
MomentDiff: Generative Video Moment Retrieval
from Random to Real

(Supplementary Material)

Anonymous Author(s)
Affiliation
Address
email

This supplementary material provides more details of our MomentDiff framework:1

1. Implementation details.2

2. Inference efficiency of MomentDiff.3

3. More experiment results.4

4. Broader impacts.5

1 Implementation details6

1.1 Datasets7

Public datasets. Charades-STA [1] serves as a benchmark dataset for the video moment retrieval8

task and is built upon the Charades dataset, originally collected for video action recognition and9

video captioning. The Charades-STA dataset comprises 6,672 videos and 16,128 video-query pairs,10

allocated for training (12,408 pairs) and testing (3,720 pairs). On average, the videos in this dataset11

have a duration of 29.76 seconds. Each video is annotated with an average of 2.4 moments, with12

each moment lasting approximately 8.2 seconds. QVHighlights [2] contains 10,148 videos, each13

150 seconds long and annotated with at least one text query describing its relevant content. These14

videos are from three main categories, daily vlogs, travel vlogs, and news events. On average, there15

are approximately 1.8 non-overlapping moments per query, annotated on 2s non-overlapping clips.16

The dataset contains a total of 10,310 queries with 18,367 annotated moments. The training set,17

validation set and test set include 7,218, 1,550 and 1,542 video-text pairs, respectively. TACoS [3] is18

compiled specifically for video moment retrieval and dense video captioning tasks. It is comprised of19

127 videos that depict cooking activities, with an average duration of 4.79 minutes. TACoS contains20

a total of 18,818 video-query pairs. In comparison to the Charades-STA dataset, TACoS has more21

video segments that are temporally annotated with queries per video. On average, each video contains22

148 queries. Additionally, the TACoS dataset is known for its difficulty, as the queries it contains are23

limited to only a few seconds or even just a few frames. To ensure impartial comparisons, we use the24

same dataset split [4], which consists of 10,146, 4,589, and 4,083 video-query pairs for the training,25

validation, and testing sets, respectively.26

Table 1: Training and test sets on two anti-bias datasets.

Dataset Charades-STA-Len Charades-STA-Mom
w0 ≤ 10s w0 > 10s Total c0 +w0/2 ≤ 15s c0 −w0/2 > 15s Total

Training 9307 2326 11633 5330 1332 6662
Test 197 788 985 259 1038 1297

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Anti-bias datasets. To explore the location bias problem, we construct two anti-bias datasets with27

location distribution shifts based on the Charades-STA dataset. In video moment retrieval, length and28

position are important parameters of spans.29

Therefore, we first investigate the effect of span length w0. As shown in Tab. 1, in the training30

set of Charades-STA-Len, we collect 9,307 video-text pairs with span length w0 ≤ 10s and 2,32631

video-text pairs with w0 > 10s, accounting for 80% and 20% of the total training set. In contrast, in32

the test set, we select 197 video-text pairs with w0 ≤ 10s and 788 video-text pairs with w0 > 10s,33

accounting for 20% and 80% of the total test set.34

Then, we design the dataset Charades-STA-Mom based on the span’s end time c0 +w0/2 and start35

time c0 −w0/2. In the training set of Charades-STA-Mom, we collect 5,330 video-text pairs with36

c0+w0/2 ≤ 15s and 1,332 video-text pairs with c0−w0/2 > 15s, accounting for 80% and 20% of37

the total training set. In contrast, in the test set, we select 259 video-text pairs with c0 +w0/2 ≤ 15s38

and 788 video-text pairs with c0 −w0/2 > 15s, accounting for 20% and 80% of the total test set.39

Algorithm 1: MomentDiff Training in a PyTorch-like style.

Video features: v_feats ∈ RNv×D

Text features: t_feats ∈ RNt×D

Ground truth spans: gt_spans : [∗, 2]
alpha_cumprod(m): cumulative product of αi

Fully-connected layer: FC()
Video Moment Denoiser: VMD()
def train(v_feats, t_feats, gt_spans):

Similarity-aware Condition Generator
f_feats = SCG(v_feats, t_feats) # Nv ×D

Span normalization
ps = pad_spans(gt_spans) # Pad gt_spans to [Nr, 2]
ps = (ps * 2 -1) * λ # Signal scaling
m = randint(0, M) # Noise intensity
noi = normal(mean=0, std=1) # Noise
ps_m = sqrt(alpha_cumprod(m)) * ps +

sqrt(1 - alpha_cumprod(m)) * noi # Noisy span
ps_m = (ps_m/λ +1)/2 # Normalization

Span embedding
ps_emb_m = FC(ps_m)

Intensity-aware attention
output_m = VMD(ps_emb_m, m, f_feats) # Output embedding

Denoising training
hat_ps_m = Span_pred(output_m) # Predicted span
hat_cs_m = Score_pred(output_m) # Confidence score
Computing loss
loss = loss_sim(f_feats) + loss_vmr(hat_ps_m, hat_cs_m, gt_spans)

return loss

1.2 Pseudo Code of MomentDiff40

Algorithm 1 provides the pseudo-code of MomentDiff Training in a PyTorch-like style.41

The inference procedure of MomentDiff is a denoising sampling process from noise to temporal42

spans. Starting from spans sampled in Gaussian distribution, the model progressively refines its43

predictions, as shown in Algorithm 2.44

2

Algorithm 2: MomentDiff inference in a PyTorch-like style.

Video features: v_feats ∈ RNv×D

Text features: t_feats ∈ RNt×D

Video Moment Denoiser: VMD()
def test(v_feats, t_feats, sampling_num):

Similarity-aware Condition Generator
f_feats = SCG(v_feats, t_feats) # Nv ×D

Noisy span:[Nr, 2]
ps_m = normal(mean=0, std=1)

uniform sample
intensity = reversed(linespace(-1, M, sampling_num))
[(M-1, M-2), (M-2, M-3), ..., (1, 0), (0, -1)]
intensity_pairs = list(zip(intensity[:-1], intensity[1:])

for intensity_now, intensity_next in zip(intensity_pairs):
predict ps_0 from ps_m
output_m = VMD(ps_m, f_feats, intensity_now)
Predicted span
hat_ps_m = Span_pred(output_m)
Update ps_m
ps_m = ddim_update(hat_ps_m, ps_m, intensity_now, intensity_next)

Confidence score
hat_cs_m = Score_pred(output_m)

return hat_ps_m, hat_cs_m

Table 2: The inference time of 2DTAN [5], MMN [6], MomentDETR [2] and MomentDiff on
Charades-STA with VGG video features and Glove text features. We report R1@0.5, R1@0.7 and
MAPavg . Default settings are marked in blue .

Method Charades-STA Inference time
R1@0.5 R1@0.7 MAPavg (second)

2DTAN [5] 41.34 23.91 29.26 42.18
MMN [6] 46.93 27.07 31.58 53.42
MomentDETR [2] 50.54 28.01 29.87 12.42
MomentDiff (Step=1) 49.17 26.39 29.12 7.56
MomentDiff (Step=2) 50.81 27.84 31.27 8.23
MomentDiff (Step=10) 52.36 28.08 31.75 11.01
MomentDiff (Step=50) 51.94 28.25 31.66 20.74
MomentDiff (Step=100) 52.21 28.84 31.01 34.35

2 Inference Efficiency of MomentDiff45

Inference time. Inference efficiency is critical for machine learning models. We test 2DTAN [5],46

MMN [6], MomentDETR [2] and MomentDiff on the Pytorch framework [7] in Tab. 2. We test all47

models with one NVIDIA Tesla A100 GPU.48

Compared with 2DTAN [5] and MMN [6], MomentDiff (Step=1) not only achieves the best results49

on recall, but also improves the inference speed by 5-7 times. This is because 2DTAN and MMN50

predefine a large number of proposals, which may be redundant and increase computational overhead.51

Compared to MomentDETR [2], MomentDiff (Step=10) achieves better results with similar inference52

time. The possible reasons are that we adopt fewer random spans, very simple network structures,53

and avoid post-processing.54

3

20

30

40

50

60

70

R1@0.5 R1@0.7 MAP@0.5 MAP@0.75 MAP_avg

VGG, Glove C3D, Glove SF+C, C

Figure 1: Performance fluctuations (%) corresponding to different features and multiple random
seeds on the Charades-STA dataset.

Table 3: Ablation study (%) on the Charades-STA dataset with SF+C video features and CLIP text
features. We report R1@0.5, R1@0.7 and MAPavg . Default settings are marked in blue .

(a) Different sampling strategies.

Sampling R1@0.5 R1@0.7 MAPavg

DDPM [8] 55.62 32.37 32.48
DDIM [9] 55.57 32.42 32.85

(b) Effect of the schedule of β.

Schedule R1@0.5 R1@0.7 MAPavg

Linear 54.76 31.43 31.59
Cosine 55.57 32.42 32.85

(c) Effect of the Box Renewal [10].

Schedule R1@0.5 R1@0.7 MAPavg

w/o Box Renewal 55.57 32.42 32.85
w/ Box Renewal 56.03 32.64 33.18

(d) Effect of the batch size.

batch size R1@0.5 R1@0.7 MAPavg

16 52.42 30.81 30.14
32 55.57 32.42 32.85
64 53.78 32.25 31.93

(e) Effect of the number of spans on R1@0.5.

train
test 1 3 5 10 20

1 50.83 50.91 50.97 50.87 50.82
3 53.98 54.12 54.19 54.23 54.21
5 55.36 55.41 55.57 55.69 55.51

10 53.71 53.84 53.86 53.89 53.93
20 53.16 53.38 53.40 53.44 53.42

3 More Experiment Results55

3.1 Error bars56

Fig. 1 shows the performance fluctuation of the model on the Charades-STA dataset. We use different57

random seeds (seed= 2023, 2022, 2021, 2020, 2019) and different features (VGG, Glove; C3D,58

Glove; SF+C, C;) to organize experiments. This shows that the model always converges and achieves59

stable results for different initializations. This phenomenon demonstrates the ability of the model to60

learn to generate real spans from arbitrary random spans.61

3.2 Ablation study62

Different sampling strategies. Denoising Diffusion Probabilistic Models (DDPM) [8] and Denoising63

Diffusion Implicit Models (DDIM) [9] are popular and classic diffusion models. We show the results64

of both strategies in Tab. 3(a). We find that DDIM and DDPM perform similarly, but DDIM samples65

faster. Therefore we adopt DDIM as the default technology.66

Effect of the schedule of β. The schedule of β determines the weighting ratio of different intensity67

noises. In Tab. 3(b), we find that the cosine schedule works better in our experiment. The cosine68

4

schedule makes the noisy spans change slowly at the beginning and end during the diffusion process,69

and the generation effect is more stable. So we set the cosine schedule as the default.70

Effect of the Box Renewal. Box Renewal is a post-processing technique in DiffusionDet [10].71

Tab. 3(c) shows that Box Renewal can indeed slightly improve the results. To keep the inference72

process as simple as possible, we do not use Box Renewal by default.73

Effect of the batch size. As shown in Tab. 3(d), we set the batch size to 32 to achieve the best results.74

Effect of the number of spans on R1@0.5. Our training and inference are decoupled. Our simple75

framework allows us to input any number of random noises. Tab. 3(e) shows that there is a slight76

improvement when testing with more noise boxes.77

4 Broader Impacts78

First, our work does not involve private data. Second, we believe that AI is a double-edged sword,79

and our model is no exception. For example, when users or websites use our model, only natural80

language is needed to locate video moments and collect desired video material, which improves the81

productivity of society. However, this may have a negative impact if the natural language entered by82

the user contains words related to violence, pornography, etc. We will consider these scenarios and83

implement a more secure VMR model.84

References85

[1] Gao, J., C. Sun, Z. Yang, et al. Tall: Temporal activity localization via language query. In ICCV,86

pages 5267–5275. 2017.87

[2] Lei, J., T. L. Berg, M. Bansal. Qvhighlights: Detecting moments and highlights in videos via88

natural language queries. In NeurIPS. 2021.89

[3] Regneri, M., M. Rohrbach, D. Wetzel, et al. Grounding action descriptions in videos. TACL,90

1:25–36, 2013.91

[4] Zeng, R., H. Xu, W. Huang, et al. Dense regression network for video grounding. In CVPR,92

pages 10287–10296. 2020.93

[5] Zhang, S., H. Peng, J. Fu, et al. Learning 2d temporal adjacent networks for moment localization94

with natural language. In AAAI, pages 12870–12877. 2020.95

[6] Wang, Z., L. Wang, T. Wu, et al. Negative sample matters: A renaissance of metric learning for96

temporal grounding. In AAAI, pages 2613–2623. 2022.97

[7] Paszke, A., S. Gross, F. Massa, et al. Pytorch: An imperative style, high-performance deep98

learning library. In NeurIPS. 2019.99

[8] Ho, J., A. Jain, P. Abbeel. Denoising diffusion probabilistic models. In NeurIPS. 2020.100

[9] Song, J., C. Meng, S. Ermon. Denoising diffusion implicit models. In ICLR. 2021.101

[10] Chen, S., P. Sun, Y. Song, et al. Diffusiondet: Diffusion model for object detection.102

abs/2211.09788, 2022.103

5

	Implementation details
	Datasets
	Pseudo Code of MomentDiff

	Inference Efficiency of MomentDiff
	More Experiment Results
	Error bars
	Ablation study

	Broader Impacts

