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In this supplementary material, we present network complexity
(Section 1), more ablation studies (Section 2) and extra visual demon-
stration (Section 3). In addition, a video demo is provided to show-
case the dynamic display of our proposed local scanningmechanism
and the effectiveness of our method in the supplementary video.

1 MODEL ANALYSIS
1.1 Model Complexity and Parameters

Comparison
As reported in Table 1, we compare the number of parameters,
FLOPs, and running time of our network and state-of-the-art meth-
ods on a NVIDIA RTX 4090 GPU. The GFLOPs and Runtime are
calculated by inferring a video clip of five frames with a resolu-
tion of 256×256. We follow [4] to calculate the GFLOPs metric.
And the runtime indicates the time needed to process each frame
during inference. As shown in Figure 1, we demonstrate the effec-
tiveness of our RainMamba by achieving state-of-the-art results
on the VRDS datasets while maintaining a comparatively minimal
computational expense. In the presented tabular data, our method
obtained the best restoration performance results compared to other
comparative methods and achieved the fastest speed. Compared to
state-of-the-art method ViMPNet [10], our RainMamba has 9.51×
fewer FLOPs and runs 4.96× faster. Moreover, our model boosts
a 4.68 dB improvement in PSNR compared to the second fastest
method ESTINet [17] , and achieving an inference speed of 89.2
FPS. This relatively fast inference speed enables our model to be
effectively utilized in real-world applications. Thanks to the linear
complexity of state space models and the critical components of
our network, our approach achieves significant improvements in
both performance and speed.

2 MORE ABLATION STUDIES
2.1 Visual Results of Ablation Study
As shown in Figure 2, in addition to quantitatively comparing the
ablation experiments of RainMamba on VRDS dataset, we also con-
ducted visual comparisons to qualitatively verify the effectiveness
of three critical components of our network. By introducing the
Global Mamba Block (GMB), our “M2” model effectively eliminates
a significant number of artifacts associated with raindrops and
rain streaks, compared to “M1”. However, the “M3” model can not
preserve the spatial structure of certain details effectively and in-
troduced extensive artifacts outside the window. Leveraging Local
Mamba Block (LMB), our “M3” model achieves superior detail re-
tention, such as the shape of windows. The integration of GMB and
LMB significantly enhances the detail recovery in areas obscured
by raindrops, as our “M4” model improves the modeling ability of
spatiotemporal information. By combining these three complemen-
tary contributions, our RainMamba clearly removes the artifacts
and better recovers the scene structures.

Figure 1: PSNR performance v.s Runtime and GFLOPs on
VRDS dataset. The size of the circles and pentagram indicates
the GFLOPs of model.

Table 1: Model complexity and parameters comparisons be-
tween our network and other methods. Bolded and under-
lined values indicate the best and the second-best perfor-
mance, respectively.

Method PSNR SSIM LPIPS GFLOPs Runtime(s/frame) Parameters(M)
DRSformer[3] 28.54 0.9075 0.1143 1101.89 0.0381 33.63
MPRNet[16] 29.53 0.9175 0.0987 706.19 0.0367 3.64
Restormer[15] 29.59 0.9206 0.0925 704.95 0.0696 26.10M
BasicVSR++[1] 29.75 0.9171 0.1023 1616.44 0.0511 6.22

RDD[8] 28.39 0.9096 0.1168 1553.65 0.0449 5.53
ESTINet [17] 27.17 0.8436 0.2253 681.83 0.0341 22.96
ViMPNet [10] 31.02 0.9283 0.0862 1131.7 0.0556 32.10

Ours 32.04 0.9366 0.0684 118.99 0.0112 34.75

Table 2: Quantitative comparisons between our network and
SOTA methods on the NTURain dataset [2].

Methods PSNR SSIM
MSCSC [5] 27.31 0.7870
J4RNet [6] 32.14 0.9480
SPAC [2] 33.11 0.9474

FCRNet [11] 36.05 0.9676
SLDNet[13] 34.89 0.9540
MPRNet[16] 36.11 0.9637
S2VD [14] 37.37 0.9683

ESTINet [17] 37.48 0.9700
Ours 37.87 0.9738

2.2 Visual Comparisons of Different Scanning
Mechanisms

Figure 3 illustrates the results of “M2” and “M3” model. The “M2”
model can generate incorrect directional extensions when recon-
structing the shapes of objects obscured by raindrops. This issue
arises because “M2” utilizes a global scanning approach (row-and-
column-major order), which neglects spatio-temporal continuity
and leads to local pixel forgetting. Our proposed local scanning
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Figure 2: Visual comparisons of the ablation study on input video frames from the VRDS dataset. (Please zoom in for a better
illustration.)

Ground truthLocal ScanGlobal Scan

Figure 3: Visual comparisons of two different scanningmech-
anisms. Our local scanning mechanism improves spatial
structure preservation of derained results.

mechanism improves the network’s local information awareness
by rearranging the scan path of Mamba in sequence-level temporal
modeling.

3 MORE EXPERIMENTAL RESULTS
3.1 More Implementation Details
The encoder extract multi-scale feature maps (i.e., scales of 1/4,
1/8, 1/16, 1/32), after which a lightweight head merges these maps
to generate encoded features 𝐸𝑡 . We set the hyperparameters for
different datasets according to the original paper’s settings. For
the RainVID&SS[7] and RainSynAll100[12] datasets, input frames

Table 3: Analysis of long video processing by our network
on the NTURain dataset [2].

Frames PSNR SSIM Memory
7 37.534 0.96904 5,082M
10 37.722 0.97331 6,026M
20 37.806 0.97357 9,530M
30 37.838 0.97367 13,054M
40 37.847 0.97371 17,296M
50 37.858 0.97374 20,056M
60 37.863 0.97376 23,556M
70 37.867 0.97378 27,068M
80 37.870 0.97379 32,056M
90 37.875 0.97380 34,090M
100 37.876 0.97380 37,594M
110 37.875 0.97380 41,100M

are randomly cropped to a spatial resolution of 128×128, with the
number of frames per video clip being 7 and 5 respectively. For the
LWDDS dataset [9], the input frame is cropped to 256×256, with 5
frames per clip. The initial learning rate for our network is set at
2× 10−4 for RainVID&SS and RainSynAll100 datasets, and 4× 10−4
for the LWDDS dataset. A consistent batch size of 4 is used across
these three datasets.

3.2 Quantitative and Qualitative Comparisons
on the NTURain Dataset

We also conducted comparisons of our model with state-of-the-art
video deraining methods on a widely-utilized NTURain dataset
for video rain streak removal. NTURain [2] dataset contains 25
videos for training and 8 videos for testing. From these quantitative
results in Tab. 2, Our method demonstrates an enhancement in
performance over the ESTINet [17], improving the PSNR score
from 37.48 dB to 37.87 dB, and the SSIM score from 0.9700 to 0.9738.
These results demonstrate the capability of ourmethod to effectively
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remove rain streaks in videos without incorporating any additional
physical priors.

Figure 4 visually compares rain streak removal results predicted
by our network and state-of-the-art method ESTINet [17] from the
NTURain dataset Compared with ESTINet, our network demon-
strates superior performance in restoring the original background
images by effectively eliminating rain streaks from input video
frames.

3.3 Analysis of Long Video Processing
We selected the NTURain dataset as our test dataset due to its
lower frame resolution (640×480) and the extensive sequence length
of its videos (ranging from 116 to 298 frames). Our experiment
is implemented on a NVIDIA RTX A6000 GPU with a graphics
memory of 48 GB. We initially select 7 frames for input according
to the training setting, and subsequently increased the number of
input frames in increments of 10. As reported in Table 3, we input
full resolution video clips and compare the experimental results
from using video clips of different lengths. The experimental results
indicate that as the input frame rate increases, the effectiveness of
video restoration also improves. This demonstrates that the long-
sequence modeling capability of SSMs can effectively leverage the
spatio-temporal contextual information in videos to successfully
remove rain streaks. It is noteworthy that our RainMamba is capable
of processing 110 frames of full-resolution video simultaneously
on a single GPU. Due to the critical role of inter-frame information
in video restoration tasks, the long video processing capabilities
of our RainMamba are anticipated to be applicable to other video
restoration challenges.

3.4 More Results on the Compared Datasets
Figure 5 and Figure 6 demonstrate more visual comparisons be-
tween the results generated by our methods and the other compared
methods on the RainSynAll100 dataset and the LWDDS dataset,
respectively. The results from two datasets show that our Rain-
Mamba effectively removes various rain patterns, including streaks
and raindrops of different sizes. Also, our approach preserves the
most natural color compared to alternative comparative methods.
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Figure 4: Visual comparisons of derained results from our network and ESTINet [17] on input video frames from the NTURain
dataset. (Please zoom in for a better illustration.)
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Figure 5: Visual comparisons of derained results fromour network andRMFD [12] on input video frames from theRainSynAll100
dataset. (Please zoom in for a better illustration.)
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Figure 6: Visual comparisons of derained results from our network and VWR [9] on input video frames from the LWDDS
dataset. (Please zoom in for a better illustration.)
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