
A Further memory and speed comparison

Dataset Model & # Param Package Time(sec) / Epoch Memory (GB)

CIFAR10

ResNet18 Opacus 59 8.30 | 14.05
Ghost 65 2.21 | 3.31

11M Mixed 44 2.21 | 3.31
NonDP 14 2.20 | 3.31

ResNet34 Opacus OOM OOM
Ghost 109 2.64 | 3.61

21M Mixed 77 2.64 | 3.61
NonDP 24 2.63 | 3.61

ResNet50 Opacus OOM OOM
Ghost 174 8.85 | 11.6

23.5M Mixed 137 8.85 | 11.6
NonDP 53 8.7 | 11.6

ResNet101 Opacus OOM OOM
Ghost 275 10.52 | 11.81

42.5M Mixed 237 10.52 | 11.81
NonDP 91 10.36 | 11.76

ResNet152 Opacus OOM OOM
Ghost 350 12.54 | 13.90

58.2M Mixed 389 12.54 | 13.90
NonDP 133 12.39 | 13.89

VGG11 Opacus 40 6.19 | 14.11
Ghost 18 1.85 | 2.89

9M Mixed 16 1.85 | 2.89
NonDP 5 1.83 | 2.86

VGG13 Opacus 43 6.72 | 14.18
Ghost 29 1.94 | 3.53

9.4M Mixed 22 1.94 | 3.53
NonDP 7 1.93 | 3.53

VGG16 Opacus OOM OOM
Ghost 35 2 | 3.57

14.7M Mixed 28 2 | 3.57
NonDP 9 1.98 | 3.57

VGG19 Opacus OOM OOM
Ghost 40 2.05 | 3.63

20.0M Mixed 33 2.05 | 3.63
NonDP 11 2.03 | 3.59

ResNeXt Opacus 162 10.77 | 12.51
Ghost 189 6.93 | 7.05

9.1M Mixed 140 6.93 | 7.05
NonDP 54 6.56 | 6.99

MobileNet Opacus 46 7.24 | 13.93
Ghost 42 2.95 | 4.91

3.2M Mixed 36 2.95 | 4.91
NonDP 9 2.94 | 4.91

Table 6: Time and memory of models on CIFAR10, with physical batch size 128. There are two
types of memory: active memory (left) and total memory (right). Out of memory (OOM) means
the total memory exceeds 16GB. FastGradClip is excluded due to inflexibility to apply on general
architectures.

15

Dataset Model Package Time(sec) / Epoch Memory (GB) Max Min
& # Param Batch Size Time/Epoch

ImageNet

Opacus 392 3.20/4.35 145 138
Resnet18 Ghost OOM OOM 7 1093

11.7M Mixed 410 1.74/2.34 325 370
NonDP 349 1.73/2.34 678 114
Opacus 444 5.29/5.94 93 197

Resnet34 Ghost OOM OOM 7 1482
21.8M Mixed 478 2.01/2.62 282 428

NonDP 373 2.01/2.62 455 114
Opacus 518 9.13/10.73 55 316

Resnet50 Ghost OOM OOM 7 1896
25.6M Mixed 545 4.49/5.93 129 343

NonDP 385 4.47/5.93 161 136
Opacus 762 11.53/12.80 28 735

Resnet101 Ghost OOM OOM 7 2816
44.6M Mixed 784 5.53/6.65 89 578

NonDP 430 5.51/6.65 99 232
Opacus OOM OOM 22 1365

Resnet152 Ghost OOM OOM 7 3789
60.2M Mixed 1109 6.77/7.91 57 887

NonDP 500 6.75/7.91 83 348
Opacus OOM OOM <5 NA

VGG11 Ghost OOM OOM 0 NA
132.9M Mixed 441 5.23/7.47 71 347

NonDP 361 4.96/6.34 145 148
Opacus OOM OOM <5 NA

VGG13 Ghost OOM OOM 0 NA
133.1M Mixed 630 7.51/12.46 40 610

NonDP 375 5.86/9.76 99 195
Opacus OOM OOM <5 NA

VGG16 Ghost OOM OOM 0 NA
138.4M Mixed 755 7.81/12.48 35 796

NonDP 385 6.12/9.24 87 277
Opacus OOM OOM <5 NA

VGG19 Ghost OOM OOM 0 NA
143.7M Mixed 891 8.11/12.35 30 870

NonDP 395 6.37/9.28 90 380
Opacus OOM OOM 17 979

wide_resnet50_2 Ghost OOM OOM 8 2242
68.9M Mixed 709 7.52/12.19 91 626

NonDP 409 7.5/12.19 115 257
Opacus OOM OOM 8 2125

wide_resnet101_2 Ghost OOM OOM 8 3208
126.9M Mixed 1210 9.01/13.59 53 1088

NonDP 536 8.99/13.59 65 470
Opacus 590 10.04/13.34 40 511

resnext50_32x4d Ghost OOM OOM 10 2141
25.0M Mixed 685 7.36/8.98 87 536

NonDP 398 7.34/8.97 120 196
Opacus 851 6.92/7.97 73 645

Densenet121 Ghost OOM OOM 10 2912
8.0M Mixed 802 4.34/5.33 79 490

NonDP 453 4.11/5.32 100 161
Opacus 1158 9.04/9.61 54 698

Densenet169 Ghost OOM OOM 10 3533
14.2M Mixed 1062 5.58/6.04 66 625

NonDP 496 5.18/5.58 78 208

16

Opacus 1224 12.99/13.56 33 1481
Densenet201 Ghost OOM OOM 10 3974

20.0M Mixed 1265 8.39/8.99 48 805
NonDP 547 7.91/8.96 56 280
Opacus OOM OOM 10 175

Alexnet Ghost 408 2.60/3.41 154 455
61.1M Mixed 393 1.01/1.31 1111 122

NonDP 379 1.01/1.31 2380 117
Opacus 404 2.79/4.06 269 335

squeezenet1_0 Ghost OOM OOM 11 859
1.25M Mixed 415 2.01/3.22 312 118

NonDP 366 2.00/3.22 393 101
Opacus 404 2.07/3.79 470 158

squeezenet1_1 Ghost OOM OOM 11 679
1.24M Mixed 426 1.67/2.84 501 113

NonDP 341 1.65/2.84 650 108

Table 7: Time and memory of models [42] on ImageNet. There are two types of memory: active
memory (left) and total memory (right). Out of memory (OOM) means the total memory exceeds
16GB. FastGradClip is excluded due to inflexibility to apply on general architectures. For the time
per epoch and the memory columns, we use fixed physical batch size 25. For the max (physical)
batch size and the min time/epoch (using the max batch size) columns, we use bisection method. We
use 50000 images as training set.

B Explaining convolutional layers

In a 2D convolutional layer, the input a to the layer has dimension (B, d,Hin,Win) and the folded
output F (s) has dimension (B, p,Hout,Wout), where B is the batch size, d is the number of input
channels, and p is the number of output channels. H,W are the height and width of images (or
hidden features in hidden layers). Hout,Wout can be calculated by https://pytorch.org/
docs/stable/generated/torch.nn.Conv2d.html as

Hout =

⌊
Hin + 2× padding − dilation×(kH − 1)− 1

stride
+ 1

⌋
,

and

Wout =

⌊
Win + 2× padding − dilation×(kW − 1)− 1

stride
+ 1

⌋
.

Following the above formulae, we recall that in the layerwise decision of mixed ghost clipping (3),
the kernel size increases the right hand side and decreases the left hand size. In words, large kernel
size always favors the ghost norm over the per-sample gradient instantiation!

To further explain the convolution, we consider the kernel size (kH , kW) to (2.5), which establishes
the equivalence between linear layer and convolutional layer. See example in https://pytorch.
org/docs/stable/generated/torch.nn.Unfold.html.

Conv2d(ai)︷ ︸︸ ︷
ai −→ U(ai) −→ U(ai)W + b −→ F (U(ai)W + b)

(Hin,Win, d) −→ (Hout,Wout, dkHkW) −→ (HoutWout, p) −→ (Hout,Wout, p)

C Complexity analysis

In this section, we analyze the time and space complexity of different modules in the DP training
pipeline. Our analysis follows a per-layer fashion, as all the dimension constants are layer-specific
but ignored only in this section.

To simplify the representation and avoid the folding/unfolding U,F , we refer the forward pass of
convolutional layer in (2.5) to the equivalent formula of linear layer in (2.2), with ai ∈ RT×D denot-
ing U(ai), si ∈ RT×p denoting F−1(si). Here T = HoutWout, D = dkHkW , where d, p, k,H,W

17

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html
https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html

are layer-dependent and have been introduced in the previous section. We ignore the bias without
loss of generality.

C.1 Forward pass, Intialization, etc.

We note that the activation ai is created during the forward pass, and that W is created during
the random intialization. Since we only initialize and forward pass once, this complexity is the
same for all training procedures (DP or non-private), therefore we do not study it. We also omit
some trivial operations such as converting from per-sample gradient norm to the clipping factor
Ci = min

(
R/∥ ∂Li

∂W∥Fro, 1
)
.

In what follows, we will use the complexity of matrix multiplication repeatedly.
Lemma C.1. For the matrix multiplication between Rm×n and Rn×r, the space complexity is mr,
and the time complexity is 2mnr.

C.2 Back-propagation

Referring to the back-propagation in (2.3), we derive the whole time complexity is the matrix
multiplication of (B × T × p) · (p×D) ◦ (B × T ×D), which is 2BTDp+ 2BTD and the space
complexity is BTp+ pD + 2BTD.

The last step (2.6) results in the per-sample gradients, where
∂Li

∂W
=
∑
i

∂L
∂si

ai

which gives 2BTpD time complexity and pD space complexity (since per-sample gradients are
summed in-place).

In total we have 4BTpD + 2BTD time complexity and BTp+ 2BTD + pD space complexity for
one back-propagation.

For the second round of back-propagation, we add another time complexity 4BTpD + 2BTD but
no space complexity as the space is freed by torch.optim.Optimizer.zero_grad().

C.3 Ghost norm

In this section we study the procedure of computing the ghost norm. That is, from inputs ∂L
∂si

,ai to
the output ∥ ∂Li

∂W∥2Fro.

As mentioned in (2.7), the clipping norm can be calculated as following:

∥∂Li

∂W
∥2Fro = vec(aia⊤i)vec

(
∂L
∂si

∂L
∂si

⊤
)

where ∥ · ∥Fro is the Frobenius norm and vec flattens the matrices to vectors. Since ai ∈ RT×D, si ∈
RT×p. We then compute and store aia

⊤
i ∈ RT×T and ∂L

∂si
∂L
∂si

⊤ ∈ RT×T , where time complexity
is 2T 2D + 2T 2p and the space complexity is 2T 2. For B data points, the time complexity is
B(2T 2D + 2T 2p) and the space complexity is 2BT 2.

The final vector-vector product for a batch takes the time complexity is B(2T 2 − 1) and space
complexity B.

C.4 Gradient instantiation and the norm

In this section we study the procedure of computing norm via instantiating the per-sample gradients.
That is, from inputs ∂L

∂si
,ai, to the intermediate ∂Li

∂W , to the output ∥ ∂Li

∂W∥2Fro.

To compute the per-sample gradients, which is not available in the first back-propagation due to the
in-place summation, we need to re-compute

∂Li

∂W
=

∂L
∂si

ai.

18

For a batch, the time complexity is 2BTpD and the space complexity is BpD.

To calculate the norm of { ∂Li

∂W}i, each with size D × p, the time complexity is 2BDp and the space
complexity is B.

C.5 Weighted gradient

To calculate the weighted gradient, { ∂Li

∂W}i →
∑

i Ci
∂Li

∂W , the time complexity is 2BpD with no
space complexity.

C.6 Combining the modules to algorithms

• Ghost clipping = Back-propagation + Ghost norm + Second back-propagation
• Opacus = Back-propagation + Gradient instantiation + Weighted gradient
• FastGradClip = Back-propagation + Gradient instantiation + Second back-propagation
• Mixed ghost clipping = Back-propagation + min{Ghost norm, Gradient instantiation} +

Second back-propagation

19

D ViT details

Our ViTs are imported from PyTorch Image Models [46]. For all ViTs, if they contain the batch
normalization, we replace with the group normalization (16 groups). We freeze modules that are not
supported by our privacy engine. We do not apply learning rate schedule, random data augmentation,
weight standardization, or parameter averaging as in [9]. We describe the models as their configuration
argument in [46].

Dataset Model & # Param Package Memory (GB) Accuracy (%) Max Min
Batch Size Time/Epoch

CIFAR10

crossvit_18_240 Mixed 4.49 | 5.00 95.08 72 700
42.6M NonDP 4.07 | 4.87 97.11 78 420

crossvit_15_240 Mixed 3.42 | 3.48 93.97 95 507
27.0M NonDP 3.08 | 3.31 96.66 103 303

crossvit_9_240 Mixed 1.63 | 1.66 88.67 187 248
8.2M NonDP 1.45 | 1.63 93.33 212 180

crossvit_base_240 Mixed 7.33 | 7.49 95.22 48 1228
103.9M NonDP 6.49 | 6.85 97.37 53 731

crossvit_small_240 Mixed 3.21 | 3.25 94.05 102 463
26.3M NonDP 2.88 | 3.13 96.17 110 287

crossvit_tiny_240 Mixed 1.47 | 1.64 88.31 204 233
6.7M NonDP 1.34 | 1.62 93.12 223 167

deit_base_patch16_224 Mixed 4.15 | 4.47 94.56 82 882
85.8M NonDP 3.76 | 4.06 97.14 86 513

deit_small_patch16_224 Mixed 1.88 | 1.97 91.16 170 330
21.7M NonDP 1.75 | 1.85 96.35 176 204

deit_tiny_patch16_224 Mixed 0.89 | 1.02 84.22 346 175
5.5M NonDP 0.84 | 1.00 93.46 360 154

beit_large_patch16_224 Mixed 10.72 | 11.27 93.94 27 2703
303.4M NonDP 9.83 | 10.23 97.80 30 1597

beit_base_patch16_224 Mixed 3.84 | 4.06 91.68 86 805
85.8M NonDP 3.56 | 3.79 97.14 91 506

convit_base Mixed 6.46 | 6.77 94.76 47 1115
85.8M NonDP 5.93 | 6.31 96.82 50 649

convit_small Mixed 3.45 | 3.65 93.16 86 513
27.3M NonDP 3.22 | 3.51 97.07 90 311

convit_tiny Mixed 1.54 | 1.63 86.56 199 236
5.5M NonDP 1.47 | 1.57 94.51 200 157

vit_base_patch16_224 Mixed 4.80 | 5.13 94.40* 82 926
85.8M NonDP 4.40 | 4.91 97.43* 86 550

vit_small_patch16_224 Mixed 2.04 | 2.13 92.77 170 334
21.7M NonDP 1.92 | 2.04 97.69 176 204

vit_tiny_patch16_224 Mixed 0.93 | 1.04 87.56 346 179
5.5M NonDP 0.89 | 1.02 95.20 360 163

Table 8: Performance of selected ViTs on CIFAR10 under ϵ = 2. Here batch size 1000, physical
batch size 20, except for max (physical) batch size and min time/epoch (using max batch size). There
are two types of memory: active memory (left) and total memory (right). All ViTs use DP learning
rate 2e− 3 and non-DP learning rate 2e− 4 by default, except the ViT base that uses half the learning
rate, since the default learning rate gives < 80% accuracy.

20

Dataset Model & # Param Package Memory (GB) Accuracy (%) Max Min
Batch Size Time/Epoch

CIFAR100

crossvit_18_240 Mixed 4.49 | 5.00 71.78 72 696
42.7M NonDP 4.07 | 4.87 79.46 78 421

crossvit_15_240 Mixed 3.42 | 3.50 67.21 95 495
27.0M NonDP 3.08 | 3.31 75.31 103 302

crossvit_9_240 Mixed 1.63 | 1.66 56.60 187 247
8.2M NonDP 1.45 | 1.63 59.92 212 168

crossvit_base_240 Mixed 7.34 | 7.60 69.09 48 1221
104.0M NonDP 6.50 | 6.85 80.85 53 730

crossvit_small_240 Mixed 3.21 | 3.25 67.73 102 468
26.3M NonDP 2.88 | 3.13 75.37 110 285

crossvit_tiny_240 Mixed 1.47 | 1.65 54.31 204 239
6.8M NonDP 1.34 | 1.62 59.03 223 164

deit_base_patch16_224 Mixed 4.15 | 4.47 70.04 82 920
85.8M NonDP 3.76 | 4.06 85.70 86 549

deit_small_patch16_224 Mixed 1.88 | 1.97 62.73 170 332
21.7M NonDP 1.75 | 1.85 80.35 176 206

deit_tiny_patch16_224 Mixed 0.89 | 1.02 49.92 346 176
5.5M NonDP 0.84 | 1.00 65.18 360 148

beit_large_patch16_224 Mixed 10.72 | 11.27 77.46 27 2707
303.4M NonDP 9.83 | 10.23 89.85 30 1592

beit_base_patch16_224 Mixed 3.84 | 4.06 61.36 86 809
85.8M NonDP 3.56 | 3.79 83.00 91 505

convit_base Mixed 6.46 | 6.77 71.61 47 1136
85.8M NonDP 5.93 | 6.31 85.49 50 682

convit_small Mixed 3.45 | 3.65 65.98 86 525
27.3M NonDP 3.22 | 3.51 82.85 90 310

convit_tiny Mixed 1.54 | 1.63 51.72 194 235
21.7M NonDP 1.47 | 1.57 70.48 200 160

vit_base_patch16_224 Mixed 4.80 | 5.13 65.78* 82 917
85.9M NonDP 4.40 | 4.91 90.21* 86 550

vit_small_patch16_224 Mixed 2.05 | 2.13 73.34 170 330
21.7M NonDP 1.92 | 2.04 86.93 176 204

vit_tiny_patch16_224 Mixed 0.93 | 1.04 49.54 346 176
5.5M NonDP 0.89 | 1.02 72.30 360 156

Table 9: Performance of selected ViTs on CIFAR10 under ϵ = 2. Here batch size 1000, physical
batch size 20, except for max (physical) batch size and min time/epoch (using max batch size). There
are two types of memory: active memory (left) and total memory (right). All ViTs use DP learning
rate 2e− 3 and non-DP learning rate 2e− 4 by default, except the ViT base that uses half the learning
rate, since the default learning rate gives < 50% accuracy.

21

E Demo of privacy engine

We demonstrate how to use our privacy engine to train any vision models differentially privately.
We term our library as private_vision, which is significantly based on the private_transformers
library [32] at https://github.com/lxuechen/private-transformers. We provide
two modes through the ‘mode’ argument in the privacy engine: ‘ghost-mixed’ for the mixed ghost
clipping, and ‘ghost’ for the ghost clipping.

import torchvision, torch, timm, opacus
from private_vision import PrivacyEngine

model = torchvision.models.resnet18()
model = timm.create_model(’crossvit_small_240’, pretrained= True)

model=opacus.validators.ModuleValidator.fix(model)
replace BatchNorm by GroupNorm or LayerNorm

optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-4)
privacy_engine = PrivacyEngine(

model,
batch_size=256,
sample_size=50000,
epochs=3,
max_grad_norm=0.1,
target_epsilon=3,
mode=’ghost-mixed’,

)
privacy_engine.attach(optimizer)

Same training procedure, e.g. data loading, forward pass...
loss = F.cross_entropy(model(batch), labels, reduction="none")
do not use loss.backward()
optimizer.step(loss=loss)

A special use of our privacy engine is to use the gradient accumulation. This is achieved with virtual
step function.

import torchvision, torch, timm, opacus
from private_vision import PrivacyEngine

gradient_accumulation_steps = 10
Batch size/physical batch size.

model = torchvision.models.resnet18()
model=opacus.validators.ModuleValidator.fix(model)
optimizer = torch.optim.Adam(model.parameters())
privacy_engine = PrivacyEngine(...)
privacy_engine.attach(optimizer)

for i, batch in enumerate(dataloader):
loss = F.cross_entropy(model(batch), labels, reduction="none")
if i % gradient_accumulation_steps == 0:

optimizer.step(loss=loss)
optimizer.zero_grad()

else:
optimizer.virtual_step(loss=loss)

22

https://github.com/lxuechen/private-transformers

F Comparison with GhostClip in [32]

We give a thorough comparison between our work and [32] (specifically codebase v0.1.0 which was
the public version during the preparation of this paper), which distinguishes our contribution from a
simple application of ghost clipping on convolutional layers.

1. Our contribution is on Conv1d/2d/3d layers, while [32] applies the ghost clipping on linear
and embedding layers. To be specific, we show that T(l) is layer-dependent (which motivates
the layerwise decision in (4.1)), while [32] studies sequential data and T is layer-independent.
We also precisely quantifies the effect of kernel size/padding/stride on the complexity in DP
training in Appendix B.

2. We provide a fine-grained complexity analysis of the clipping (see Section 4.1), while [32]
shows only asymptotic complexity. For example, we show that the space complexity of
ghost norm technique is 2T 2

(l) and that of per-sample gradient instantiation is p(l)d(l). In
contrast, [32] gives O(T 2) and O(pd), respectively. We highlight that our mixed ghost
clipping, or the layerwise decision (4.1), is only made possible through our complexity
analysis.

3. We additionally analyze the complexity of entire DP algorithms – e.g. Opacus, FastGradClip,
and GhostClip, while [32] only focuses on the clipping part of algorithms. Thus their
analysis cannot directly help us to compare different DP algorithms, which not only include
the clipping but also the back-propagation. Notice that ghost clipping needs two back-
propagation but Opacus only needs one back-propagation, so it is insufficient to study the
complexity difference between DP algorithms by only looking at the complexity of the
clipping part.

4. Our key contribution is the mixed ghost clipping, which is novel, simple, but extremely
important on large image tasks. Our mixed ghost clipping is much more efficient than the
vanilla ghost clipping, as visualized in Table 3, Figure 3 and especially Table 7 (on 224×224
ImageNet). As a concrete example on ImageNet, ghost clipping incurs huge memory cost on
most models (e.g. ResNet18, more than 16GB and thus OOM), while mixed ghost clipping
costs only 2.34GB memory for ResNet18 and 7.91GB for ResNet152, almost the same as
non-DP training.

23

	Further memory and speed comparison
	Explaining convolutional layers
	Complexity analysis
	Forward pass, Intialization, etc.
	Back-propagation
	Ghost norm
	Gradient instantiation and the norm
	Weighted gradient
	Combining the modules to algorithms

	ViT details
	Demo of privacy engine
	Comparison with GhostClip in li2021large

