bounded
from below by a constant.

3. We validate our theoretical results with experiments on both synthetic and real-world datasets.

1.1 RELATED WORK

Convergence Analysis of Standard Training. Several recent works study the convergence of
(stochastic) gradient descent for training neural networks (Arora et al., 2019; Allen-Zhu et al., 2019;
Cao and Gu, 2019). Most of these works focus on a lazy training regime wherein the network
weights remain close to initialization through the run of the algorithm (owing to an extreme over-
parametrization); this is also referred to as the neural tangent kernel (NTK) setting. While interesting
from a theoretical perspective (we essentially end up with a convex learning problem), this assumption
is typically violated in practice. Analyzing SGD beyond the NTK setting is much more challenging
owing to the non-convexity of learning problems associated with training neural networks of arbitrary
widths. There has been some progress toward addressing this challenge — Frei et al. (2022) provide
a first guarantee for finite-width neural networks trained on logistic loss for data drawn from a
Gaussian mixture model. Concurrently, Cao et al. (2022) characterize the generalization guarantees
of two-layer convolutional neural networks, assuming that the input data is a sum of a label-dependent
signal patch and a label-independent noise patch. While both of the works above consider a smooth
activation function, follow-up works by Kou et al. (2023); Xu and Gu (2023) extend the result to
SGD for training neural networks with non-smooth activation functions (e.g., ReLU networks).

Convergence Analysis of Adversarial Training. Adversarial training, introduced by Madry et al.
(2018), is one of the most popular algorithms for training models that are robust to adversarial
attacks. Subsequent works have explored variants, including the TRADES (Zhang et al., 2019) and
MART (Wang et al., 2020) algorithms. Despite their success, a theoretical understanding of why
and when adversarial training succeeds remains elusive. Much of the recent work (Charles et al.,
2019; Li et al., 2020; Zou et al., 2021; Chen et al., 2021) has focused on studying adversarial training
of linear models wherein the adversarial examples are given in a simple closed-form expression —
this simplifies the problem greatly reducing it to standard training. Adversarial training of neural
networks was analyzed by Gao et al. (2019) and further improved by Zhang et al. (2020); however,
both of these works focus on ensuring convergence of the training procedure and do not provide
generalization guarantees on robust loss. This gap has been addressed in very recent work by Li and
Telgarsky (2023). However, the work of Li and Telgarsky (2023), and the prior work all focus on
the lazy training regime, which, unfortunately, has been proven to be at odds with robustness Wang
et al. (2022). Finally, Mianjy and Arora (2022) provide an end-to-end analysis of adversarial training
beyond the NTK setting with a variant of adversarial training that involves using a slightly different
(reflected) loss for the inner loop maximization problem (for finding an attack vector as part of
adversarial training). The results of Mianjy and Arora (2022) are limited to distributions that are
robustly realizable.

Our work builds on that of Frei et al. (2022) and considers a high-dimensional setting for a class-
conditional model; the data model, as well as various other data assumptions we need, were first
introduced and studied in Chatterji and Long (2021). While our proof techniques are inspired by Frei
et al. (2022), we differ in many respects. To the best of our knowledge, ours is the first work that
provides the convergence and generalization guarantees for adversarial training for a non-separable
data distribution. We consider neural networks with both smooth and non-smooth activation functions,
e.g., ReLU networks; the analysis of Frei et al. (2022) is limited to smooth activation functions.
Additionally, unlike prior works (Gao et al., 2019; Zhang et al., 2020; Li and Telgarsky, 2023) that are
limited to the NTK setting, our guarantees hold for neural networks of arbitrary width and analyze
GD-based adversarial training in the rich regime (i.e., beyond the lazy regime).

2 PRELIMINARIES

Notation Throughout the paper, we denote scalars, vectors, and matrices with lowercase italics,
lowercase bold, and uppercase bold Roman letters, respectively; e.g., u, u, and U. We use [m]
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to denote the set {1,2,...,m} and use both || - || and || - ||2 for 3-norm. Given a matrix U =
[ui,...,u,) € R™, weuse ||U||p and ||U|, to represent the Frobenius norm and spectral norm,
respectively. We use Ba(u, ) to denote the /5 ball centered at u € R? of radius . We use the
standard O-notation (O, © and (2).

2.1 PROBLEM SETUP

We focus on binary classification and denote the input space and label space as X = R, ) = {+1},
respectively. We assume that the data are drawn from a noisy mixture data distribution D on X x Y
that, along with its variants, has been studied in several recent works (Chatterji and Long, 2021; Cao
et al., 2021; Frei et al., 2022). Formally, we consider the following data distribution.

Definition (Data Distribution). Let D, be a A-strongly log-concave distribution over R¢ for some

A > 0. We assume that Dejyg = Dc(llu)s[ X -ee X Défi)st is a product distribution whose marginals are all

mean-zero with the sub-Gaussian norm at most one. We further assume that E¢.p,,[||¢ %] > kd
holds for some 0 < k < 1. Let D, be a distribution over X’ x ). We first draw a sample (x., y.) ~ D,
by sampling y. € {£1} uniformly at random, sampling & ~ Dy, and setting x. = y.u + €. Given
anoise rate 5 > 0, we define our true data distribution D to be any distribution over X x ) such that
the marginal distribution of D and D, on X are the same, and the total variation distance between the
two distributions is bounded by 3, i.e., drv(D., D) < S.

The standard coupling lemma states that given two distributions D and D, over the same domain
Z = X x )Y, there exists a joint distribution over Z x Z such that the marginals along the projections
(2,2') = zand (2, 2') — 2’ are D and D, respectively. Given that the marginal on X for D and D..
are the same (see the definition above), this implies that for (x,y) ~ D, (X¢, Ye) ~ De, P(x = %) = 1
and P(y # y.) < (. The definition above includes two settings: 1) Independent label flip, where for
each sample, label y is obtained by flipping y. with probability at most 3, independent of how other
labels are generated; 2) Non-independent label flip, where there exists potential correlations between
labels y. A yet another special instance that has been studied extensively in the adversarial learning
literature is that of Gaussian distribution (Javanmard et al., 2020; Dobriban et al., 2020; Dan et al.,
2020) which is a special case of the data generative model above for 8 = 0.

Hypothesis Class. We focus on learning two-layer neural networks defined as: f(x; W) :=
\/% Som as¢((ws, X)) where m is an even integer representing the number of hidden nodes

and ¢ : R — R is an activation function. The weight matrix at the bottom layer is denoted

as W = [wy,...,w,,] € R¥™ and the weight vector at the top layer by a = [ay,...,a,,] =
[1,...,1,—1,...,—1] € R™. The top layer weight vector a is kept fixed throughout the training
process. The weight vectors at the bottom layer are initialized randomly as w2 ~ N(0, w?, 1), for
s € {1,...,2}, and setting w0 = wgf% for s € {% +1,...,m}. This ensures symmetry at

initialization and yields f(x; W") = 0 for all x. This symmetric initialization technique is commonly
used in related work (Langer, 2021; Bartlett et al., 2021; Montanari and Zhong, 2022) and we employ
here for analytical purposes.

Training Data. We are given a training data of size n sampled i.i.d. from the noisy data distribution,
S = {(xi,¥i)};—; ~ D. Let C denote the set of indices of training data corresponding to the clean
labels; i.e., for i € C, we have that (x;,y;) ~ D,; similarly, let A/ to denote the set of indices
corresponding to noisy labels; i.e., (x;, —y;) ~ D, forall i € N.

Loss Function. The 0-1 loss of a predictor f(-,W) on a data point (x,y) is defined as

O/ ((x,y); W) = 1 (yf (x; W) < 0), where 1(-) is the indicator function. For computational reasons,
as is typical, we use the logistic loss, denoted ¢(z) = log (1 + exp (—z)), to train the two-layer
neural networks. The population and the empirical loss w.r.t. £(-) are denoted as:

n

L(W) = Eguyynl(f (W), and (W) := + 3™ 0y (i W),
i=1

Robust Loss. We consider /5 norm-bounded adversarial attacks with a perturbation budget of
size a > 0. The set of all such perturbations for an input example x € X is represented by

Ba(x, o). This threat model motivates minimizing the robust 0-1 loss defined as é?o/bl ((x,9); W) =



Under review as a conference paper at ICLR 2024

maxXzes, (x,a) 1(yf(X; W) < 0). The population and empirical risk w.r.t. the 0-1 loss and the robust

0-1 loss, respectively, are denoted as L°/1, LY L L?U/bl, and E?O/bl. Analogously, the population and

empirical risk w.r.t. the (surrogate) logistic loss ¢(-) are defined as:

n

~ 1
Liop(W) := E(x )~ / X; W)),and L;op(W) := — Ly f (X3 W)).
rob(W) (o)~ max (yf(X;W)) , and Liop(W) n 2 [ hax (yi f (Xi; W)

Note that we are ultimately interested in bounding the O-1 loss and its robust variant.

Adversarial Training. The gradient Algorithm 1 Gradient Descent-based Adversarial
descent-based adversarial training algorithm  Trajning

is presented in Algorithm 1. We denote the
adversarial training example for some input

Input: Step size 1), perturbation budget per sample cv. Num-
ber of iterations 7.

x; given model parameter W, at round £ as  {. Initialize W° randomly.
X, = argmaxg,cp,(xi,a) (Wif(Xi; W) = 2. fort=0,...,7 — 1 do
‘e (% W 3: fori=1,...,ndo
arg mMing; e B, (x;,a) i f(Xi; W). N Vi -
? 4: Xi = arg maxs, e, (x;,a) L(yi f (Xi; WH)).

5: end for

3 MAIN RESULT 6:  Update W' = W' — 25 y(y; f(x5; W'))
7: end for
8: return: W7

3.1 SMOOTH ACTIVATION FUNCTION

In this section, we consider a strictly increasing, 1-Lipschitz, H-smooth activation function that is
approximately homogeneous with ¢(0) = 0. Formally, there exists v, H > 0,0 < ¢ < 1,¢; >
0, co > 0 such that

0<~<d¢(z) <1,¢(2)is H-Lipschitz , and |¢/(2) - z — ¢(2)| < ¢1 + 2|2 ,Vz € R.

Smooth activation functions have been extensively studied both theoretically and empirically (Liu
and Di, 2021; Biswas et al., 2022). One example of such an activation function that satisfies our
condition is the smoothed Leaky ReLLU activation (Frei et al., 2022) defined as follows:

_ 1= 1
'f aHS z 2 H,
PsireLu(2) = ¢ T Hz" + Pz, 2| < 5 . (H
1— 1
V= T 2< g

However, we do need an additional assumption on top of what Frei et al. (2022) require. In particular,
we assume that ¢’(z)z and ¢(z) are close to each other. We argue that this is a mild assumption,
and holds trivially for standard ReLU and Leaky ReLU, with ¢; = ¢3 = 0. For ¢spreLu(2), of Frei
et al. (2022), the assumption holds with ( = 0 with ¢; = 14_—;, and co = 0. The reason we need
this additional assumption is because the neural networks with ¢s;reLu(z) activation function are
no longer homogeneous. Consequently, without the assumption we end up with terms in the upper
bound on the empirical robust risk that depends on the Frobenius norm of the weight matrix (see
Section 4.2 for more details).

We make the following set of assumptions about our problem setup. Specifically, we consider a high
dimensional setting where the dimension d is much larger than the number of training samples n, as
stated below in Assumption (A2). Such a regime is popular in biomedical settings where the data
comes from limited patient information such as MRI or DNA sequence. Assumption (A6) requires a
small initialization to ensure that the first step of adversarial training dominates the behavior of the
neural network, pushing it beyond the lazy training regime. Such initialization technique has also been
introduced in previous work (Ba et al., 2019; Xing et al., 2021). Given that the objective of adversarial
training is to achieve a classifier that is robust against small input perturbations imperceptible to
human eyes, Assumption (A7) is reasonable as it imposes a mild constraint on the attack strength.
Finally, we note that when oo = 0, these assumptions are essentially the same as in Frei et al. (2022).

Assumption 1. Let 6 € (0,1/2). We assume that there exists a positive constant C' such that the
following holds: (A1) The number of samples satisfies n > C'log(1/6). (A2) The dimension

satisfies O max{||ul|>n,n* (log (n/8) +a2)} < d < ||u||* /C. (A3) The signal size satisfies
lul? > Clog(n/é). (A4) noise rate 5 € [0,1/C]. (A5) Step size n < (Cd2(1 + \/%)2)71.
(A6) Initialization variance satisfies winivmd < 7. (A7) Adversarial perturbation ov < 0.99 || ||
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Next we present our main result of this section that describes the effects of adversarial training on
a neural network with smooth activation functions trained on samples from the noisy distribution
D (see Section 2.1). Our findings suggest that, as the we run adversarial training for more epochs,
the robust training loss goes to zero. Furthermore, the clean test error and the robust test error is
approximately equal to the noise rate, provided that the attack strength, «, is small.

Theorem 3.1. Let 0 < ¢ < 5-,6 € (0,1/2). Let ¢ be a y-leaky H-smooth activation with
0<(¢<1 Letk € (0,1), A > 0. Then, given that Assumption 1 holds with some constant C' > 0,

. . . 1 d3 =
there exists a constant ¢ > 0 such that after running Algorithm 1 for 7" > Q ( (W) < )

iterations, we have that with probability at least 1 — 29 over the random initialization and the draw
of an i.i.d. sample of size n, the following holds:

1. The robust training loss satisfies Emb(WT) <e.

2
2. The clean test error satisfies L°/1(WT) < B+ 2exp (—ﬂg'ii’;““ (0.99 — HTGH> )

3. For ﬁ < %, the robust test error satisfies

rob

2

Vel (0.99 B i) 3 i) )
CcVd [l 7 lpl]

For the smooth Leaky ReLLU activation function of Frei et al. (2022), we have the following result.

Corollary 3.2. For any y-leaky H-smooth ReLU activation ¢gy reLu defined in Equation (1), and for
all k € (0,1), A > 0, given Assumption 1 holds, we have that with probability at least 1 — 2§ over
the random initialization and the draws of the samples, the robust training loss satisfies

14+ /(A —7)/Hm* > |

199 ||p|| — 200e) v/7VT

LY WT) < B+ 2exp( — eAllul*

Erob(VVT) S @) <(

3.2 NON-SMOOTH ACTIVATION FUNCTION

Here, we consider a more practical setting where the activation function is no longer smooth. We
consider a homogeneous non-smooth activation function that satisfies the following properties.

#(0)=0,¢'(2)z=¢(2),2z€R; 0<¢'(2) <L, zeR; ¢(2)>v,2>0,7¢€(0,1].
This includes ReLU and Leaky ReL.U activation functions. Additionally, we assume the following.
Assumption 2. Let 6 € (0,1/2). We assume that there exists a positive constant C' such that
the following holds: (B1) The network width satisfies m > C'log(n/d). (B2) The signal
size satisfies ||p| > C max { (21og (md/n5))1/4 , v/ log (n/d)} (B3) The dimension satisfies

d > Cmax{||u||* n,n? (log (n/8) + o?)}. (B4) noise rate 3 € [0,1/C]. (B5) Initialization vari-
ance satisfies wipivVmd < n. (B6) Step size n < (Cdz)’l. (B7) The number of samples satisfies
n > C'log (m/d). (B8) Adversarial perturbation o < /n/d ||p]|.

Assumption (B1) is a relatively mild constraint on the network width. Assumption (B2) is slightly
more stringent compared to Assumption (A3). However, it is worth noting that in the clean setting,

the minimax generalization error is at least O (exp (— min (H ull?n |t/ d))) (Giraud and

Verzelen, 2019), implying that Assumption(B2) is unavoidable up to logarithmic factors if we desire
a classifier with good generalization. Assumptions (B7) and (B8) are also more restrictive compared
to Assumptions (A1) and (A7), respectively. These assumptions ensure the presence of sufficient
number of neurons to have positive activation at the initial stage of adversarial training, which is a
crucial aspect of our analysis in terms of relaxing the requirement of a smooth activation function, as
opposed to Section 3.1. The analogous result to Theorem 3.1 is presented below.

Theorem 3.3. Let0 < & < 5=, 6 € (0,1/2). Let ¢ be a non-smooth activation with v € (0, 1]. Let
k € (0,1), A > 0. Then, given that Assumption 2 holds with some constant C' > 0, there exists

-2
a constant ¢ > 0 such that after running Algorithm 1 for T" > Q(( (199 |||l — 200cx) 7\/ﬁ5) )

iterations, we have that with probability at least 1 — 2§ over the random initialization and the draw of
an i.i.d. sample of size n, the following holds:
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1. The robust training loss satisfies Emb (WT) <e.
2
2. The clean test error satisfies L°/'(WT) < 8 4 2exp (—% (1 — i) )

) o o el :
3. For Tl < Tallaleova’ the robust test error satisfies

LYY WT) < B+ 2exp( — A |p? (\/Cﬁx/gn (1 - ﬁ) B |£||)2>'

3.3 DISCUSSION

Theorems 3.1 and 3.3 suggest an interesting interplay between the parameters d, n, and ||| as
dmax(l,az)
el (sl —a)?
, the clean test error is also guaranteed to

described in Assumptions 1 and 2. Importantly, when n > Q( ), it ensures a small

robust test error. Furthermore, when n > Q (m)

be small. In cases where o = 0, Theorem 3.1 and 3.3 recover the results in the standard setting (Frei
et al., 2022; Xu and Gu, 2023). Compared to the standard setting, we pay an additional price

2
proportional to % in terms of the sample size. It is worth noting that both the clean test

error and the robust test error decrease as n/d increases or the attack strength ﬁ decreases, which
is consistent with the findings in previous literature (Schmidt et al., 2018; Shafahi et al., 2019a).

Next, we provide a lower bound on the robust test error that is independent of the algorithm as well
as the hypothesis class.

Theorem 3.4. We consider independent label flip with probability 5. Let p(x) be the density
function of Dgy. For any given classifier f(-; W), when o < ||u||, we have Lroo/b1 (W) > 8+

1*42/3 Jpa min{p(&),p(§ 4+ v)}dE, where v =2 (1 — o/ ||p||) pr- When o > || ]|, the robust test error

satisfies Lo/l(W) > 0.5.

rob

Consider the special instance of when D, is a standard Gaussian distribution. Theorem 3.4 recovers
the optimal risk in Dobriban et al. (2020) up to a scaling factor when 8 = 0. Moreover, the upper
bound on the robust test error (denoted as UBD) that we provide in Theorems 3.1 and 3.3 and the lower

bound (denoted as LBD) in 3.4 satisfy the following relationship: (UBD—3) = (LBD—3)©®llull*/d),
2
When % =Q(1),a < O(]|p]]), our upper bound roughly matches the lower bound.

Overfitting with Adversarial Training. Recent empirical studies have observed overfitting with
adversarial training, wherein the robust training loss continues to decrease with the number of
epochs, whereas the robust test error first decreases and then starts increasing (Rice et al., 2020).
While our result may, at first, seem in conflict with this empirical observation, we note that there
is actually no contradiction since we consider a specific data-generative model and a bound on the
size of the adversarial perturbation during adversarial training. Indeed, recent empirical studies
by Dong et al. (2021) and Yu et al. (2022) confirm that small « prevents adversarial training from
overfitting. Furthermore, Xing et al. (2022) explored the phase transition between standard training
and adversarial training and showed that the optimization trajectories in the two settings are close to
each other when « is small. One interesting future direction is to justify the generalization guarantee
for moderately large attack strength H(/XTH

Comparison with Theoretical Works Several recent works focus on giving convergence and
generalization guarantees for adversarial training (Gao et al., 2019; Zhang et al., 2020; Mianjy and
Arora, 2022; Li and Telgarsky, 2023); here we compare and contrast our work with each of these.

The work of Gao et al. (2019) prove convergence for a modified algorithm for adversarial training
wherein the iterates are projected onto a norm ball to ensure that the network weights stay close to
initialization. However, they further need to assume that a robust network exists in the vicinity of
the initialization. Such an assumption has been shown to be invalid in a recent work (Wang et al.,
2022). In a related work, Zhang et al. (2020) provide a fine-grained convergence analysis for datasets
that are well-separated. More recently, Li and Telgarsky (2023) give convergence and generalization
guarantees for adversarial training of shallow networks with early stopping. Unfortunately, all of the
aforementioned works are limited to the lazy regime (aka, the NTK setting) which has been shown to
be at odds with adversarial robustness (Wang et al., 2022). Mianjy and Arora (2022) were the first to
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provide both convergence and generalization guarantees beyond the NTK regime, yet their analysis
was restricted to robust realizable data distributions.

Our work stands out from prior work in several ways. First, we study the standard adversarial training
algorithm commonly used in practice. Second, we do not make restrictive assumptions regarding
data separability; our generative model allows for the data to be non-separable. Finally, our results
hold for neural networks of arbitrary width and can be trained for arbitrary many iterations allowing
||Wt H to go to infinity, i.e., beyond the NTK regime. The following result shows that for certain step
sizes and initialization, the neural network weights move far from the initialization after the first step
of adversarial training based on gradient descent.

Proposition 3.5. Consider the same setting as in Theorem 3.1. Then, for some absolute constant
C > 1, with probability at least 1 — 2§ over the random initialization and the draw of an i.i.d. sample,

W WOl (199]~2000)

we have that WoT» 1000

Finally, we note that Dan et al. (2020) establish a minimax-type lower bound for the classification
excess risk in the conditional Gaussian model, with a bound of Qp (exp (f (% + 0(1)) r2) %)1,
where 7 is the adversarial signal-to-noise ratio; this bound is shown to be achieved by a plug-in linear
estimator. While useful, their result does not elucidate why adversarial training helps train robust

networks. It also remains to be seen if adversarial training can achieve a matching upper bound.

4 PROOF SKETCH

We begin by providing some intuition for our proof. We show that when the perturbation size is
relatively small, the trajectory of the adversarial training remains close to that of the standard training.
Furthermore, given a good initialization of the neural network the dynamics of the training algorithm
can be shown to be nearly linear. We also leverage a result from high dimensional probability,
that the training data we draw is (nearly) separable even though the underlying data distribution is
non-separable. We show that both of these events happen with high probability and establish what we
refer to as a “good” run of the algorithm and are central to our proof.

Next, we formalize this intuition and provide a brief proof sketch of our main result. We focus
primarily on neural networks with smooth activation function (i.e., Theorem 3.1) and note the
differences in the analysis when extending the result to the non-smooth activation functions. In our
analysis, we borrow many ideas from Frei et al. (2022) and Xu and Gu (2023). However, the extension
is not straightforward and our focus in this section is on highlighting the technical challenges we
overcome and the key insights we utilized in our analysis. For detailed proofs, we refer the reader to
the Appendix.

4.1 GENERALIZATION GUARANTEE

As a proof strategy we seek to get an upper bound on the robust test error in terms of a lower bound
on the normalized expected conditional margin. This follows using a concentration argument given
that Dy 1s A-strongly log-concave.

Lemma 4.1. Suppose that E¢ , y.p,_ [yef(x; W)|ye = 7] — [W]|, & > 0 holds for both § = 1 and

y = —1. Then, there exists a universal constant ¢ > 0 such that
E(x,yo)~p. [Yef (x W)lye = 7] 2
0/1 (x,ye)~De [Ye ; Ye =Y
L) <8+ 37 exp( - eA(= B, )
ge{-1,+1} 2

Next, we need to show that the assumption in Lemma 4.1 does indeed hold for our setting. Here, we
leverage the smoothness property of the activation function to derive a lower bound on the increment
in the un-normalized margin for an independent test example (x, y).

Lemma 4.2 (Informal). For some constant Cg, with hlgh probability, we have for any ¢ > 0 and
(x,9) € R? x {£1}, there exist gt = p (Wt, ~1, x) € [v?,1] such that

[f( W) f(x; Wt Z (W (515 vk yx> ||X||2022d77)
X3 2 18 2\/%77, .

"For a sequence of random variables, X,,, and corresponding constants ¢, X, = Qp(c,) denotes that
cn/ Xn converges to zero in probability as n — co.
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where §;(W') = —0/(y; f(X;; W) = 1/(1 + exp (yi f(X; W1))).
For the non-smooth activation function, we get a similar result which we defer to the Appendix

due to space constraints. Finally, we seek a positive lower bound on un-normalized expected
conditional margin for model W' by expressing it in terms of the cumulative increments of margin;

i-e., showing E(x,y, ),y -1 e (6 W) = 21 Exyy o=t [Wef (5 W) = ye f (s W] +
E(x,yo)~Delye=1Yef (X; WY)]. A positive lower bound holds trivially positive if <y2)~(f, ycx> is always
bounded below by some positive constant. However, due to the presence of noisy labels y; and
adversarial examples X;, (y;X},y.x) may be negative. Note, though, that the term (y;X}, y.x) scales
with g;(W"). If we can show that §;(W?") is of the same order across all training examples, and
assume a small perturbation budget and that only a small fraction of labels are noisy, then we can
mitigate the effect of the negative terms. The key lemma providing such a result by bounding the loss
ratio is as follows.

Lemma 4.3 (Informal). Given Assumption 1, there is an absolute constant C',. > 0 such that with

high probability, we have for all ¢ > 0, max; ;e[ % <C,.

3i(W*)
AR

}, where iﬁ = arg ming, e, (x;;0) Yif (Xi; W?!). For successive iterates

To see why the above holds, note that for any given i, € [n], we have that
2exp(—yi f(REWY))
exp(—y; f(X5;W?))
exp(—y fETHWY)  exp(—wi fGEWY)  exp(yafRITHWH) —ya fRETHWHT)
7 < . 7 3
we get that exp(—y; FERETHWIHT)) = exp(—y; FREGWE))  exp(y; F(RGWE) —y, f(RG;WHH))
use induction to complete the proof.

max {2,

. Finally, we

For smooth activation function, the proof of Lemmas 4.2 and 4.3, follows by controling the term
y [f(x; W) — f(x,W")] via Taylor approximation. For non-smooth activation functions, we need
to ensure that there exist enough neurons have positive activations at initialization.

Remark 4.4. We can modify Assumption 2 by allowing the network initialization to depend on

the training data: a,w? = H*‘Tuwm\/& where I = % >, yix;. Then, Assumption (B8) can be

relaxed to allow & < O(|| ). Under Assumption 2 with the above modifications, Lemma 4.5 is still
applicable and therefore Theorem 3.3 continues to hold.

Lemma 4.5 (Informal). Given Assumption 2, with high probability, for all s € [m],
we have |{i € [n]:y; =a,, (Wlx;) > a|wWl||}| = ©(n); for all i € [n], we have
’{s €ml:yi =as, (Wl x) >a HWSHH = O(m).

We further show that the number of positive neurons remains large throughout the training process.

4.2 CONVERGENCE GUARANTEE

In order to control the robust training loss, a naive approach would be to decouple the increment of
the robust training loss, from iterate ¢ to ¢ 4 1, into two terms as follows:

Zmb (WtJrl) - zmb (Wt)

= %Z [y f (K5 WD) = £y f (X5 WD) 4 (C(ya f (X5 W) =Ly (X5 W) ] -
i=1

The second term can be controlled by the smoothness property of the loss function. The first
term, unfortunately, is upper bounded by HWHI H Hf(ﬁ“ — f(ﬁ |, and the robust training loss hence
inevitably depends on the norm of iterates HW“rl H if no additional assumptions are made. This
poses a problem if we do not constrain the model weights within a bounded domain, as HWtH
may tend to infinity as the number of epochs increases. To mitigate this issue, we instead control
the robust training loss via the norm of the iterates. Specifically, we first show that Emb(WT) <

% tTZ_Ol Grob(W") where Grop(W) := % S MAaXz, € B, (x;,a) —¢ (Yif(Xi; W)); this holds due to

a property of the loss £(-) (see the Appendix for more details). We then bound G, (W*) by a

constant scaling of <—vimb(wt), V>, where V € R™*? is a matrix with row v, = asp/ ||p||. We
achieve this result using Lemma 4.3 and the fact that only a small fraction labels are noisy. Given
T (=W, V) = (W, V) = (W0, V) < [ W[+ [|W°

, the only thing we need to
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prove is that the growth rate of |Wr|| is smaller than O(T"). This property holds for both smooth
activation functions that satisfy our construction and non-smooth activation functions such as ReLU
and Leaky ReLU.

5 EXPERIMENTS

In this section, we present a simple empirical study on a synthetic dataset to support our theoretical
results. We follow the generative model in Section 2 to synthesize a dataset with independent label

flips when generating y from y.. We set = |||, [1,0,0, ..., O]T, B = 0.1, and generate n = 100
training samples and 2K test samples with the noise vector sampled from the standard multivariate
Gaussian distribution, £ ~ A(0,1). We train a two-layer ReLU network with width 1K. We use the
default initialization in PyTorch and train the network applying full-batch gradient-descent based
adversarial training using logistic loss for 1K iterations. We use PGD attack to generate adversarial
examples with attack strength o/ ||i| and attack stepsize /5 ||p|| for 20 iterations. The outer
minimization is trained using an initial learning rate of 0.1 with decay by 10 after training for every
500 iterations. We note that adversarial training achieves 100% robust training accuracy. We estimate

the robust test accuracy using the same PGD attack. We consider settings with varying dimension d
and attack strength ﬁ

18000
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Figure 1: Clean test accuracy (left) / robust test accuracy (right) as a Figure 2: Robust test accuracy
function of signal size ||| and dimension d, for a fixed perturbation as a function of d and & for a

ratio a/ [| | = 0.1. fixed ||| = 5.

For our first experiment, we fix the perturbation ratio II%H = 0.1, and vary the value of the signal

strength || i|| from 1 to 10 and the dimension d from 1K to 18K. We show the results in Figure 1 as a
heat map of clean accuracy and robust accuracy averaged over ten independent random runs. We
observe a phase transition for both clean accuracy and robust accuracy at the value of dimension d

around O(|z||*) for clean accuracy and O(||||?) for robust accuracy. This is consistent with the
main theorems (see discussion in Section 3.3).

For our next experiment, we fix the signal size ||u|| = 5.0, vary dimension d from 500 to 6K and

perturbation ratio HaTH from 0.05 to 0.45. Figure 2 plots the robust accuracy as a heat map averaged

over ten independent runs. Our findings indicate that, increasing the dimension leads to a smaller
perturbation ratio required to achieve the same level of robust test accuracy.

We observe the same trends on the MNIST dataset even though the data generative assumptions are
no longer valid. We defer a detailed discussion of experiments on MNIST to the Appendix.

6 CONCLUSION

We presented the convergence and generalization guarantees for adversarial training of two-layer
neural networks of arbitrary width under a non-separable data distribution. Our work suggests several
promising future directions. Our results assume a generative model with a structured log-concave
data distribution. It is natural to explore whether our findings can be extended to more general data
distributions. Another interesting direction is to investigate whether our results generalize to the
setting where the data dimension and the number of training samples have the same scale. Finally,
we note that our main result only partially characterizes the phase transition from small to large
test errors for small and large attack strengths, respectively. An important next step is to provide
generalization guarantees for attacks of moderate strength and to explore the relationship between the
perturbation size, signal size, dimension, and the number of training samples.
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Supplementary Material

A ADDITIONAL EXPERIMENTS

In order to see if our results extend beyond the generative data model we consider in this paper, we
run the same set of experiments as above on the MNIST dataset. MNIST is a dataset of 28 x 28
greyscale handwritten digits. We extract examples corresponding to images of the digits ‘0’ and ‘1°,
resulting in 12,665 training examples and 2,115 test examples. We view the input image as a vector
input of size d and normalize the data to ensure that the /> norm of each input vector is equal to
[le2]l- A random subset of size n = 100 is used for training. We do not introduce any label noise; i.e.,
B = 0. We train a two-layer ReLU network with width 1K using the same training procedure as for
the experiments on the synthetic data.
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Figure 3: Clean test accuracy (left) / robust test accuracy (right) on MNIST dataset as a function of
signal size ||u|| and dimension d, for a fixed perturbation ratio o/ || || = 0.3

The perturbation ratio is set to ﬁ = 0.3, the o050
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signal size ||| is varied from 0.1 to 2.0. We
downsample the images by different factors to
simulate data with dimension d ranging between
25 and 784. We plot the heat map for both the
clean accuracy and the robust accuracy averaged
over ten independent random runs in Figure 3.
We observe a phase transition in both subplots

at the value of dimension d around O(||u||*) for
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clean accuracy and O(||p||7) for robust accuracy. RS & & §8 & &8
This confirms that even when the data distribution dimsion d

deviates from a Gaussian mixture model, the result
in Theorem 3.1 is still indicative of an interesting Figure 4: Robust test accuracy (right) as a func-
relationship between d, |||, H%H and n. tion of dimension d and perturbation ratio ﬁ,

As for the synthetic data, for a second set of ex- for a fixed signal size || /| = 5.0 on MNIST

periments, we fix the signal size to ||u|| = 5.0 and vary the dimension d from 25 to 784 and
perturbation ratios H%H from 0.05 to 0.45. The resulting heat map of robust accuracy averaged over

five independent runs is presented in Figure 4. We see a similar trend as in Figure 2.

B MISSING PROOFS

We start by introducing some important notations that will be used throughout our proof. We
find the negative derivative of the logistic loss to be useful in our discussion; we denote it as
g(z) := —¥'(z) = 1/(1 + exp (#)). Note that g(-) is non-negative and decreasing and can serve
as a surrogate for the 0-1 loss. More importantly, we can check that finding adversarial exam-
ples that maximize £(-) is equivalent to maximizing g(-), i.e., argmaxg, e, (x,,0) £ (Vi f (Xi; W)) =

argmaxy g, (x;,a) 9(¥i f(Xi; W)).  For simplicity, we denote (;(W) and g;(W) to represent

13



Under review as a conference paper at ICLR 2024

Maxy, B, (xi,a) £(Yi f (Xi; W)) and maxg, e, (x,,a) 9(¥i f (Xi; W)), respectively. The empirical risk
and the robust empirical risk w.r.t. the surrogate loss g(-) are denoted as

R 1 n R 1 n .
G(W) = - Zg(yif(xiéw))v Grop(W) 1= — max  g(y; f(X;; W)).
i=1

n P X EBa(x,a)

B.1 MISSING PROOFS IN SECTION 3.1

Improvements over Frei et al. (2022). We have identified two non-rigorous arguments in the proof
of Frei et al. (2022) and addressed them in our analysis. The first issue arises in the Lemma 4.1 of
Frei et al. (2022), where the concentration inequality for the Lipschitz function class (Equation (2)
in Frei et al. (2022)) is applied. However, the expectation should be taken with respect to x instead
of (x,y). To resolve this, we introduce Lemma B.1, conditioning on the label y., and apply the
concentration argument twice. The second issue is found in the proof of Lemma 4.11, Equation 24
in Frei et al. (2022), specifically in the calculation of E , y~p, [€i (yiXi, yex)]. In their analysis,
the expectation is taken only over (y;x;, y.X), but it should also consider the dependence of &; on
x. In our analysis, presented in Lemma B.10, we provide a careful treatment of this expression,

incorporating the additional assumption that d < %
Theorem 3.1. Let 0 < ¢ < 1.6 € (0,1/2). Let ¢ be a y-leaky H-smooth activation with

2n’

0<(<1lLetke (0,1),A> 0. Then, given that Assumption 1 holds with some constant C' > 0,

. . . 1 ds 2=
there exists a constant ¢ > 0 such that after running Algorithm 1 for 7" > Q ( (OWJH—%) 1-¢ )

iterations, we have that with probability at least 1 — 2§ over the random initialization and the draw
of an i.i.d. sample of size n, the following holds:
1. The robust training loss satisfies Ly, (W) < €.
2
2. The clean test error satisfies L°/1(WT) < B+ 2exp (—c’\gliz";‘l(l (0.99 — ”T"‘”> )

3. For ﬁ < %, the robust test error satisfies

L?o/bl(WT) < B+ 2exp< —cA ||NH2 (@%” (0'99 B ﬁ> a ﬁ)2).

Proof of Theorem 3.1. By Lemma B.2 and Lemma B.3, a good run occurs with probability at least
1 — 24. The robust training loss bound is proved in Lemma B.11. For the generalization guarantee,
we apply Lemma B.1 with Lemma B.10, which give us with probability at least 1 — 24,

LU WT) = P(yyyp[3X € Ba(x, @) s.t. y # sign(f(X; WT))]
2 2
< B+ 2exp (—cA (870*/\2 (0:99 > ~ ) - a) )

\/ﬁ 2 2 8C,5
< B+ 2exp <—c)\ (M (0.99 leell” = [l a) -« , (Choose C' > =7%)

where the last line holds for 7 < %, so that C—‘/\z (0.99 ell® = [l a) —a>0.

Applying Lemma B.1 gives us

2
E(x,y)~. e f (x; WH)|ye = 1])

LYY WT) < B+exp [ —eA <
W1,

2
E(x,y)~D. [Vef (6 W) |ye = —1
+ exp —cA( (.90~ | HVE/TH | ]
2
< B+2e A(”zﬁ (0:99 1l = 1l )>2 (Lemma B.10)
xp | —c ) _ o .
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2
< B+ 2exp <—cA (C@ (0:99 1l = el a)) ) (Choose C' > £32)

B e [ lul’ <0 00 a)2
C2d el

O

The proof of Theorem 3.1 builds upon a sequence of Lemmas, which we show below. Lemma B.1
bound the robust test error by the normalized expected conditional margin via a concentration
argument.

Lemma B.1. Suppose that E, , y.p_[yef(x; W)|ye = 7] — |[W]|, o > 0 holds for both 7 = 1 and

4y = —1. Then, there exists a universal constant ¢ > 0 such that
E - . W =1 2
L?o/bl (W) < B+ Z exp( — c)\( (x,ge)~De [y|\{](T lye = 41 — a) ),
ge{—1,+1} 2
E X ~ c ,W e =1 2
LWy g+ Y exp( e (e Dc[y\{v(x )y y]) ).
o W,

Proof of Lemma B.1. We have

P )~ [3X € Ba(x, a) s.t. y # sign(f(X; W))]
=Py)~p [3X € Ba(x, ) s.t. y f(X; W) < 0]
< ﬂ + P(x,yc)NDc Eli € 82()(’ Oé) S.L. y(’f(i7 W) < O]

— B4 Py iy f(KW)<0|.
B+ Pxy)~p. Legil(ga)yf(x ) }

For any X € Ba(x, a), we have

8 1 |«
e f (W) =y fRW)| = —= > as[d((ws, x)) ¢(<Ws7X>)]’
s=1
< L3l [wax -9 (65 1-Lipschit)
— as||{ws, x — X is 1-Lipschitz
B m s=1 P
1 m m
< — Z a? Z (Ws, x — X)? (Cauchy-Schwartz)
m s=1 s=1
= [[W(x =%
< [[W]], a. (By the definition of the spectral norm)
Since Dy is A-strongly log concave, and y. f(x; W) is ||W||,-Lipschitz, there is an absolute constant
¢ > 0 such that for any ¢ > 1, [lycf(x; W) — E[y.f (x; W)]|| Lo < €[|W]|5 /g/A. Therefore, there is
an absolute constant ¢ > 0 such that for any ¢ > 0, for fixed y. = 1 (same for y. = —1), we have
N
P(yef (s W) — Elyf (x:W)] < 1) < exp (—cA (i) ) . @
2

where the expectation is w.r.t. x. Choose t = E[y. f(x; W)] — [[W||, a > 0, we have

yc:]-)

= P(x,yc)NDC (ycf(x; W) - IE(x,yC)N’DC {ycf(x; W)

Py~ min f(X W) <0
(x,yc)~De (ie&(x’a)y f(x W)

ve = 1] < pef(x W)
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— Ex,yo)~p. [ycf (x; W)

c = 1] c N;W
Y xegil(fila)y f(X )

yc:1>

< P(X’yc)NDc (ycf(X,W) - E(vac)NDc [ycf(XS W) lye = 1} < ||W||2 a

yc:1>

E(xye)~p, [ycf(X; W)lye = 1} — W], a
Wl

= E(x,yo)~D. [ycf (x; W)

yczl}

<exp | —cA

Consider both y. = 1 and y. = —1 gives us

P(x,yc)NDC (Xegiléla)yc X; W g )

= P(x,y.)~D. ( eg;l(?a) yef(X; W) < 0ly, 1) Py, =1)
+ P(x,yc)wDC ( eg;ﬂ({(la) ycf(x W) < 0 = —1) . P(yc = —1)

E (x,yo)~p. [Wef (6 W) ye = 1] = [[W]l, a
W,

<exp| —cA

E(x,yo )~ e f (x; W) |ye =
W1,

—1] =W«

+exp | —cA

Similarly,

Lo (W)
=Pl y)~plyf (x; W) < 0]
< B+ Py )~p. [ycf(x;W) < 0}

< B+ Piyon. [ycf(x? W) < Olye = 1] + P(xyo)~D, [ycf(X;W) < 0ye = —1}

< B+ Pogop. [ycf(x?w) = Exyo)nn e f (W) lye = 1] < =B gy, [Yef (5 W)lye = 1][ye = 1}

Pl [ycf(x?w) = By e f (s W)lye = —1] < ~Eyo)np, [hef (6 W)lye = 1

ye = —

Wil W,

2
E(x,ye)~ c sW)lye =1 E(x,ye)~ c s W) ye =
SB"‘GXP —C/\< (x,9¢) Dc[y f(X )’y ]) T exp —C)\< (X,9e) Dc[y f(x )’y

O

Now we only need to derive a lower bound on the normalized expected conditional margin. Below is
a series of structural results that leads us to our destination. Lemma B.2 and B.3 are the properties of
initialized network weights as well as the generated data.

Lemma B.2 (Lemma 4.2 in Frei et al. (2022)). There is a universal constant Cy > 1 such that with
probability at least 1 — 6/2 over the random initialization,

3
< wlnltmd

1
Jehama < [ W[, <3

WO|, < Cowinir(v'm + Vd)

16
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Proof of lemma B.2. For the Forbenius norm statement, note that Z ||w0 H2 is a w2, -multiple of a

init

chi-squared random variable with ”;d degrees of freedom. By concentratlon of the 2 distribution,
for any ¢t € (0,1],

1 e 012 —detQ
P WZIIWstl >t| <2exp : .

2 init g=1

In particular, if we choose ¢ = 1/2, and notice that w, = w,m

w3

1
WOl =23 21 € | jeama, S

s=1
holds with probability at least
1—2exp(—md/64) > 1—6/4. (d > C'log (1/§) from Assumption (A2))

For the spectral norm, since the entries of [wq, . .. ,w%] /winit are i.i.d. standard normal variables, by
Theorem 4.4.5 in Vershynin (2018), there exists a universal constant ¢ > 0 such that for any v > 0,
with probability at least 1 — 2 exp (fuz), we have

H[Wla'”aw" || <cw1n1t v m +\f+

In particular, taking u = /log (8/¢), we have with probability at least 1 — [Wi,ooo, W] HQ <

cwinit(/m/2 + Vd + /log (8/6)). Since |[W°||, = v2]|[w1,...,wz]||, holds by symmetric
initialization, and v/d > /Clog (1/8) > +/log (8/6) by Assumption (A2) and C' sufficiently large,
we are done with the spectral norm. O

Lemma B.3. Let (x;,y;) ~ D, Vi € [n], where x; = y§u + &, P(y§ # ;) < B. Forall 0 < k < 1,
there exists C1 = % > 1 such that for large enough C, with probability at least 1 — § over D™, the
following hold

CH Vi € [, 5 < |Gl < B+ 5)d d/C1 < |Ixil* < Cidi Vi, K] € Ba(xi,a),
(VAT —a)’ < IRlP < (VO + )", (30 2 (VTG - a)

(€2) ¥i £ j € [n], [ &) < C1 (VdTog (/) ), |(x::%,)] < 1 (1l + v/dTog (/) ).
¥R; € By(xi,0). % € Ba(x; 0), | (%1, %)| < Cu (|lnl* + /d1og (n/5)) + 20/Crd + a2,
[0 %)] < C1 (Il + v/dlog (n]3)) + a/Crd

2 n
<4d Y 22

i=1

Zn: Zz’fz‘

i=1

(C3) Vzl,ZQ, .., 2n € R,

. 2 2 ~ 2 ~
(©4) Vi € C, | yxi) — P | < 1l /200, %5 € Ba(x ), 333 lnl> = [l o < (o, i) <
201

2
200 1#l™ + llull e

. 2 2 - 2 -
(C5) Vi e N, [{u, yixi) + [l ‘ < [lpll” /200, %; € Ba(xy, ), =355 lull” = llull @ < (u, gi%s) <
199

2
—200 1#1” + NIl v

(C6) The number of noisy samples satisfies |NV|/n < 8+ /2.

Proof of Lemma B.3. The proof is a simple extension of Lemma 13 in Chatterji and Long (2021).
For statement (C1), 52 < €112 < (3 + £)dand d/Cy < [x:||> < C1d follows directly from the

17
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proof of Lemma 19 in Chatterji and Long (2021). Since

IIxi — %i]] < <0.5]||ul (Assumption (A7))
< % Cil (d > C ||uu||* n from Assumption (A2) with sufficiently large C')
<3l
2
(\/M— a)2 < %7 < (VOid + a)2 holds. Because ||x; — Xj|| < a < % |[x;| also holds,
through some simple calculation, we have (X;,X;) > (||x;|| — a)? > ( d/Cy — a)

&) < €1 (VdTog (n/8)) and [(xi,x;)| < €1 (Ilull* + /dlog (n]9))
follows directly from the proof of Lemma 20 in Chatterji and Long (2021).

[(Ri, %) | = [{xi5 X5) + (Xi = X, X5) + (X6, %5 — X5) + (Xi — i, X — %;)]|
< (ki x) |+ aflxil| 4 a x| 4 (1% = x| - 1% — x4l

< 1 (Jlull* + v/dlog (n/3)) +2av/Crd + a2,

[(xis X5 = [(xis x5) + (xi X5 = %5)]
< [ x) | + e[l

< & (Il + V/dlog (n/9)) + ay/Crd,

The statement (C3) holds since

sz\ +2) iz (6 &)

n

Z szz

=1 1<j
< Z 22(3 + Yd + 2Cy dlog (n/d) ((C1), (C2))
1<J
< Z 234 D)d+20: Y ate d (Assumption (A2))
5 a
i 2 ' i<j 2 VCn ’
<3+ i &)dz 22 < 4dz 22, (C sufficiently large)

Statement (C4) and statement (C5) follow similarly from the proof of Lemma 21 and 22 in Chatterji
and Long (2021) and combining the fact that

(s yixi) = (o yiXi) | < [pl] - [Ixi = Xal| <l .

The last statement follows from Hoeffding’s inequality:

P /n > [2)

< 2n(y/&)?

< ™20 1og(1/6)(&) (Assumption (A1))
=

<4/6. (6 < 0.5)

O

Definition. If the events in Lemma B.2 and Lemma B.3 occur, let us say that we have a good run.

18
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Lemma B.2 and Lemma B.3 show that a good run occurs with probability at least 1 — 24. In the
following we assume a good run occurs. Lemma B.4 leverages the smoothness property of activation
function and derive the result via Taylor approximation. Lemma B.5 characterizes the relationship
between Emb(-) and @mb(-). Lemma B.6 further derives the bounds on the gradient norm given
adversarial training example, as well as the pairwise correlations of the gradients given different
adversarial training examples. These are standard results that have been derived by Frei et al. (2022),
and we simply extend them for adversarial training scenario.

Lemma B.4 (Lemma 4.5 in Frei et al. (2022)). For an H-smooth activation ¢ and any W,V € R™*4,

and x € R%, we have

Hx|*
Q\F

Lemma B.5. Let C; > 1 be the constant from Lemma B.3. For an H-smooth activation ¢ and any
W,V € R™*? on a good run it holds that

[FW) = F(x; V) = (VF(x V), W = V)| < IW = V5.

ﬁ Hvimb(W)HF < Grop (W) < Liap (W) A 1.

Proof of Lemma B.5. Since ¢ is 1-Lipschitz, we have VX; € Ba(x;, ),

2
IV W[5 = — an (We, X)) || < ( +a). 3)

For Vi € [n], choose X; = argmaXzeg, (x;,a) £(y; f (X3 W)) so that /; (W) = Ly f(RW)), §:(W) =
g(y: f (Xi; W)), we have

| F

— Z G(W) [V f(Xi; W) & (Jensen’s inequality)

HVfrob(W)HF Zgz )iV f (X W)

\ N

vV Cl —+ « ~ .
< — Z 3:(W) (Equation (3))

§m+a§:min(~ )

;(W),1)  (By the definition of §;(W) and 7;(W))

i=1
= ( Cid+ a) (Emb(w) A 1) . (Jensen’s inequality)
O

Lemma B.6. Let C; > 1 be the constant from Lemma B.3. For a y-leaky, H-smooth activation ¢,
on a good run, for any i, j € [n],i # j, VX; € Ba(x;, ), VX, € Ba(x;, ), VX; € Ba(x;, ), we have

(V£ (xi W), VF (5, W) < Cy (Jlul* + v/dlog (n]8) ) + ar/Crd,
(V] (i, W), VF (&5, W) < Cr (Ilull® + v/dlog (0/0) ) +201/Crd + a?
Moreover, for any i € [n] and any W € R"*%, we have
(\/cl/Tl—a)272 < |V fE W[5 < ( Cld+o<)2,
(VaTGr — o) 7 < [(V (2 W), V(& W) < (VErd +a)

19
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Proof of Lemma B.6. The proof is similar as Lemma 4.7 in Frei et al. (2022).
(7 (6. W) V(5 W) = = (x,9) 32 6/ (o)) (201
Therefore, -
105,90 915,91 = 206013 o ) () € 063 691

Thus, the first two inequalities follow from Lemma B.3 (C2). The last two inequalities follow from
Lemma B.3 (C1). O]

Lemma B.7 plays a crucial role in our analysis. It demonstrates that the margin increases with each
epoch of adversarial training, given any adversarial examples. More importantly, it proves the loss g
is at the same scale across all adversarial training examples.

64C; (VT +0.5, /)"
Lemma B.7. For a y-leaky, H-smooth activation ¢, there is a constant C,. = ( - <1 )
such that on a good run, provided C' > 1 is sufficiently large, we have for all £ > 0,

i f (Res W) > g f (R W) 2 0, % € Ba(xk, ), ¥k € [n],
e JWif (K WY) 16 (VCid+ 0)’
ig€mml g(y; f(X; W) — 2 (\/cl/Tl— a>2 -

where if = argmaXzcs, (x;,a) Uy f (X, W), f(? = argmaxgep, (x,,a) (y; f(x; WH).

Proof of Lemma B.7. By Fact A.2 in Frei et al. (2022), we have

) e (5,2220)

9(y) exp (—y)
holds for any z,y € R, so

ol W) _ (

max ~ -
igemml g(y; f(X5; W) i.j€ml exp (—y; f(X5; W"))

st t
—a. LW
2,2 max exp( vif (X; )) ) .
In the remainder of the proof we will show that the ratio of the exponential losses is bounded. We
will prove it by induction. Since a good run occurs, all the events in Lemma B.2 and Lemma B.3

occurs. In particular, we have ||W0||2 < Cowpnit(v/m + \/&) and ||ilo|| < v/Cid + «. Note that at
initialization, we have | f(X?; W°)| = 0. For any %; € Ba(xi,a),%; € Ba(x;, @), consider t = 0, we
have

e (W) 8(VOidta)”

max ~0. /0 = 1> 3.

1,j€[n] exp (7yjf(Xj,W )) 72 ( /d/Cl _ O[)

Assume the result holds at time ¢ and consider the case ¢ + 1. For simplicity we only con-
sider the exponential ratio for the first sample and the second sample, and denote A; :=

_ <t .wt 2
PGt Then A < SR
fine pf = L3 ¢ (<wgt),ik>) ¢ <<wgt)7i§>> € [y%,1]. We first need to show that
i f (Ri; W) > i f (s W),

Y [f (R WD) — F(Zis W]

Fix k € [n], consider VX, € B(xy,«), de-

- 2
H || x|

2
o W —we,

(for y € {£1}, apply Lemma B.4)

> i [<Vf(ik;wt),wt+1 —Wtﬂ —
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= YN

<Vf<f<k;wt>,iZ@(Wt)yin(if;th el
=1

H (/Crd+ o) n? ~
[ Zgz (V£ Gz W >ny<>~<§;wt>>] VG V%“) T Gran(W")

(Lemma B.5)

_n ) H(VCid+a)' P~

~n ( (W Xk7xk +17&Z]€gl yz 1;ykxk>) - 2\/7’7L Grob(w)

(/3 P— 2 max; g;(W') >

> |;gk(w)(72(\/d/01a> _g;:(\;vt); (01 (||u|| +/dlog (n/5))+20¢ Cld+a2))]

(Lemma B.3)
H(y/Crd +a)* n? ~
G

I \/

2 [gk(Wt) <72 (\/d/C’l - a)2 - Cyn (Cl (||MH2 + +/dlog (n/é)) + 2a4/Chd + az)ﬂ

(By induction, max; §; (W) C)

(Wt =
4
H (\/Cld+ oz) 772@ (W)
2\/% rob
2
my? (x/d/Cl - a) s H(VCid+ a)4n2 ~ .
> o gk(w ) — Qﬁ Grob(w )
(this line holds with large enough C' via Assumption (A2))
2

o (PG o) m (T a)y
= nGran(W) onC, N NG

(By induction, §i(W*) > C%émb(wt))

7? (%\/d/01)2 H (2y/C7d) " n

2 nérob (Wt)

(Assumption (A7) and Assumption (A2))

2nC,  2ym

- v (%vd/01)2 (2vC1d)"
> 1Ghron (W) onC ToF? (Assumption (A5))
>0, 4)

where the last line holds from Assumption (A2) with sufficiently large C.

Now we are back to prove the upper bound of the exponential ratio A;. We have
exp ( ylf( t+1, WtJrl))

Aot = exp (—y2 f (X t+1, W)
_ exp (_ylf(X1§Wt)) _exp (ylf(i’_i; )—y F& t+1, Wtﬂ))
exp (—y2f (X5; W) exp (yaf (X; W) — 52 f(R5™H; W)
< A, exp (y1 fF(XTTH W) — g f(RETH WETD))

(X
exp (y2f (X5 W) — ya f(XE; WHTT))
Cexp (i fRTTH W) =y SR Wt I3 V(Y f(REWY)))
exp (yzf(XQ;Wt) —yaf(Xy; Wh — 1 EL V(yi f(X5; WH)))
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oo 0P (R Xy (K W) (VTS W), VG W)
= exp (- lyQyz-g@if(i?wt)) (Vf(Rh; W), V(L W))
- exp (2H(VCI +O‘ n? ’

(Lemma B .4)

NG Znyl X5 W)

= A;-exp( — Loy f (1 W) (VAR W), VAR W)
+ %g(yzf(iz;wt)) (VF(x5; W), Vf(ié;Wt)>)
oxp (8 S g i (55 W) (VAR W, VI (5 W)

exp ( CD I y2yzg(yzf(i'§;wt)) (Vf(Xo5 W), Vf(iE;WtD)

2
2 (+/ n?
'eXp( (VO +): Zwyz )

NG

where the first inequality holds since exp (yif(X{T"; Wt)) > exp (yf(X; W),
exp (y2f (X575 W) < exp (y2f (X5; W) by the definition of X}, X5

We next bound each of the above term separately. For the first term, we have
n < n - - -
exp (= Lg(ys f(11 W) (VAT W, VAR W) + Tg(yaf (35 W) (VF (R W, V(35 W) )

=ex 9(y2f Ro: W) (91 /(K3 W) 2L W W) — <Lwt <Lwt
=e p( n (g(nyXQ,Wt))<vf(1 W), VARG W) — (VR W, V£( 27W)>)>

2
2 (JCid
<exp< 9(v2f( X2’ ekl (Z lei W) (e —a) - CLTALR 172+ 2)
2

(Lemma B.6)

e [ 2S5 ND) e (VTG =a)” (yugiwy) (Ot a)’
- n 9l W) 2 (yarci-a)’) )

For the second term, we have
exp (=2 X2, 41 1oy f(]5 W) (VAR WO, VFRE W) )
exp (2 a0 (] (55 W) (V1 (55: W), V(R W) )

SeXp< D gy f (&G W) (VAR W, V(R W)
i#1

nzg (yif (X5; W) <Vf(i§;Wt),Vf(i§;Wt)>|>

1#£2

Sexp( Z FERE W) (6’1Hu||2+C’1\/dlog(n/5)—|—2a C’ld+a2)>

(Lemma B.6)
For the third term, we have
2
2H (/Cid + a 2
exp( ( \lﬁ 77 ZVéyZ x ;W) )
2H (v/Cid + a) n?
< exp( ( \} a fZg (yif x Wt ) (Lemma B.5)
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< exp ( Z g(yif x Wt > (Large enough C' for assumption (A5))

Combining the above results gives us that

2
92 f G WOP? (& —a) (gusaiwt) (VO +a)’
n 9(y2f W) o (\/CZI_Q)Q
~exp< Zg (yi f(XL; W) <C1||,u||2—|—201\/m+2a C’ld+a2)>.

Appg < Apexp | —

(1 fZEWY) 2(v/Crd+a)®

. . g
Now consider the following two cases. If o FGEW)) = > (m_Q)Q , then we have

(g(y2f(X5; W) > 0)

App1 < Ay -exp

<g(y2f(it2; W))n(vCid + a)2>

n

-exp< Zgyfx i W) (01||u||2+201\/d10g(n/5)+2a C1d+a2>>

< Ay -exp (W) exp (277 <01 pll? + 201 \/dlog (n/8) + 2a+/Crd + az))

O < gy f(XEWH) < 1)

< 200/ (53 W) exp (77 (VCid+a) )exp (217 (01 ull? + 2C1\/dlog (n/8) + 2a/Crd + a2)>

g(y2f (X5 W) n

(3 exp (—2) < g(2) < exp (—2z),Vz > 0; Equation (4))

= HVGd —l—a) 5 exp <277 <01 |pl” + 2C1 /dlog (n/8) + 2a C’ld+a2—|—(C1d+a)>>
e 2n
( d/Cl—a>
8 (

VCid + a)
2
v2 ( \Vd/Cy — a)
where the last line holds by assumption (AS5) with sufficiently large C so that the following holds

2
VCid
27 <01 Ipll® + 201 \/dlog (n/8) + 20n/Cid + o + (12n—|—a)>
_ n(\/Cld—i-oz)2
n

)

+ 2n (01 (el + 012) +4n (C’l dlog (n/d) + a C’ld>

2 2y 4(C1y/ L5 + Cid
o @VGa? 2020 uf?) | Ay g + Cd)

Cd?n Cd? Cd?
(Assumption (A2), (AS), (A7) with sufficiently large C')

IN
o =

Otherwise, L/ EW) _ _2(VCidta)”

9(y2fR5;WP)) 72(\/(1/7()1—00

s, then we have

9(y2f (Xa; W)y (x/d/cl -~ a)2 G fRWY) (VO + a)?
n 92 f (%5 W) o (m,a)Q

Apy1 < Aj-exp | —
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(Xi; W) 2
(Ro: W) (Cullnl* + 21 /1og (n]5) + 20 Cld+a2)>

- exp

(2ng(yzf(i5;wt)) z”:

[y

g
el
. 90 f (K5 W) (m_O‘)z G fEWY) (VO a)?
< Ag-exp n 9(yaf (X5 W")) 72 (\/m—a)2

2
16 (v/Chd +
- exp 2ng(y2f(i§;wt)) ((71 ||,uH2 +2C1y/dlog (n/0) + 2a/Crd + a2> max ¢ 2, ( ! a) 5
~2 (\/d/Cl - a)

2
< Ay exp( — g(y2f (X W)y (WM

B 32 (\/m+a)2
2 (v o

2(01||u||2+201 dlog (n/3) + 2a C’ld+a2)>>

gL f KW 2(VCOrdto)® )
9w WD 7 2 (/4] —a)”

(Assumption that

8 (vCid + a)’
(Vo)

where the last line holds from Assumption (A7), Assumption (A2) with C being sufficiently large

<A<

27

that
32 (VCrd + o)’
WOILO) (6l + 201 v/TTog (a78) + 20/Crd + a?)
+* (V[ - o)
2
2
< BUOTE) (0, 2+ soraog /o) 7o + Il
7 (3v/a/cy)
<32<m+a>2(cld+401 e
= 2 2
o (pvaa) o e o

_ (Vaid+a)’

We have shown through induction that
- 2
iy IS W) 16 (VCid + o)
e ety = 2"
i.€ln] g(y; f(X5; W) 2 ( /d]Cy — a)

By Assumption (A7) and Assumption (A2), we know o < ||u|| < £+/d/Cy. Therefore,

1 2
o EEWY) _ 16(VOd+a)’ B0 (VO 08 E)
i.5€[n] g(yjf(i;;Wt)) - 2 (m_a)2 B v? '

With Lemma B.7, we are able to give a tighter bound on the norm of W*.

Lemma B.8. There is absolute constant C'y > 1 such that for C' > 1 sufficiently large, on a good run
we have that

d t—1 N
W < WO+ Comf S G
s=0
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Lemma B.S. By triangle inequality we have that

Wi = Wt = g Zaw |

< I+ ez

t—1
< [[wo Lo (W* Tel
< HW HF—i—n; HV b(W?) - (Telescope)
Consider X; = argmaxy, ¢, (x;,a) £(¥i f (Xi; W*)). Then we have the following
~ 2
i
2
1 s
= ﬁ ylvf X 7W )
F
1 - ~ s =S s ~ s\~ s =S s =S s
= D @GWOIVEEWOIE + Y iy 3:(W*)g; (W) (VRS W), V(RS W)
i=1 i#j
1 n ) o 9
< — | > @GW)) (VCid+a)
i=1
+Zgl (W%)g (01 <||,u|| +/dlog (n/d) ) +2av/Cid+ a )
i#]
(Lemma B.6)
1 n
< oy (W) 3 G(we) (201d +2a%4n (01 121>+ Crv/d1og (1/8) +2a+/Crd + a2))
" i=1
5Cyd ~
< W Grop (W?),
< max gr(W) Gron (W)

where the last line follows Assumption (A2) and (A7).
Applying Lemma B.7 gives us

~ C s ~ S
]Icfé?iﬁgk(w ) < ?Z {(W?) = C;Gron(W?).

Define C5 := +/5C, C,., then we have

[5C1Crd ~ . d .
7 S ln Grob(w ) 02 \/>Grob(w ) (5)

d t—1 N
W, < WO+ Comy S G, ©

s=0

‘ ’ V Lio (W)

As a result, we have

O

Recall that our goal is to give a lower bound on the normalized expected conditional margin. We start
by giving a lower bound in terms of the cumulative increments of margin given any independent test
example (X, y), shown in Lemma B.9.

Lemma B.9. Let C5 > 1 be the constant from Lemma B.8. For a y-leaky, H-smooth actlvatlon ¢, on
a good run, we have for any t > 0 and (x,y) € R? x {1}, there exist p¢ = p (W', X}, x) € [y?, 1]
such that

n . H |x||> C3d
y [fs W) — FaWH] > Z;ﬁi(wt) <ﬁ§ (v, yx) — M)
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Proof of Lemma B.9. Note that since a good run occurs, Lemma B.4 implies

2
‘f(x;wt-i-l) . f(x;Wt) . <vf(x;wt)7wt+1 . Wt>’ < H||x||

= Qm HWtH_WtH; N

Therefore, we have

y [F WD) — Fx W]

y [((VF(x W, Wi — W] — H\”/’ﬂ [witt — wf||§ (for y € {#1}, apply (7))
_ _H|x|*n? t
=yn |[{ VI W), E:m iV f (%3 W) QVﬁf VLm‘W>
Arob(Wt)H2 S ij/\rob(wt)HFa érob(wt) S 1)
M5~ owh [ 5t (o H |[x||* C3dn 5 .
-2 Sa0m (st - 2 ConlW) = 3 5,5,V
where the last equality follows by defining
_ ¢ L= () ®) 2
= oWE0 = 532 (W) o ((w.50)) € 11

O

Leveraging Lemma B.7 and B.9, we now formally derive a lower bound on the normalized expected
conditional margin.

Lemma B.10. For a «-leaky H-smooth activation ¢, and for all C' > 1 sufficiently large, on a good
run, for any ¢ > 1, we have

Exyy~n. [WfsW)ly=1] _ 42y/n

2
(0:9911ul* - llul @) ;

Wl 8C2Vd
E(x,y)NDc [yf(wit”y = _1] > ’72\/7; 2
0.99 - .
W, > oo (0991l =l )

where Cj is the constant from Lemma B.8.

Lemma B.10. From Lemma B.8, we have
gl
(W . < [[WO| . + CQU\/;Z Gron(W*).
s=0

Recall the following definition

_ 1 &
ph=p(Wxtx) = — 370 ((wix) ) ¢! ((w.x1)) € 2. 1)
s=1
By Lemma B.3, we have
99 .
- - vy ( I3 I a), 1€C
E (). [0 (yikl, ) ly = 1] > { o e .
B ull* = llulle,  ieN
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IfieC:
E(x,5)~D. [ﬁﬁ (yiXi, yx) ‘y = 1]
= By, |7 (i yx = )+ 5 (il 1) [y = 1]

2 Eqy)~, [ﬁf (yiki, yx — p) - L((yiXl, yx — p) > 0)‘y = 1}

199

+ By, |7 (0% yx — ) - 1wkl — ) < 0)fy = 1] +° (200 Il = lul a>

> E(xy)~. [72 (yiXi,yx — p) - L((yaXe, yx — p) > 0)’;/ - 1}

i} i 199
+ E(x,5)~D. {(ymﬁ,yx — ) - LR, yx — ) < 0)’y = 1} e (200 lell® = a)

= - _QWQE(x,y%DC [[(yixi, yx — p)]] + 2 (;gg ll* = N a)
= 1 _272 s || {yixis yx - “>H¢2 +9° (;(9)3 all* = 1 04) (cs is an absolute constant)
= 1 _272 ca [|yixi]l, + (;gg 1!l = 2l a) (¢4 is an absolute constant)
> LT (e +a) 47 (o Il ~ ).

Ifi e N:

E(x,4)~D. [ﬁf (yiXi, yx) ‘y = 1]
= By, [P (il yx = 1) + 5 (il 1) [y = 1]
> By, [ i yx — ) - 1yl yx = ) > )]y = 1]
+ E(x ). [ﬁﬁ (yiki, yx — py - L((yiks, yx — p) < 0)‘1/ = 1} - % el = llell
2 E(xy)~p. {72 (yixi, yx — p) - L((yXl, yx — p) > 0)‘3/ — 1}

N ) 201
+ Ex,4)~D. [(inLyx — ) - L({yix yx — p) < 0)‘1/ = 1] ~ 300 el)® = (|l e

197 8 201 o
=~ B, [kt ox = )] [y =1] = S50 1l = el
1—~2 - 201 .
> - 27 cs H<yixf, Yx — M>sz ~ 500 ell® = [lel] e (cs is an absolute constant)
1-— - 201 .
> — 27 4 HyleH2 ~ 500 el = Nl el| (c4 is an absolute constant)
1-—~2 201, o
> - Crd+ o) — = |lul? = lull o
> e (VO + 0) — s il
E(x,5)~D. [yf(xa WD) —yf (s W) |y = 1}
n 2 2
n = (WS ~t /. <t H ||x]] Czdn‘
> - . ; X . — = .
= ;gz(w )E (x,1)~D. lpz (yixs, yx) NG y=1 (Lemma B.9)

I\ 1—9? , (199, 5
>l = (We) [ = 99 _
2 n(n ;gz(w ) ( 5 —ca(VCid+a) +1 (200 [l ® = [l a
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200 2/mn

(c5 is an absolute constant)
L0 e (V@rd+ o) + 7% (22l =
= - c « — - «
n 5 4 1 Y 200 K o

( L HC5022d2’I7
(~(1 = 1)es(VCrd + ) + 1292 |u]* — 2092 )

(1 = 7*)ea(VOLd + a) + 35 ||ul)* + 2| ) 1 )
— 11 _ i W
( TS a(/Cd+a) + + 1572 lull” = 2092 1 25V

1— 2
>0 (=15 e V@ o)+ (G el =l )

1 s 1—92 HesdCsd s
#2015V Grd o) - G el = ) - 5 Q”Gmbwv))

érob (Ws)

n
iEN

HesC2d%n ~
. < 1— % 12 Grob(ws)
( (1- c4<Fcl + ) + 1897 |ul* — 2092 |u] ) v/imn
2
7)ea(VCid + ) + T ull” +2a ||| -
- CT 1 +— 199 Girob (W)
04(\/01 -I—Oé) 1()()7 ||/1'|| _2047 ”:UH
nérob(ws) 'Y
> Chd
> Mo L es(/Oud+ 0) 44 ( gom l ~ o
nGiron(W*)7?
> DI (0,99 — o))
where the second last inequality follows from 7 < 021/2’7;[2 < O'OOZY;HSQZ;/E LB <1/C0,d <
4 —4_4 4
H@I < %, a < ||p|| € v/Cid and C sufficiently large so that
4
HesC3d?n
(—(0 = 12)ea(vCrd + @) + 3292 |lu]]* — 2092 ] ) v/
2
. 0.005* ]
T —(1=92)ca(2VC1d) + 13297 [l pl” — 19897 [l®
0.005* |||

5,

< 2 2 2 1992 2 B 7=
—=0.0192(1 = 42) [|ull” + 5572 lpll™ — 1.9842 ||

and

</3+\/7>c <1 (1 =7*)ea(VOud + ) + g ] + 20 ] )
c mWn + )+ 15892 lel* — 2092

1) es(2/Ch )+%H#H +2|u?
v2)es(2V/Crd) + 19292 || ull® — 1.98v2 ||ul®
2
72)0.0172 || pe]|* + 234 || pa]|* + 2 || e
2)0.0192 [|ul|® + 12242 || ul|® — 19842 ||pe|?
201
L 0017 +100+2>

0.01~4

I

Q
/\/:\/\ +

+
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The third last inequality follows from Lemma B.7 that

Zgz ) < N - maxgl(W )
ieN

< M Zmaxgi(ws)
n k=1 ¢
< Cp - [N - Grop(W?)

Cr(B+ \/7)nGr0b(ws) (®)

The last inequality follows from d < ”"C“ < %, and « < ||pu]] < +/C1d so that
4

1—7
2
1

e(V/Crd+a) 4% (50 l* = )

- 2
> 2
> 5 c4(2y/Crd) +v (200 [l l|” — ||u||a>

1-—
> _
>~ Ll + 47 (g l? ~ Il )

> 0.999% [|l* = Vol

Applying the above result gives us the following
E(xy)~p. [1.f (s W)ly = 1]
7
Wl

_ Eugyen, [ WOly = 1] + Y020 Egymn, [0 (W) = yf(x; W)y = 1]
- W,

t—1 ~ s 2
Grob(W
> ESZZ Hr\;;)fu I (0.99 lell® = [l a) . (f(x; W°) = 0 via symmetric initialization)
F

Note that we have

. 1
rob WO Zg WO Zfl yl X WO) 5 (9)

1
n

Along with Lemma B.2, Assumption (A6) and Assumption (A2) gives us

WOl < 2winiv/md < 27 < 0\/d/nGron(WP). (10)
Then if ||W'||, < 2||W?]| .. we have
Finaro IOWIW =1] Seca ConWON (097 — )
Wl 8wl
> L. w%c( = (09914 < o) Bauation 10y
> Y (099 0l — ) .- (S22 Gun(W) = Gun(W))
If ||[W*]| . > 2||W°|| .. by Lemma B.8, we have

2[Wll <

t—1
< Wy < WOl + Conv/d/n Y Gron (W
s=0
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Thus we have

E(x,y)ch [yf(wit)ky = 1} > Ziia érob( 5)7]’72

5 (0:99 12> = el )

Hwt 2  8Cany d/nZZ }) Gron(W
vy 2
> 0.99 — .
> o= (099l = )

Similarly, we can get

E(xy)~D. [yf(x; Wt)|y = 71] - 2 /n
W, = 8Cavd

(0:99 1 = llull )

We finally provide the convergence guarantees of robust training loss in Lemma B.11.

Lemma B.11. For a y-leaky, H-smooth activation ¢, provided C' > 1 is sufficiently large, then on a
good run we have that,

| 5 70991l ~2000)
F 400

Moreover, the robust training loss satisfies

HVErob (Wt) érob (Wt)

3500 + 800+/m/d?

Lion(WT) < —
" (199 |||l — 200a) yyT ="

Proof of Lemma B.11. Consider f(i as the adversarial examples given model parameter W'; i.e.,

X = argmax; g, (x. o) L(i f (Xi; W)). We first need to show a lower bound for HVErob(Wt) B
SUPy. |[u| =1 <—Vfrob(Wt), U>, and it suffices to construct a matrix V with Frobenius norm at most

one such that <—vimb(wt), V> is bounded from below by a positive constant. To this end, choose
,Vs € [m]. Then ||V| = 1 since a; = +1, and

V € R™*? pe the matrix with rows v, =

we have for any W € R™*,

(V106 W) V) = = 3 e (o) i = (lome) 5" (owax) D)

HNH m

By Lemma B.3, we have

. ~ 2 .
{yz (ks X4) _250818 HMII , 1eC {yz (s X4) 2250813 HMII2 —lulla, ieC
[ X | < 505 all® s € N U [ %)l < 565 Il + Il @y i€ N

And Vz,¢'(z) > v > 0, equation (11) implies that we have the following lower bound for any
W e IRWLxd7

Sl iec < {199” [l ieC
7 \Y xl,W ) 2 ’ . sy Yi \Y xlvw ) 20, .
wwsawv = {1 G aw v = { gl e TEC
This allows for a lower bound on <—meb(Wt), V>, since
<—vimb(wt),V> (12)

fzgz Wy (Vf(X5; W), V)

30



Under review as a conference paper at ICLR 2024

23w (o el =a) = 2 3 o) (3 el + o)

>
i€C i€EN
(199 || At Blull+ o\ 1o e
_(200 —ya) | Grp(W*) — 1+7M7W ~ 2 Gi(W)
200 iEN

199y ||| A t 201 ||| + 200cx /2 wt
> ——— — Wt —
= ( 200 le Grob( ) 1+ 1997 H,MH — 200’}/05 (ﬁ + C) rob( )

(Equation (8))

199y ||UH Yo\ 5 t
> ————— — — | Gin(W"), 1
- ( 400 2 b( ) (13)

where the last line holds by Assumption (A4), o < 0.99 ||| and C being sufficiently large so that
201 || || + 200« 2
1 -C, il
(1+ B —ama) 0+

201 4 198 1 2
§(1++>~Cr(+ =)

¥ C C
< 0.5.

Thus we have

400 ~ 400 ~
Gron(W?) < <—VL wt ,V> < HVL wt H
oo(W1) < 1997 [ ]| — 2007a oo(W1), V) < 1997 || ul| — 2007a oo (WOl
(14)
We next give an upper bound on HWtHi7 as follows:
15)

2
Wl
~ 2
= | W = VoW |

= W2+ o [ V(W) 20 > TR W) (915 W), W)

< HWtHi +17 CQdGrob(Wt) - 27)— Z@' (yif (X5 W)y (VF(X; W), W) (Equation (5))
i=1

C2d 1 & N g -
= ||W||5. + =2 Gron (W) + 20— g(yif (K5 W)y Y jfncb ((Whs X7)) (W5, X7)

i=1 s=1

C3d ~ 1 — . - _
= w2 + 17 =2 Gron (W 420 > g f (R W)wi ) \/m¢(<w;><§ )

7
i=1 s=1

m

Was i) (We Xi) = (W5, X7)))

+ 277% > 9 f (& W)ys

s:l

C2d ~ 1 -
é\!Wt||i+n2%G +277*Zg i f (X W)y f(XE W)

3

/ 57 ’L

m

C3d 2 1 &
< |[we|)% + W= ot 2 ZZ 7(01 +e (WD) @)z < hglz) < D)

2 C2d 2 2770 -
Wl +n° =2+ S0+ 2nery/m + == ZH tHzZHWtIIQ

#2085 W) 0 (s 5) (0, %) — ()
=1 s=1
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C2d 2 2Mes 1 o | . ¢
< W S 4 g 2men o SR W
C2d

2
< W[5+ 52 S 2ner v - 2meam ™5 (VO + ) W

Then we have

B d 2
HWtHHi ¢ < (||Wt||2F + 22 5 C3 I 3n+2ncl\/>+27702m 3 ( Cid+ ) CHWtH

If [WH| 5 <
2-¢

_ c2d 2 S e
WL < (1+n2; + 3+ 2nerV/m + 2nem T 01d+a)<)

2—¢

2
< Wi+ (1+n“+§n+zncm+zm2mz< Cud + o)

o a- 2
< Wt ‘ <772 2 +3n2nenym+ 2neam T Cld+a)c)~

il > 1.

;C
+ 20+ 2000+ 2nesm T (VO + ) W5\
W

2 n
W5 < W (

I

2_

HWtH 377+2ﬂ01\r+27702m 2 (VCid+a) C||Wt||c)

w1

A

,C3d 2
< w5 ( Z25 S0 2ney/m + 2neam’ = (V/Crd + )<>.

Combining the two cases, we have

_ - 2— ,C3d
I I (S e e < ).

Summing up the above inequality, we get

— 2 B
I < el (14252 (S S s = (VB ).

3
Thus,
W7l
1
_ 2 _ 3-¢
< <||W°||i_<+T~<1 +22¢ 5 < (nQCnQdJranncl\/%anlef( Cld+a)<>>>
2 2 ==
< w75 (1425 ( B e+ meam ™= (Vrd + o))
< |WO||p +T=< - <1+2 ( +§n+2nclf+2ncm T Cld+a)<>>
= W+ 775 (12 B L e e 5 (VG ).
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Consider the correlation between iterates weight and V as follows:
(W V) = <wt - nvimb(wf),v>

= (W5, V) — 7 <vimb(wt)7v>

= (WO, V) _ni<virob(vv8),v>. (16)

s=0

Recall from Lemma B.7 that V¢ > 0,y f(Xg; W) > g f (X W' ) Vfck € Ba(xy, ),k € [n].
Then we have y;, f (X ; WD) > yi f (X5 ; WY), and therefore £(y, f (X} ; WT)) < £(y f(xk,W ) <
(yy f (X},; W')) by definition that X| = arg maxs, es, (x;,0) £ (yif (X; W')) ,t < T. As aresult, we
have

Zrob(\NT)
_ ! max £ (y; f(X;; WT))

n ‘ iiEBQ(Xiva)

n

S5 T Z ;xleglzai’a f(ii;wt))

T-1

= % Z % < B )_g (vif (X W) (¢ (z) < —20'(z) when z > 0, Equation (4))
t=0 ) X; €B2 (X,
T-1
2 ~
= T Grob(wt)
t=0
300 T—1
= L Equation (14
~ (199 ||u|| — 200) vT' tz;< VLion(W > (Equation (14))
= i (W, V) — (WO, V)) (Equation (16))
(199 ||l = 200a) ynT
800 . .
<
< o agar =z (W7 + 11,
800 1 C2d 1
= (199 ||| — 200a) ynT (2||WO||F+T2<'<1+7I o +377+7]Cl\/>+7762m z ( Cid+a) ))
800 C2d 1
= (199 | 1/| — 2000) v T =< < W[ -+ 140" T+377+7701\/>+77c2m 7 ( C1d—|—a))
pll — 200a) ynd 2=
800 C d
S 1-¢ CUlnlt\/i‘i‘ + < n (Cl + CQ)\/’IE( Cld+ O[)))
(199 || ]| — 200cx) ynT = om
(Lemma B.2)
800 1 (G
= — (Vo + - 2% 4 (e1 + e2)vm(y/Crd + a)
(199 ||u|| — 200c0) ynT = 3 2n

(Assumption (A6))

B (o)

f+++\/g)

(choose C' > max{1, Cy, Ca,4(c1 + c2)?} be large enough)

< -
(199 ||4]| — 20000) 4975
(Assumption (A5))

800
< ¢
(199 ]| — 2000) yyT*=*

(
(
ooy |
(
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3500 + 800, /7%
(199 ||| — 2000) vy T E

35004800,/ | 1-¢ ~ T
VW<e<s.,T> (M) guarantees Lon (W) < e. O

Corollary 3.2. For any vy-leaky H-smooth ReLU activation ¢y rery defined in Equation (1), and for
all k € (0,1), A > 0, given Assumption 1 holds, we have that with probability at least 1 — 2§ over
the random initialization and the draws of the samples, the robust training loss satisfies

1+ /(1 —~)/Hm/* )
199 ]| — 2000) 7T )

Erob(V\]T) S @) <(

Proof of Corollary 3.2. Here our activation function ¢ is ¢gsy rey. The definition of ¢gp reru gives us
that
17
St
¢ (2)z = FLHZ* + %z = ¢(z) + ~[LHZ?, |
vz = ¢(2) + i
Therefore, ¢'(2)z — ¢(z) < L7%. Similar as Lemma B.11, we have Grp(Wh) <

400
1997]|p[| —200vex

|/\ N |\/
m»—l

we have

V Leop(W?) HF In terms of the upper bound on ||W* i?,
t+1]|2
W
~ 2
|
F

~ 2 1 &
= W[5 + 2|V EaonWO)| | =20 D¢ 5L W) (VW W)

< HWtHiﬂ"‘r OQdGrob(Wt) —2n— Zf/ yi f (X ;Wt))yi <Vf(f<f,Wt),Wt> (Equation (5))
1=1
C2d 1< ]
_HWtHF+ ? Z Grob(wt)2+277£;9(yi XL W) Zasqb <w5, ;) (Wi, f>
*HWtH +7720iGr0 (WH)2 4 2~ Zgyl W) Z wh,21)
WD @) o) < )

2 C3d 1< - - 1-
< W 1?2 G (W 201> g (K5 W) f (K5 W) + /=

i=1

(9(z) <1
112 202 2 .
< HW HF +1n + 377+7I\/>7 (9(z)z < 3)
< IW)5 +1n CCQdQ + §77+nf7 (Assumption (A5))
5 01—
< W40 (§ + Vi)

Telescoping gives us that

5
W < IWall7+ (3 + f)
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As a result, we have

i=1 ~z EBQ(X“OC)
= le ’ Zn: max £ (y:f(%i; W)
- T "N X €Ba(xi,a) ’
- lT—l 2 n max —El (yf(iwt))
- T 0 n o] Xi €Ba(x4,a) ! “
(¢ (z) < —20'(z) when z > 0, Equation (4))
9 T=1 _
= f Grob(wt)
t=0
T-1
800 ~
< —V (W), V Equation (14
= (199 ||p|| — 200a) 4T ;< rob (W) > (Equation (14))
- = (WF, V) — (W2, V) (Equation (16))
(199 || ]| — 200c) ynT' ’ ’
800

W5l + W0l )

= (
(199 ||pe|| — 200c0) ynT
5 1—7~
2 ||w° o, 177 T
= {09 I] —200a WT( I ||F+\/n (3 + \/7n> )
5 1—v
v 6md 2T o T) (L B.2

800 5 1—+n
< (199 || || — 20000) ynT <\/677 + \/77 <3 + 2H\/Fn> T) (Lemma (A6))

_ 3000+ 600/(1 —~)/Hm
(199w —200a)7\[f

B.2 MISSING PROOFS IN SECTION 3.2

Theorem 3.3. Let 0 < e < ;1,6 € (0,1/2). Let ¢ be a non-smooth activation with € (0, 1]. Let
€ (0,1),\ > 0. Then, given that Assumption 2 holds with some constant C' > 0, there exists
-2
a constant ¢ > 0 such that after running Algorithm 1 for 7" > Q(( (199 ||u|| — 200c) fy\/?]e>

iterations, we have that with probability at least 1 — 26 over the random initialization and the draw of
an i.i.d. sample of size n, the following holds:

1. The robust training loss satisfies Lyo,(W7) < €.
2
2. The clean test error satisfies L/ (WT) < 4+ 2exp (70/\?72\/;“4 (1 -2 ) >

vallull
3. For HMH < f\luHJrCf’the robust test error satisfies

L?o/bl(WT) §ﬁ+2exp(—c>\||/t|| (‘gfg” (1_ﬁ) _”3”)2)

Proof of Theorem 3.3. This proof is similar with the proof of Theorem 3.1. The robust training
loss bound is proved in Lemma B.21. For the generalization guarantee, apply Lemma B.1 with
Lemma B.26, with probability at least 1 — 24,
0/1 - . -
LU WT) = P(y yyop[3X € Ba(x, @) s.t. y # sign(f(X; WT))]

rob
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E 2
)P Ve F W) |y = 1
< B +exp —c)\< (x,ye) e ( )‘y ] >

W,

E(yo~p. [Wef (6 WH)|ye = =1] a>2
Wl

+exp [ —cA (

2
< 8+ 2exp (cA ( 20 (1l = il @) - a) ) . (Choose C > 19C2)

; llllv/n _
where the last line holds for ;= < il iova S° that === (HMH Il el a) a>0.

Similarly, we have

2
LYY WT) < B+ exp | —ex <E<x,yc>~oc [yef (; WH)|ye = H)

E (s yo)~p. e (x5 W)y = —1])2
W7,

onlult [, a )’

+exp | —cA <

O

The proof of Theorem 3.3 builds upon a sequence of Propositions and Lemmas, which we show
below.

Proposition B.12 defines a set G to characterize the index of noise that have large variance, and show
the size of set G is large.

Proposition B.12. Let £ = [¢ L., €% T denote the random vector sampled from Dy,s;. Define
G = {i € [d][E(¢")? > %}. Then the number of elements |G| > 5

Proof of Proposition B.12. Since each &' has subgaussian norm at most 1, we have 2 >
Eexp ((¢%)?) > 1+ E(£)?, so E(¢")? < 1. Suppose |G| < 5%-d, then we have

rd SE[¢*=Y B+ Y B(E)? <|6]-1+(d—[9])-5 <d- 5+(1-2)sm—d = rd,
i€g i¢G

which is a contradiction. O

Lemma B.13 provides properties of the initialized network weights, similar to Lemma B.2 except we
have an additional result that the averaged initialized weights variance that belongs to set G are not
small. This additional result will be used in proving Lemma B.15.

Lemma B.13. There is a universal constant Cjy > 1 such that with probability at least 1 — 36 /4 over
the random initialization,

1 3
2 1n1td < || 0”2 < 2wll’lltd Vs E HW H < C()wlmt(\/»‘k \[)

Dieg(W (s),i)2 S EZie[d]( 27,)
G| ! d

, Vs € [m)].

Here G is defined in Proposition B.12.
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ini -multiple of a chi-squared random
variable with d degrees of freedom. By concentration of the x? distribution, for any ¢ € (0, 1],

p 1
dw?

In particular, if we choose ¢t = 1/2, with probability at least 1 — 2 exp (—d/32), we have

1

Proof of Lemma B.13. For any fixed s, note that HWO H2 is a w2,

w02 - 1‘ > t) < 2exp (—dt/8).

init

3
wlnlld H OHQ < 2w1nltd

Applying a union bound, with probability at least 1 — 2m exp (—d/32), we have

1 3
2 1mtd < || 0“2 < wmltd VS € [ ]
Note that
1 —2mexp (—d/32)
>1—2dexp(n/C —d/32) (Assumption (B7))

>1—20exp(—d/64)
(d > 64n from Assumption (B3), Assumption (B2) and C sufficiently large)

>1-4/4. (d > 192 from Assumption (B3), Assumption (B2) and C sufficiently large)

Therefore $w2;d < HWOH 5 < 3w2id, Vs € [m] holds with probability at least 1 — /4.
H2 < Cowinit(v/m + \/8) holds with probability at least 1 — /4.

For the last part, for any fixed s € [m], by concentration of the x? distribution, we have

P (g 2

init Eg
Applying a union bound over all s € [m)],

> < 2exp(—|G]/32),

l\.’)\»—l

Zieg(wg,i)z > lw? S lziG[d] (Wg,z)z
|g| = 2 it — 4 d
holds with probability at least
1 —2mexp (—|G|/32) — 2mexp (—d/8)
>1—2mexp <_32(2’€—/<;)d> —2mexp (—d/8) (Proposition B.12)
21—2&&p0ﬂ0—3%;:Hﬂ)—&%mﬂWO—dﬂ) (Assumption (B7))

> 1—25exp< ( Clog(2) — 1/C)> —2dexp (—(Clog(2) /8 —1/C))

(d > Cn?log (2) from Assumption (B3); C sufficiently large)
>1-4§/4. (C sufficiently large)

The proof is complete by taking a union bound over the above claims. O

32( %)

The following anti-concentration inequality is helpful in proving Lemma B.15.

Proposition B.14. [Anti-concentration of subgaussian random variables] Assume X is a c-
subgaussian random variable with E[X] = 0, E[X?] = 1, then

p(x> 1 . 024 .
10¢? 2203 ¢4
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Proof of Lemma B.14. Denote a = 10%, A =2205c2 and B = 004. From 2 > Eexp( 2) >

1+ Ef—; we know ¢ > 1. Consider a truncated version of X defined by X=X- To<ixi<a- We
have

EX =EX —EX = -E (X - 1jx|<a) ~E (X - Lix5a) -
Itis trivial that |E (X - 1|x|<4)| < a. By subgaussian tail bound one may compute
(X Tixo)
<E (X[ 1jx>a)

A oo
g/ (\X|>A)dt+/A P(IX| > t)dt

2 e8] t2
<2A- exp( 2) —|—/ 2 exp (—2> dt
A C
A2 2 A2
<2A- exp< 02)—|—Aexp( 02)'
These imply
A? A?
’EX‘ <a+24- exp( ) — exp (—2>.
c
Similarly,
1=EX?=F (X2 . ]l\X|<a) +E (X2 . ]l\X|>A) +EX?
A? A? -
<a?+2A4% exp (—2> +2c¢% exp <—2> +EX2.
c c
Thus,

- A2 A2
’IEX2 — 1‘ <a®+2A% exp (—2) +2¢% exp (—2> .
c c
Let X+ = max(X,0) and X_ = max(—X,0), then X, and X_ are non-negative and X =
X+ — X,, X2 = X2 + X2 . We thus have

_ B A2 2 A2
‘IEX+—EX,‘§a+2A-eXp —— —|—c—exp -—— ),
c? A c?

~ ~ A2 A2
EX? +EX? >1—a®—24% - exp (—2) —2¢% exp <—2) )
c c

Now assume to the contrary that P (X > a) < B. We have
EX, <A-P(|X|>a)<A-B,
EX? < A*-B
EX,<EX+—|—a+2A exp( ) CA ( )
c? A
<A-B+a+24A- eXp( ) p( 2)
~ ~ A2 c2 A2
EX2 <A -EX_ <A<A B+a+2A4- exp( 2) + 1 exp ( ))
These together imply

oo < 5 A2 C2 A2
EXT+EXZ <A B+A(A-Bt+a+2A-exp(——5 |+ —exp|——5
c c

A
A? A?
<1—a*—-24% exp (—62) —2c¢% exp <_02> ,
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which is a contradiction. The last inequality holds since

A? A?
RHS — LHS =1 — a2 — 2A2 - exp (—2> — 202 exp (—2)
C C

2 2 2
—A> B-A(A-B+4+a+2A-exp —A— +C—exp —A—
c? A c?

2 2
:1—a2—2A2-B—A-a—4A2-exp(—A2)—3c26Xp<—AQ)
c c

2 A? 2 A?
zl—W—O.O8—A-a—4A -exp<—02>—3c exp(—c2)
1 A2\? A2
>1—— —008—A-a—84%/ () —32/5
> 100 0.08 a—8 /<c2) 30/02
=1-10.09— 1.5(22¢*a?)5 =1 —0.09 — 1.5(0.22)5 > 0.
This completes the proof. O

By combining Proposition B.12, Lemma B.13, and Proposition B.14, we establish the existence
of enough neurons with positive activation at the first step of adversarial training, as stated in
Lemma B.15. This lemma plays a vital role throughout the entire proof of networks with non-smooth
activation functions.

Lemma B.15. Suppose the events in Lemma B.3 and Lemma B.13 hold. Given Assumption 2, there
exists a constant ¢y > 0 that only depends on « such that with probability at least 1 — 6/5,

Vs € [m], |{Z € [n]:y; = as, <W2,X¢> >« HW?HH > con;
Vi€ [n],|{s € Im] : yi = a5, (W, x;) = a||Wo|[}] = com.

Proof of Lemma B.15. Fix any given (x;, ;). Recall that x; = ySu + &, where y§ is the clean
label, & ~ Deyuy is the noise. Note that (w9, x;) = y¢ (w9 ) + (w2, &). The first term is a

centered Gaussian with variance w2, ||u||2, therefore applying concentration argument gives us
with probability at least 1 — /20, maxge[m) [(W0, 1)| < 4winic ||l \/log (m/5). For the second
term, condition on &;, which is a centered Gaussian with variance w2, ||&|°,Vs € [m]. Since

P ((Wg, &) > %ﬁf“) > L, applying the Hoeffding’s inequality gives us with probability at least
1 — exp (—m/225), there exists a subset J; € [m] with |J;| > m/15 such that (w9, &;) > %‘O’EH
and a, = y;, Vs € J;. Conditioning on [|&;|* > &4 obtained in Lemma B.3, we have that
(wl,x;) — a||Wl|| = —4winic ||l v/1og (m/8) + winie [|Ei ] /10 — 2winirV/da  (Proposition B.13)
> Wini (\/nd/ZO — 4|yl /1og (m/d) — N&a)
> Wini (\//ﬁd/20 —4Vd)C — 2\/&/@) >0,

where the last line holds via Assumption (B3) and (B7) for large enough C as well as a <
Vvn/d|pl < % Combining the above arguments, we have with probability at least 1 — /20 —

nexp (—m/225),
Vi € [n], |{s € [m] : y; = as, <Wg,xi> >« HWSHH > %
Given m > C'log (n/§), the above holds with probability at least 1 — §/10.
X

VEXZ'

0
For the other statement, we can condition on w? similarly. Denote X; = <ﬁ, §i>, Y; =
sl2

It is obvious that EY; = 0 and EY;? = 1.
2 _ 2iela (Wog)"E(E])”

2
Z w3l
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(w9 )2ZR(£9)2

> ZJ eg( 5J ) 5 (il ) (here G is defined in Proposition B.12)
2 jela)(Ws.z)
- k/2 2

> |g‘4;/ > 16H— P (Lemma B.13 and Proposition B.12)

From Proposition 2.6.1 in Vershynin (2018), there exists a universal constant ¢! such that ||Y;|| by =
”XinQ < c¢'/16—8k
K

. Applying Proposition B.14 gives us that

VEXZ —
3 2 4
P(Xiz - 3)21’(1@212“)20.04( - )
10(c1)2(16 — 8k) 3 10(c")?(16 — 8k) 2205 (c!)*(16 — 8k)?
0ey> _wt —
Therefore, (w9, &;) > o) (10— ¥ ||W H holds with probability at least 0. 04(220%(01)4(16_8@2).

Consider y{ be the clean label that is uniformly distributed on {—1, +1} and is independent of &;,
then we have

3

P((w¢) > r .= )

(986 > S gy M2l o = i

1 K3

_ 7P 0 N> 0 0

2 <<W*“’ )z 10(c1)2(16 — 8x)3 g |WS>

/{/4

> 0.02( ).

2207 (¢1)4(16 — 8k)2

Similar with the previous part, since w? d/2 holds, applying Hoeffding’s

init init

3d/2 > ||[w0||* > w2
. . . oy — k* 2
inequality, with probability at least 1 — §,/20 — m exp (—5 x 10 (m) n |,

{z €| —a5,<w0 xl> >04HWOHH 0.015( il n.

Vs E p)
2205(61)4(16 — 8/1)2

When n > C'log (m/§) as assumed in Assumption (B7), the above holds with probability at least

1 — 6/10. Note that | {i € [n]; 5 # y5}| < (1/0 + \/2/7(/*) n < 0. oos(m)n holds
for a sufficient large C. Thus,
e
Vs € [m], [{i € [n] : yi = as, (Wi, xi) > a||Wo||}] > 0.01(220%(01)4(16 — 8&)2)”
The proof is complete by taking a union bound over the above two claims. O
Remark B.16. Given a designed network initialization to be w =a wmn\[ where 1 =

izl

1 Z YiX;, then we can relax Assumption (B8) to be v < O (||p]|). Under the modified Assumption 2
i=1

and suppose the events in Lemma B.3 hold, Lemma B.15 still holds; i.e., there exists a constant

¢ > 0 that only depends on & such that with probability at least 1 — 6/5,

Vs € [m

o=, (wx) = a2} 2 eon:

Vi € [n |{s€ ]yi:as,<wg,xi>2a“W2H}’Zcom.

Proof of Remark B.16. If y; = as, we have,
n
0 > YiX;
w j=1
(i) = < : >
’ 122wl
j=1
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)
122 wixsll i 0 32 vsxill
Jj=1 j=1
d/C1  ~ Culllpl? + /dlog (n/9))
120 yixill g 1> vix;ll
j=1 j=1
< d/(2Cy)
- 3Vdn
2 [lull = o
Therefore, |{s € [m] : y; = a,, (W), x;) > o HWOHH = Hsem]:yi=as}| = 0.5m.
{i€[n]:y=as, <WS,X1> > ||W || | = {ien]:y; =as}| > (0.4 — B)n > 0.3n holds
with probability at least 1 — §/5. O

Definition. If the events in Lemma B.3, B.13 and B.15 occur, let us say that we have a good run.
A good run occurs with probability at least 1 — 26. In the following proof, we condition on a good
run occurs.

The following proposition presents several properties of the distribution Dy, which are crucial for
establishing the generalization guarantees.

Proposition B.17. Assume £ ~ Dejys. Then the following holds:

(D1) For any fixed v € R?, for any § < 0.5, with probability at least 1 — § w.r.t &, [(v,&)] <

co ||v]| 1/log (1/8), where cg is an absolute constant.

? < 9d(log (1/6)). In particular,
denote event £ = {||§H > 6,/log (1/6) d}, we have E[[|¢]| 1 (£)] < 86*-,/d - log (1/5).

Proof of B.17. We first prove (D1). Note that the coordinates of ¢ are independent variables with 1),
norm at most 1. From Hoeffding’s inequality, there exists a universal constant ¢ such that

P (161> ea ol yfos (1/9)) < 2exp (~ecd ol 1o 1/3) /o) =25
By selecting cg = \/g , we get

P (|<v,£> > g [|vl] y/log (1/6)) <207 <0

Next we prove (D2). Note that the coordinates of & = [¢1,&2,... &7 T are independent variables
with 15 norm at most 1. From Bernstein’s inequality, there exists a universal constant ¢ such that for

eVer? t > O,
P (Hgn E||£||2 > i) <7 e}(p cln i | —, 1
l? .

Since 2 > Eexp ((£9)%) > 1+ E(£%)%, we have E||¢]|* = Y0, E(¢£%)?
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Select t = max{\/ dlog 1/6 log 1/5 } then P |§H2 —E|€)* > t) < 4. Therefore, with proba-

bility at least 1 — & w.rt§

dl 15 1 15
|§2<E||§||2+max{\/? og (1/ }
\/m log 1/5

< 9d(log (1 /0 ) (d1is sufﬁc1ently large since C is sufficiently large; § < 0.5)

As for the last statement,

E (€] 1 ()]
=A P () > 1) dt
64/log(1/5)d 00
=/ P<||su11<e>2t>dt+/ (el 1) = ar
Sﬁy/log(l/é)d-l’<||f||]l( 64/log (1/9) ) /61 TE ( t )dt

<Pma|>9abguw»)s5>
2
o] lo g d
§6m.54+/ exp —(t+6 ggd(l/) ) dt
0
§6\/m~54+/wexp (_12t,/1og(1/5)d+361og(1/5)d) "
0

9d
=64/log (1/0)d - 6* +* —
(/%) 124/log (1/6) d
< 85" /d-log (1/6). (6 < 0.5)

O

Before proceeding to the next Lemma, we define some important notations which will be used
frequently later. We define

th ii
m

so that the following holds:
yf W) —yf(x; W)

o' ((wh,X7)),

:L‘ 3 i — > 3i(Whg' ((Wh, X0)) (yiki, yx)
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%Zé (WOXi(x; W) (y:X;, yx) -
We define A(t) as the set of pairs (4, s) such that the neurons s is active for the adversarial examples
VX; € Ba(x;, ) i.e.,
t):={(i,s) € [n] x [m] : (WL, %;) > 0,V%; € Ba(x;,) }.

Denote its coordinate as

A(t) = {s € [m] : (i,5) € A(t)},

As(t) :={ien]: (i,5) € A(¥)}.
Proposition B. 18 For any pair (i, s) € A(t), we have VX; € Ba(x;, ), ¢’ ((wt,X;)) > ~. Moreover,
Ai(Ri Wh) > 42 | A () N AY(E + l)y/m
Proof. The definition of A(t) implies that (w’,X;) > 0,VX; € Ba(x;, ). By the definition of
activation function we have ¢’ ((w%,x;)) > 7.

The definition of \;(X;; W*) gives us the following:

MEwh= 1y ¢ (Wit %)) — d((wE, %)
om sEAL()NAT(t41) <Wg+17ii> - <W§, iz>

2
gl i i
> — t)N t+1)].
> T4 0 A+ 1))
O
We further define 7 := {(4, s) € [n] x [m] : y; = as} and similarly we denote
T :={sec[m]:(i,s) €T},
To:={ien]:(i,s)eT}
Lemma B.19. On a good run we have
A (0)NT"| = com,
|As(0) N Ts| > con.
Proof of Lemma B.19. Lemma B.15 implies that Vi € [n], s € [m],
Hie [n] :yi:as,<w x>>0 VX; € Ba(xi, a H > con,
Hse[m]:yi:as,<w >>0Vxl€Bg Xi, Qv }|>com
Combine with the definition of A and 7~ conclude the proof. O

In the following Lemma, we will 1) prove the number of neurons with positive activation increases as
the training epochs increases; 2) provide both an upper bound and a lower bound on the increment
in the un-normalized margin for arbitrary adversarial training examples; 3) show the loss g is at the
same scale across all adversarial training examples. An analog of Lemma B.20 is Lemma B.7 for
neural networks with smooth activation functions.

Lemma B.20. On a good run, there exists a constant C,, > 0 that only depends on x, v such that for
any ¢ > 0, we have

(ED A)NT C At+1)NT.
2~ t 2
(B2) 20200 ([ —a) < yif (R W) = pif (R W) < 32 (Crd +0%) 3u(WH), W%, €
BQ(X@O&LV?J S [TL]

9y fKLWY) ..

(E3) maxi jepm oy, 72w <
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Proof of Lemma B.20. We prove via induction. Recall X, = arg maxy, e, (x;,a) LY f (Xi; WH)).
Similar as network with smooth activation functions, we have the following

I FEEWY) (2 . eXP(—yz-f(iﬁ;Wt))> _
igeml g(y; f(X5; Wt)) iein) exp ( y; f(X5 W)

Therefore we only need max M < C,/2 to hold. Note that at initialization,
i.jen] exp(—ys F(R5:W1))
£ (20 w0
ol nI@N) )y

i.jefn] exp(—y; FE3WO))
Without loss of generality, we choose ¢ = 1,5 = 2. Through induction, at iteration ¢, we have

% C,./2. Now we are proving with the following order: (E1), (E2) and (E3) for
ex 2 f(X5;

t + 1. Given for any (i, s) € A(t) N T, we have y;as = 1 and (W%, X;) > 0,VX; € Ba(x;,a) > 0 by
definition, we have

(Wi %) — (wh.)

= nnmf}i(V\’t)q5 ((Whs X7)) (X35 Xi) + anykasgk (W' ((W5, X)) (X Xi)
—%Gmb( )(c1 (Hull +/dlog (n/9) ) +2a,/Chd +a)
> n;ﬁ%ﬁ/)v (Md/C’l—a)z—n\Zﬁémb(Wt)d <Clg Ly J\%H)
(Assumption (B3))
G (7)o

(a < /n/d |||l < [|p]| < 3+/d/C1; C sufficiently large)
This implies that (¢, s) € A(t 4+ 1) 0T, therefore (E1) holds.

Next we consider the following
yif (Xis W) — i f (Xi; W)

G (WHXe (Xis W) (yeX],, yi%i)

N}
S
N
g
N
g
PN
2
g
N~—
7~

Y7 G WOARE W) (ki)
k#i

The first term gives us

Z~ (WA (i3 W) (&L %) > %gi(wtm(ii;wt) (\/d/c1 _ a>2

N Y| i ) 2
> 2g,WH L) n A+ 1)] (VT - a)
(Proposition B.18)
> ﬂr(wt)f |A"(0) N T («/d/C — a)2 ((E1))
= ngz m 1
2
> ano (w/d/c1 — a)2§i(Wt). (Lemma B.19)
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On the other hand,

D5 (WO (3 W) (5 < (VB +a) 5:(W)

n
The second terms tells us that

IS G (W (s W) (R, i)
ki

<n (€1 (Il + V/dlog (n/8) ) +20+/Crd + a2 Grn(W")

dg;(W? ~
< w (Grob(W*) < C.3;(W"); assumption (B3) for large enough C)

n
Similarly,
L3 G WA (i W) (i i)
ki

> = (€1 (Il + V/@log (0/3)) +2a+/Crd + 02 ) Gron(W")
—nCy (C1 (lul* + /dlog (n/5)) + 2ay/Crd + a?) Gi(W')  (Gran(W") < Cri( W)
m7%co 2 :
> ~ <0.5\/d/01) Gi(Wh) (Assumption (B3) for large enough C)
n
2 2
<o . ~ ot
> -2 (\/d/c1 a) i(Wh).

Summing the two terms together we have (E2) holds. This implies that y; f (f(f, W) >0,vt >0,i ¢
[n]. Applying the above gives us the following,

exp (—y1 f(XTT W)
exp (—y2f(Rs"; W)

_exp (_ylf(iﬁ;w )) _exp (y1f(>~<§,Wt) wnf& t41, Wt“))
exp (~y2f (Roi WD) exp (2 (36 W) — 1/ (357 WEFT))

< exp (_ylf(ﬁ;Wt)) ' exp (th(x’ﬁl Wt) _ y1f( t+1, Wt'H))

~ exp (7y2f()~(§; Wt)) exp (ny(XQ, t — yzf(XQ,WH'l))
o (o fGEW) (3 gt ([T

< exp (7y2f(ig’wt)) - exXp (Cld+Oé ) (W ) 5 < a _ g1(W )
xp (7y1f(i§;wt)) 770072 (\/7 >2~ " 3n (Cld + a2) i (Wt)

- 2owh) P S—a | ga(Wh| 2 -~
i G A T i

where the first inequality holds since exp (yif(X{™' ;W) > exp (yif(X; W),
exp (y2 (X5 WIT)) < exp (y2f(X; WT)) by the definition of X}, X5

exp(—y1 FRTTHWIT) <
exp(—y2f(RTHWHT)) =

i oS 5 (Crd+a’) s = 6(Cld—+a)2
g2(Wt) = %(mfa) coy? (\/01/701*0‘)

exp(—y1 £ (X[ W")) .
—_— < .
e GRS C; /2. Otherwise we have

exp (—y1 (X W)
exp( y2f( t+1, Wt+1))

2g:(W") 31 2y - wty _ 1607 S (W
< IOy (2 feri+ ) W)~ "0 (VAT )" 1))

then

45



Under review as a conference paper at ICLR 2024

12 (Chd + o?)

co? (\/m— a)

24 (C1d + o?)
e (Va[Cr ~ a)

where the last line holds due to exp (22 (C1d + a?)) < 2forn < 1/Cd? with C > 1551) given by

Assumption (B6). Assumption (B8) and Assumption (B3) gives us that o < \/n/d ||u|| < ||p| <
0(2
0.5,/ c%' As a result, there exists a constant C,, = 19201(01+1/(4Cl)) > 18(Crd+a?) = such that

cov? T con? (\/d/leoz)

the Lemma statement holds, where C; comes from Lemma B.3.

exp (3: (Crd+ a2)) G:(WH) < 1)

5 < Cr/2,

Lemma B.21, an analog of Lemma B.11, aims at providing the convergence guarantees of robust
training loss for networks with non-smooth activation functions.

Lemma B.21. For a non-smooth homogeneous activation function ¢, provided C' > 1 is sufficiently
large, then on a good run, the robust training loss satisfies

~ 3200
Lion(WT) < '
won(W7) < (199 ||p|| — 200c) yeo/nT

where ¢ > 1 is the constant in Lemma B.15.

Proof of Lemma B.21. The proof is similar as Lemma B.11. We first need to show a lower bound
for HVErOb(Wt) H = SUpy,|u| =1 <7VErob(Wt), U>, and it suffices to construct a matrix V with
F

Frobenius norm at most one such that <7V]3rob(Wt), V> is bounded from below by a positive
constant. To this end, choose V € R™*4 be the matrix with rows v, = \/%asu/ il Vs € [m).
Then || V||, = 1 since a5 = +1, and we have for any W*,

<Vf Xu V> Z CLS(ZS >) <Vsa)~(i> = <||Z|a)~(z> %Z¢/(<Wi7iz>)

s=1
1 m
1>~
2 20
1 > . ~
> - Z &' ( <Wi, xL>) (Only count the neurons that satisfy (w’,X;) > 0)
s€Ai(H)NT
1
> — ¢ ((Wh,X:)) > co. (Lemma B.20)

m ° )
se AL (0)NT*

By Lemma B.3, we have

. ~ 2 .
{yi (b, xi) > ;38 H/~L|| ieC {yz (> Xi) 22%313 H#ll2 —lplla, i€
(x| < 555 Iel® i€ N7 U )l < 305 lull® + lulla, i €N

And Vz > 0,¢'(z) >~ > 0, apply Lemma B.19, we have the following lower bound for any W*,

199+ _ cC (199v lpal| — ) co, 1€C
AV F(xi; WY, V) > { w00 |-l - co, te i (V (R W, V Z{ 200, [IK 0,
p VIO W V) 2 Pl 1w (TG WO V) 2 Tl T

Similar as Lemma B.11, we have

~ 199 « A
(~VLa(W),V) > (Zog“” - é) coGron(W).
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Thus we have

~ 400 400
Gua (W) < (~VEulW).V) < H H
(W) < 1505 [l = 2007a) ¢ VLian(W1). V 199 [[2]| — 2000) ye VLaon(W) F
el &) Co K ) vo
‘We next give an upper bound on HWt Hi as follows:
Wl a7

~ 2 1 & R ~
= W13 + 2 HVLrob(Wt)HF =2 3 (R W) (VR W, W)
=1

2 R n

< |[we|)% + WZ%Grob(wt)Z - 277% ST FREW)ys (VF(RE W, W) (Equation (5)
=1

C m

= [W*]5. + 2 Grob(W')? + 20~ ;g yif (X5 W)y 2

WG, Xi)) (We, XD

Csz 1 n ) i
= W[5 + nQ%Gmb(wW +2n Zg(yif(Xf;Wt))yif(xﬁ;Wt)

C 2
< W+ i + 30 @)z < L g(z) < 1)

Telescoping gives us that
C3d 2
Wil < el (P20 3n)

We apply the same argument as B.11. Recall from Lemma B.20 (E2) that V¢ > 0, yx f (Xx; W’H'l) >
Yef (X W, VX € Ba(xp,a),Vk € [n]. Then we have yy.f(X5;W') > i f(X; W),
and therefore (y; f(X};WT)) < L(ypf(XL; W) < (yrf(Xi; W?)) by definition that X! =
arg Maxy, e, (x;,a) ¢ (ylf(xl-7 Wt)) ,t < T. As aresult, we have

n

L 1
L WT _ 2 , i ~i.WT
rob( ) n — xler[??%iia) (y f(X ; ))
1 T-1 1>
< fp— —_
=T Z n Ziiegﬁi a)ﬁ (yzf(xl,w ))
=0 V=1
1 -1 9 1
T n —L g Z,W
T i—o ;xlegﬁéa) (y fx ))
(¢(z) < —20'(z) when z > 0, Lemma B.20 (E2))
g T=1
- T Grob(wt)
t=0
800 T—-1 R
< - Wt .
< T 20T 2 oL (V). V)
800 (W, V) = (W, V) (Equation (16))
800

T 0
< vtz (W7l W)

800 C2d 2
< 2 ||w° -2 T
—u%mu—mmmwa<” “F*¢Q7 “5) )
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800 C2d 2
< iV 6md 2 T
= (199 |1l — 200a) yeon T (w v bma + \/<n0d2 * 3> K )
(Lemma B.2, Assumption (B6))

800 P
= 6 — 4+ - |nT|. Ch C>(C2
~ (199 ||p]| — 200cx) yeonT (\fn + (nd + 3> n ) (Choose C' > C%)

< 3200
= (el = 2e0) yeo/n T
2 ~
Thus V0 < & < 5, for T > ((199‘“"”73220(())0&)760\/55) guarantees Lop(W7) < €.

O

Now we switch to prove generalization guarantees. Lemma B.23 provides lower bound on both the
local difference of asy ((wi™,x) — (wl,x)) and the global difference of a.y ((w,x) — (w9, x)),
which serves a similar purpose as Lemma B.9 in networks with smooth activation functions.

Lemma B.22. Assume (x,y) ~ D, x = ypu + £. Fix some ¢ > 0. On a good run, there exist
constants ¢z, C’ > 0,C"” > 0 such that the following holds for all s € [m] and for all 7 < ¢ with
probability at least 1 — 3(d/n) = w.rt. &,

asy (<W;+13X> - <W79—7X>)
crn 9 , , d ~ .
> | flul* =20 |l - L&) = Clay[dlog (=) | Gron(WT).
> = (Iull allpl-C Q%KEMQI C'ay | dlog (n)> Gron(WT)
Concurrently,

asy ((We x) = (ws,x))

> S 11?20 | - € o () - C"ay o (£ Z G (W
NG
Lemma B.23. Assume (x,y) ~ D¢, x = yu + £. Fix some ¢ > 0. On a good run, there exist
constants ¢z, C' > 0,C” > 0 such that the following holds for all s € [m] and for all 7 < t with
probability at least 1 — 3(d/n) ! w.rt. &,

asy ((WITh,x) — (W], x))

crn 199”/‘” / / d ~ T
> - L) — = .
> ( 100 2]|pl| = C grelﬁﬁl@,@l Clay[dlog | — ) | Gron(WT)

Concurrently,

asy ((Wex) = (W, %))

crn 199||uH2 1 -~
> — | — — — rob(WT).
Jm ( 100 2a||pl] = C"y/dlog (dm/n) /n E Grob(WT)

7=0

Proof of Lemma B.23. Consider X; = yip + &, X = yu + &, where 3 and y are the clean label.
Denote X| = arg maxzes, (x;.a) £(¥i f(X; W')), € = X — x;. Then we have

asy (W x) = (Wi, %)

= o D VOV (S0 G+ o 8

:nfzyzygz (W' (wh %) (we Il + y G 6 + €6) + 5 (1,€) + (s + €6,))
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N A (WO (w3 .
_ m;mwm (we, 20) (Il + 95 s+ )

n
Bl(t)
2n =t (ot ot 2
- (W ) Xq i (s & + €
i 2 BV (o 5 ) (Il + 95 (.6 + )
Bs(t)

+ g Do BEUB OV () 0 €00 D S (W6 (o 500 (s 0 ).

Bs(t) Ba(t)

We now bound each of the term separately. Recall from Lemma B.3 that |{u, ;)| < ”2“0|(‘]2, also

lemma B.19 gives us that | A, (¢)| > |.A5(0) N 75| > con, together with Lemma B.20 gives us that
ZieAs(t) gi(Wh) > %f(wt) Therefore, for By (t), we have

199 || u||? ;
Bl<t>zn%< ] —allu) S W) (Lemma B.20)
€A (1)
neoy (199 ||u)? ~ ¢
> _9 Gron (W
_ZC’T\/E< 100 allpll | Gron (W)

For Bs(t), we have

nCr (1 2\ (201 |l A
'BQ(t)'§m<c+\/c> (100 +2ull | Gron(W?)

2
ncoy (199 i

= 8C,/m \ 100
where the last inequality holds for large enough C and o < /n/d||p]] < 0.99]|p]].

For B3(t), define event & = {\(u,§>| < cgy/11log (d/n) ||u||} Apply Proposition B.17 (D1)
gives us that P(€1) > 1 — (d/n) 1. Therefore conditioning on &; gives us that,

—2a ||M> érob(wt)>

|Bs(t)] < ”j%émuwt) (1, €)]
< ng 11l Gron (W)
< ;g 1o ([l /0%) 1l Geon(W') (Assumption (B2))
< %0.01 Il émb(Wt) (Choose large enough C')
< goon (1991(')'(;”2 - 2a|u|> Crn(W').

For By(t), we have

Cy A
(0] <~ maxgu(W) max |6 + i, )| < UL G (W) (m[)]( (&.8)] +a ||5||) :

Proposition B.17 (D2) gives us that with probability at least 1 — (d/n)~!' wrt. &, ||€]] <

104/dlog (%) Conditioning on this event gives us that

|Ba(t)| < %érob(wt) (Igéﬁf}((&,f)l + 10@@) ,
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Combining By (), Ba(t), Bs(t), B4(t) gives us the following:
asy (Wi x) = (i, x))

C77) 199””” / / d ~ t
> — - L6 — - .
f( 100 20|l Cgrel%l>]<|<§“£>| Clay[dlog | | Gron(W')

For (w!,x) — (w9, x), we need to consider the cumulative of the four terms. For By (t) in specific,
we have

n t—1 n 2
Zzyzygz WS,XZ & <4dz <Zgz W, z>)>
i=17=0 i=1 \7=0
t—1 2
< 4C2%dn (Z @mb(WT)) ,
=0

where the first inequality comes from applying Lemma B.3 C3, and the second inequality uses the
fact that ¢’ (z) < 1 together with §;(W") < C.Gyop(WT). Thus,

Ziyiygi(WT)¢/( WD) (& + €])|| < 2C.Vidn (Z Grob(W ) +an (Z Grob(W )
i=1

=17=0
< 3C,Vdn (Z émb(WT)> .
7=0

|2 from Assumption (B3) and C' large enough)

Therefore,
n t—1 n t—1

<Zzyiy§i(wf)¢'( wl,X)(& +€)), > Zzyzygz (WD) (WD, X)) (& + €])|[ (vl
=1 7=0 =17=0

Do Ej—;t yiydi(WT)e' ((wg X)) (&iter) c Rd, which is inde-

t_
where for simplicity we define ¢} = [ S ey (W)@ (WE ) (€ re)

pendent of &. This gives us that

t—1
2 Balr)| <
7=0

s )
e A el

And therefore we have
asy (<WZ, x) — (w2, x))

_ZBl ) + Ba(7) 4 Bs(7) + Ba()

crn (199 |u]?
> T (100 —2a||p|| = 3C"\/d/n IrelaX ZGmb

Define another event & = {maxse[m] |(t, &)| < cgy/111lo0g (dm/n)} Applying Proposi-
tion B.17 (D1) gives us that P(£;) > 1 — (d/n)~!!. Conditioning on the above events, we know

asy ((wg, x) = (W, %))

e (19911 o
> ﬁ <100 — 2« HM” e dlog (dm/n) /Tl ;Gmb(w )

Applying a union bound, the above holds with probability at least 1 — 3(d/n) =1t O
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Corollary B.24. Assume (x,y) ~ D.. Fix some ¢ > 0. On a good run, the following holds for all
s € [m] with probability at least 1 — 4(d/n)~11,

cr1 2
T (1984 —2aIIuII)Z

=0

asy (Wy,x) >
where c; and C” come from Lemma B.23.

Proof of Corollary B.24. With proper C, Assumption (B2) gives us that ||u|*> >

200C"\/dlog (md/n) /n. Therefore, Lemma B.23 tells us that with probability at least
1—3(d/n)~1

t—1
asy (Wiox) = (W) = o2 (1985 12> = 20 [lall) 3 Gran(WT),
7=0
Using Proposition B.17 as well as Lemma B.2, the following holds with probability at least 1 —
(d/n)~H,
[(wes )] = (Wi yp +€))

< |IW| el + 6 /11 1og (dm/n) ||wWo]| (Proposition B.17 (D1))
11
< Wl el + s ’éﬂs 1) (Assumption (B2))
11
< 1w lpell + o " ||||,u||| [[wo]] (Assumption (B3))
< 2|l ||| (Choose sufficiently large C)
< Awini ||| Vd (Lemma B.13)
4n || ,
< Jm (Assumption (B5))
8 ~ _
= ’Z/m“” Girob(W?) (G:(W?) = 0.5)
0.00lcrn | o~ -
<=/ I ;Gmb(w ) (18)

where the last line holds from ||z||> > C'log (2) by Assumption (B2) and C being large enough.

Therefore we have
t—1

asy (whox) 2 L (1984 ul® - 20 a]]) 3 Gron(WT)

7=0

O

Lemma B.25. For any (x,y) ~ D, with x = yu + &£, on a good run, there exists some constant
cg > 0 such that

(W x)] < \ﬁ (HMH + il el + v/d/n €N+ el e + 1€ a) ZGrob ), Vs € [m].

Proof of Lemma B.25. Consider Vs € [m],

(wh,x) = ws,x>+z withx) —(wl,x)) .
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Decompose (w'™!, x) — (w!,x) into By (t), Ba(t), Bs(t), Ba(t) the same way as in Lemma B.23.

C, (201

(0] < T2 (55 Il + Il ) Gun(W),
Cr 2\ (201 || _

B0 < 2 (5 - \E) (Jlé‘” + 2]y a) Gron(W"),
Cr ~ C ~

[Bs(t)] < %Gmwt) (&) < 7 ron (W),
20”7[

\/7 ||€|| Z Grob WT ||£|| Z G'rob a

W0 X W0 - |IX W0 _—
(w2, )] < [[wWol - IIxll < | 5H<||u||+|\s||>sm(\wunsn)

(Assumption (B5), Lemma B.13)

2n 5 .
= Clos @)y : A B2
= Clog(2)\/m(”'u‘| + [l 1I€1) (Assumption (B2))

Therefore,
=t t—1 t—1
[(we, x)| < [(w |+Z|B1 |+Z\BQ(T)|+Z|B3(7-)|+ 234(7)
7=0 =0 —o

t—1

< i (Wl + el el a7l + Dl + Tl ) 3 oW

O

We finally demonstrate the lower bound on the normalized expected conditional margin, similar as
Lemma B.10.

Lemma B.26. On a good run, there exists some constant cg > 0 such that

E(x,y)~p. [yf (x; W]y = 1] S coy/n (HMHQ

~lula);

Wl ~ 16CoVd
E(x )~ [Vf(X; Wt)\y = —1] co\/1 5
Hth2 > IGng/g (H || - ||M|| 04) .

Proof of Lemma B.26. Consider the following

yf(x; W*) \F Z o( <ws,x Z: <ws,x

as=y —

ﬂ\

We first consider y = 1. Denote event £ as the conclusion of Corollary B.24 holds, then P(E) >
—4(d/n)"". Corollary B.24 indicates that

t—1
crn 3w
asy (wh,x) > 7% (1.984 gl - 2a ||MH) Zcmb(w )
=0
> L0004 5 Gual(W7) > 0. (o< v/l < 0.99]ul)
T7=0
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Therefore, on event £ we have

yf(x; Wt S Z <w x>
\F =
m n t—1
cr
> TZ D e (1984l 20 ) > GonlW7)
t—1
crn
> T D 0 ((whx)) ok (1984 il ™20 el) 3 Gron(W7)
s=Y =0
m t—1
> —y— = (1.984 -2 rob (W™
> \ﬁ : \ﬁ( 084 || a”M”);)G b(W7)
t—1
e A -
= 20 (1984 |l = 20 [lull) - Gron(W7),
=0
and thus
IE(x,y)N'Dc [yf(wit)ll (5) ’y = 1]
t—1
C ~
> P(E) 2 (1984 |l — 20 l}) D Cron(WT)
=0
yern t—1 R
> P(E) 570004 [[1]* Y~ Gron(W7)
7=0
t—1
> %977 ) Z(A}’mb(WT). (P(E) > 1 —4(d/n)~" > 2; choose sufficiently large C))

We now consider on event £¢. Using Lemma B.25 gives us that,

]E(x,y)w’Dc [yf(xv Wt)ﬂ (EC) |y = 1] |

jmsixwg,m(m]
) d t—1 N
< con (Ilull*+llul @) P(E°) ZGrob )+ s (u||+ﬁ+a>E<|§||11<50>>Zamb<wv.

7=0

S E(va)NDc

Now we denote another event £ = {||§| < 6004/dlog (£) } then

E (||g\| 1(£91 (5)) <E (600, |dlog (Z)]l (5C)> < 600, /dlog <Z>4(Z)“ < 0.5(%)*8,

(d > log (2) Cn? from Assumption (B3) with sufficiently large C))

c cc cc d —40000 d d -8
E (el )1 (£)) < (el (£)) <8¢0V (100, 10g (n)> <05t
(Proposition B.17 (D2);d > log (2) Cn? with sufficiently large C)
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Putting them back gives us that

|Ex ). [ (s WHL(E9) |y = 1]|

t—1 t—1
< csn (|lul*+ Il o ) P(E°) > (W) s (Inall+v/an+a) B¢ 1 (EN Y GnlW

< can (1l +lull @) 4(d/) “ZGmb ")+esn (lul++v/d/n+a) (d/n) SZGmb ")

< con (Ill® + lalla + llul) + v/a/m + o) (dfm)~* S GuulWY)
7=0
(Assumption (B3); choose sufficiently large C')
t—1
CaT) 2 ~ T
< S (Il + @) D7 Cron(WT).
7=0
(lul|? > Clog (2) from Assumption (B2):d > log (2) Cn2; choose sufficiently large C)

Therefore, we have

E(x,y)~D. [ ) ]
= Eqxy)~p. [ ( sWHL(E) |y = 1] + Ex yyop. [yf(x; WHL(E9) |y = 1]
> Eqyyon. [0 WHL(E) |y = 1] — [Eqyyp, [uf (s WHL(E) |y = 1]

—1
Co7]
>—(Hu|| IIMIIa)Z

Then similar as Lemma B.10, recall that HWOHF < 2wiprvmd < 2n < n\/d/n@mb(wo). If

Wil < 2(IW2l| s
By~ [fsWOly=1] _ con 2 S,
: > ll™ = llulle) Y Grop(WT)
W, e, ( )26
-1
CoT) 2 ~
> ~ — Grob(W
> Sor T el =l @) 3 G (W)
> Dl ~ ). (L) G W) 2 s
If HWtHF > 2 HWO »» by Lemma B.8, we have
2| WO < 1W< ||WO||F+02an/nZGTOb (W?).
Thus,
E(x,y)N'Dc [?Jf(wit”y = 1} > C9 2 ) =1 ~
= — Grop(W7
T a7 ) GV
- ol e
O (Julf -l )
All the above proof holds for expected condition on y = —1.
[
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B.3 MISSING PROOFS IN SECTION 3.3

Theorem 3.4. We consider independent label flip with probability 5. Let p(x) be the density
function of D.,g. For any given classifier f(-; W), when o < ||u||, we have LO/l(W) > B+

rob

1*42'8 Jpa min{p(&),p(§ 4 v)}dE, where v =2 (1 — o/ ||p]|) pr- When o > || ]|, the robust test error

satisfies Lo/l(W) > 0.5.

rob

Proof of Theorem 3.4.
L?o/bl (W) =P yyop [3X € Ba(x, ) s.t. y f(X; W) < 0]
= (1 = B)P(xyo)~p, [3X € Ba(x, @) s.t. Y f(X; W) < 0]
+ BP(x ), [3X € Ba(x, ) s.t. ye f(; W) > 0]
= (1= )Py )~ Lemin yef(X; W) < 0}

XEB2 (x,a)

1— Py S W) <0
+ﬂ( (,9¢)~De Lerggagfa)y f(X;W) )

> B4 (1= 28)Psyyop. [ min yf(GW) < o] .
XeBa (x,a)

Recall that x = y.u + &.
Case 1: Consider the case that o > ||u||. We have

11( min f(i;W)§O>+]l( max f(i;W)zO)

XeBz (p+€,a) XEBz (—p+E,a)
> 1 (f(GEW) <0)+1(f(&EW) =0)
> 1,

where the first inequality holds because & € Ba(p+&, o) and £ € Ba(—p+ &, o). Therefore we have

Plye)~ in gy f(X; W) <0
(x:9e)~De (iegg(ga)y FEW) )

1P ( i f(x W)<0)+1P ( m f(x W)>O>
= —P¢o min X3 >~ 5+ §~Deust ax X -
9 &Pau \ st ) 2 P \ gy (= pte,a)

= 0.5E¢p,, | 1 min W) <0 +1 max ;W) >0

5 Dclus ( (iGBQ(ﬂ+E,C¥) f( ) ) (iGBQ(—#—‘rE,O&) f( ) >
> 0.5.

As aresult,

LYY (W) > B+ 0.5(1 —28) = 0.5.

rob

Case 2: Consider the case that & < ||u||. Let p(x) denote the density function of Dys. Define

v=(2- Zﬁ)u. We have

(]1( min f(i;W)gO)Jr]l( max f(i;W)20)>

XEB2 (u+E,a) XeB2(—p+E,a)

+(]1< min f(i;W)§0)+]l< max f(i;W)zO))

XEB2 (§+v+p,a) XEB2 (§+v—p,x)
> (1 (re+ W) < 0) +0) + (0+1 (f(e+ W) = 0))
> 1,

where the first inequality holds because £ 4 5 € Bo(p + &, ) and § + 35 € Bao(§ +v — p, ).
Therefore we have

Piyym min f(X; W) <0
(x,yc)~De (ieBz(x,a)y f(x W) )
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1 - 1 -
= 7P£~’Dclusl min f(x; W) S O + 7P£N,Dc]us( max f(x; W) Z 0
2 2 XEBy

XEB2 (n+€,) (—pt+€,a)

= %E£~Ddusl <]1 ( min  f(X; W) < O) +1 ( max  f(X; W) > O))

XeBa (p+E,a) XEBa (—p+&,a)

1 . - -
il { (1 (i w0 20) 41 (e300 20) )

+<]1< min f(i-W)<0>+]l( max f(i;W)>0)>p(§+v)}d§

REBy(E4vtpa)” REBs (E+v—pu,)

> / min{p(€), p(€ + V) }e.

As a result,

1-283

L W) 2 5 = [ min{a€).p(€ + V).

rob

Consider a special instance where Dy is a standard Gaussian distribution; i.e., N'(0, 14). Then the
result can be simplify as

1-2
Lo W) 2 4 () o).

where &(z) 1= = [*__ exp (—t?/2) dt is the normal cumulative distribution function. O

Proposition 3.5. Consider the same setting as in Theorem 3.1. Then, for some absolute constant
C > 1, with probability at least 1 — 29 over the random initialization and the draw of an i.i.d. sample,

[W—w —
F o~ 2(199]|p]|—200c)
we have that “—go— > 1000 :

Proof of Proposition 3.5. Consider V € R™*4 be the matrix with rows v, = ”#‘ZHS \’;m, then we have

(W = WOl (W' = wE V)

0 = 0
77< erob(W )7V>
0
W[l
199~ ||,uH — 200v« nérob(wo) i
> Equat 13
= () e e
> (1002l - 2000 nGrn (W) (Lemma B.2)
- 400 \/mwimt
1 —2 5
> 997 ||l — 200y Gron(W?) (Assumption (A6))
500
- ﬁ (199 || 1]| — 200cx) . (Equation (9))
O
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