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Section A provides additional details for the model. The experimental setup is described in Section B,
including datasets, metrics and implementation details. Section C presents computation time on
R2R dataset and full experimental results on RxR and REVERIE datasets. Section D includes more
ablations. Finally, Section E illustrates qualitative results.

A Model details

A.1 Proxy tasks in training

We employ five proxy tasks to train HAMT and introduced SAP/SAR and SPREL in Section 3.2. In
the following, we present the other three proxy tasks, which are all based on the input pair (W,HT ),
whereW is the textual instruction andHT is the full trajectory with length T .

Masked Language Modeling (MLM). The task predicts masked words based on contextual words
and the full trajectory. We randomly mask out tokens inW with the probability of 15% with a special
token [mask] as in BERT, and predict the word distribution p(wi|W\i,HT ) = fMLM(x′

i) whereW\i
is the masked instruction, x′

i is the output embedding of the masked word wi and fMLM is a two-layer
fully-connected network. The objective is to minimize the negative log-likelihood of original words:
LMLM = −log p(wi|W\i,HT ). The task is beneficial to learn grounded language representations
and cross-modal alignment.

Masked Region Modeling (MRM). The task aims to predict semantic labels of masked observations
in the trajectory given an instruction and neighboring observations. We zero out observations in
HT 15% of the time. The target of a masked Oi is the class probability predicted by an image
classification model pretrained on ImageNet. We use ViT-B/16 [1] in this work. Suppose Pi ∈ R1000

is the target class probability for a masked Oi, we predict P̂i = fMRM(o′i) where o′i is the output
embedding of masked Oi, and minimize the KL divergence between the two probability distributions:
LMRM = −

∑1000
j=1 Pi,j log P̂i,j . In order to solve the task, o′i should capture temporal continuity in

the history sequence and align with relevant instructions.

Instruction Trajectory Matching (ITM). The task predicts whether a pair of instruction and trajec-
tory is aligned. We predict the alignment score as s(W,HT ) = fITM(x′

cls�h′
cls), where� is element-

wise multiplication and x′
cls, h

′
cls are output embeddings for the text [cls] token and the history

[cls] token respectively. We sample 4 negative trajectories for each positive instruction-trajectory
pair during training, in which two negative trajectories are randomly selected from other positive
pairs in the mini-batch, two are obtained by temporally shuffling the positive trajectory. The objective
is the Noisy Contrastive Estimation loss [2]: LITM = −log exp(s(W,HT ))

exp(s(W,HT ))+
∑4

k=1 exp(s(W,Hneg
T,k))

. The

model is supposed to learn cross-modal alignment and be sensitive to temporal orders of history to
solve the task.
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A.2 Structure variants in fine-tuning
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Figure 1: Comparison of the original cross-modal
transformer layer (left) and the encoder-decoder
based variant (right).

We present the encoder-decoder variant of
HAMT in fine-tuning on the right of Figure 1.
Compared to the original cross-modal trans-
former on the left, the variant removes text-to-
vision cross-modal attention. The encoder en-
codes the texts to obtain textual embeddings.
Then the decoder reuses the same text embed-
dings in vision-to-text attention layer at each
navigation step. In this way, the variant is more
efficient when instructions are long e.g. in R4R
and RxR datasets.

B Experimental setup

B.1 Dataset details

Table 1 summarizes details of the dataset split. The proposed R2R-Back and R2R-Last setups consider
exactly the same splits as the R2R dataset. We present details to construct R2R-Back and R2R-Last
in the following.

Table 1: Dataset statistics. #traj, #instr denote the number of trajectories and instructions respectively.

Dataset Train Val Seen Val Unseen Test Unseen
#traj #instr #traj #instr #traj #instr #traj #instr

R2R [3] 4,675 14,039 340 1,021 783 2,349 1,391 4,173
RxR [4] 11,077 79,467 1,244 8,813 1,517 13,652 - 11,888

R4R [5] 25,921 233,532 115 1,035 5,026 45,234 - -
R2R-Back 4,675 14,039 340 1,021 783 2,349 - -

CVDN [6] 4,742 4,742 382 382 907 907 1,384 1,384

R2R-Last 4,675 14,039 340 1,021 783 2,349 - -
REVERIE [7] 4,150 10,466 515 1,423 1,328 3,521 2,304 6,292

R2R-Back. We append a returning command at the end of annotated instructions in R2R to create
new instructions for R2R-Back. The returning command is randomly sampled from the following
sentences: “walk back to the start”, “return by the way you came”, “double back to where you
start”, “backtrack to the start”, “back the way you came”, “return to the starting point”. The original
target location is viewed as a middle stop point. The groundtruth trajectory in R2R-Back is the
concatenation of the original and its inverse trajectory.

R2R-Last. We use spacy toolkit1 to split sentences for instructions in R2R. We only select the last
sentence in each instruction as the new high-level instruction. It mainly describes where the goal
location is e.g. “stop in front of the vent”, requiring the agent to explore houses without step-by-step
textual guidance. The groundtruth trajectory is the same as R2R.

B.2 Evaluation Metrics

In R2R, RxR, R4R and R2R-Last datasets, a predicted trajectory is considered to be successful if the
agent arrives 3 meters near to the final destination. However, such definition would make a motionless
agent achieve 100% success rate (SR) on R2R-Back dataset as the final destination is the same as
the starting location. Therefore, in R2R-Back evaluation, we define the success as that an agent
firstly arrives 3 meters near to the original destination and then returns 3 meters near to its starting
location. The groundtruth length in the SPL metric is also modified as the total traversed distance
in groundtruth trajectory rather than the shortest distance between start and target location. As the
REVERIE task aims for remote object grounding, the success on REVERIE is defined as arriving at
a viewpoint where the target object is visible.

1https://spacy.io/
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B.3 Implementation Details

Training with proxy tasks. We sample proxy tasks for each mini-batch to train the HAMT model.
The sampling ratio is MLM:MRM:ITM:SAP:SAR:SPREL=5:2:2:1:1:1. The optimizer is AdamW
[8]. In the end-to-end training stage, we use image augmentation and regularization techniques to
avoid overfitting of the ViT model, including RandAugment [9] and stochastic depth [10].

Fine-tuning for sequential action prediction. Due to different goals in various VLN tasks, we
design different rewards in reinforcement learning for each downstream VLN dataset. In R2R, RxR
and R4R datasets, the reward is introduced in Section 3.3 to take both goal distance and path fidelity
into account. In R2R-Last, REVERIE and CVDN datasets where the instruction may not describe
detailed navigation path, we only use the reduced distance to the goal viewpoints as rewards. We
normalize the reduced distance in the same way as in the R2R dataset. In R2R-Back dataset, we use
a different fine-tune strategy to avoid trivial motionless solutions. We require the agent to predict
stop actions twice for the original destination (midpoint) and its starting point (final destination)
respectively. Before arriving at the midpoint, the RL reward is computed based on distances to the
midpoint. If the agent predicts a wrong location to stop for the midpoint, the episode is stopped;
otherwise the agent continues its task while receiving rewards based on the distance to the final
destination for fine-tuning. We run each experiment twice for ablation study and use the best result
on the validation unseen split for the state-of-the-art comparison.

C Experimental results

C.1 Computation Efficiency

Table 2: Computation time in inference
on R2R val unseen split.

Inference
Time (s) SR SPL

RecBERT [11] 69 63 57
HAMT 104 66 61
HAMT noT2V 76 65 60

To assess the influence of history encoding on the infer-
ence time, we compare HAMT with RecBERT [11]. The
HAMT and RecBERT use the same number of layers in the
language transformer and cross-modal transformer. The
main difference of two models is in the history encoding
and the attended length of history for action prediction.
We run each model on the R2R val unseen split (2349
instructions) and report inference times averaged over two
runs using a single Tesla P100 GPU. For our method we
compare variants with and without Text-to-Vision Attention (see Section A.2), denoted here as HAMT
and HAMT noT2V respectively. We can see that HAMT and its noT2V variant are only 1.5x and
1.1x slower compared to RecBERT, suggesting that attending to the whole history does not increase
the inference time significantly. Moreover, while HAMT noT2V is only 10% slower compared to
[11], it still outperforms [11] in SR and SPL on val unseen split.

C.2 RxR dataset

Table 3: Navigation performance on RxR test split.

PL SR↑ SPL↑ nDTW↑ SDTW↑
Multilingual Baseline [4] 16.88 20.98 18.55 41.05 20.59
Monolingual Baseline [4] 17.05 25.40 22.59 41.05 20.59
CLIP-ViL 15.43 38.34 35.17 51.10 32.42
CLEAR-CLIP 16.46 40.29 36.57 53.69 34.86
Multilingual HAMT 19.77 53.12 46.62 59.94 45.19

Human 20.78 93.92 74.13 79.48 76.90

As shown in Table 1, RxR dataset
contains much more instructions than
R2R dataset. Therefore, we directly
use RxR in training proxy tasks rather
than R2R with augmented data. As
there are three different languages in
RxR, we take advantage of pretrained
multilingual BERT [12] to initialize
the unimodal language encoder, so
we are able to deal with multilingual
instructions using the same HAMT
model. We employ the encoder-decoder variant of HAMT for computational efficiency. For fair
comparison with other approaches in RxR testing leaderboard2 which adopt pretrained CLIP [13]
features, we use the same visual features without end-to-end optimization. Table 3 presents navigation
performances on RxR test split. Our multilingual HAMT model achieves 12.83% and 6.25% gains on

2https://ai.google.com/research/rxr/competition?active_tab=leaderboard (25/10/2021).
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Table 4: Navigation performances on RxR val seen and val unseen splits.
Val Seen Val Unseen

SR↑ SPL↑ nDTW↑ SDTW↑ SR↑ SPL↑ nDTW↑ SDTW↑
Multilingual Baseline [4] 25.2 - 42.2 20.7 22.8 - 38.9 18.2
Monolingual Baseline [4] 28.8 - 46.8 23.8 28.5 - 44.5 23.1

Multilingual HAMT 59.4 58.9 65.3 50.9 56.5 56.0 63.1 48.3

Table 5: Navigation and object grounding performances on REVERIE val unseen and test splits.

Methods
Validation Unseen Test Unseen

Navigation Grounding Navigation Grounding
TL SR↑ OSR↑ SPL↑ RGS↑ RGSPL↑ TL SR↑ OSR↑ SPL↑ RGS↑ RGSPL↑

Seq2Seq [3] 11.07 4.20 8.07 2.84 2.16 1.63 10.89 3.99 6.88 3.09 2.00 1.58
RCM [14] 11.98 9.29 14.23 6.97 4.89 3.89 10.60 7.84 11.68 6.67 3.67 3.14
SMNA [15] 9.07 8.15 11.28 6.44 4.54 3.61 9.23 5.80 8.39 4.53 3.10 2.39
FAST-MATTN [7] 45.28 14.40 28.20 7.19 7.84 4.67 39.05 19.88 30.63 11.6 11.28 6.08
SIA [16] 41.53 31.53 44.67 16.28 22.41 11.56 48.61 30.80 44.56 14.85 19.02 9.20
RecBERT [11] 16.78 30.67 35.02 24.90 18.77 15.27 15.86 29.61 32.91 23.99 16.50 13.51

HAMT 14.08 32.95 36.84 30.20 18.92 17.28 13.62 30.40 33.41 26.67 14.88 13.08

SR and nDTW respectively than the second place. Nevertheless, there is still a large gap compared to
the human performance. We further present results on val seen and val unseen splits in Table 4.

C.3 REVERIE dataset

The remote object localization task in REVERIE dataset requires both navigation and object ground-
ing. To support the two subtasks in HAMT, we concatenate object features with original view image
features for each viewpoint, and add an object grounding head to predict the target object given
output embeddings of all object tokens. We fine-tune HAMT that is end-to-end pretrained on R2R
dataset, and use the optimized ViT to extract object features given groundtruth object bounding boxes
in REVERIE dataset. As shown in Table 5, HAMT achieves better navigation performance (SR and
SPL), but the object grounding performance (RGS and RGSPL) on test split is worse than state of
the art. Since HAMT can more effectively encode observed visual scenes and actions in the history
sequence, it is able to better understand house environments and navigate to target viewpoints more
efficiently as shown in the much higher SPL score. However, as we use ViT optimized on R2R
dataset to extract object features, the object representation might not be as generalizable as object
features used in previous works which are pretrained on large-scale object detection datasets.

D Additional ablations

D.1 History in training with proxy tasks

Figure 2: SAP accuracy of PREVA-
LENT (w/o history) and HAMT (w/ his-
tory) on R2R dataset.

We show that the history input plays a critical role for
training with proxy tasks. We compare HAMT with his-
tory input and PREVALENT [17] without history. For fair
comparison, we re-implement PREVALENT which only
takes instructionW and single-step observation Ot as in-
put and the other architectures are set the same as HAMT.
We train PREVALENT with all proxy tasks except the
ITM task because there is no trajectory input in PREVA-
LENT for instruction-trajectory matching. ViT features
pretrained on ImageNet are used in this experiment.

In Figure 2, we present the single-step action prediction
(SAP) accuracy of HAMT and PREVALENT during the
training. The SAP accuracies on val seen split are similar
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for the two models, however, PREVALENT performs much worse on the val unseen split than HAMT.
Due to the capacity of large-scale transformer, PREVALENT is likely to memorize the map structure
of seen houses, and thus achieves comparable performance to HAMT. However, such knowledge
cannot be transferred to unseen houses because the structure and visual observations are distinct for
seen and unseen houses. Feeding history as inputs avoids the model simply cramming the structure
of seen houses, and enables it to align the history with an instruction to predict actions for better
generalization. After fine-tuning the two models on R2R dataset, we obtain SPL 57.5 on val unseen
split for HAMT, while 52.7 for PREVALENT without history input. As the same proxy tasks are used
in training, the large gains of our HAMT model contribute to the history encoding. Therefore, the
proposed history encoding can largely improve the navigation performance on top of training
proxy tasks.

D.2 Visual features in training with proxy tasks
Table 6: Comparison of features (same
notations as Table 3a in main paper).

Val Seen Val Unseen
Features PT e2e SR SPL SR SPL

Resnet
152

× × 65.5 61.3 54.4 48.7
X × 69.3 64.8 63.5 57.5

ViT
× × 68.8 66.1 56.3 52.5
X × 75.7 72.5 64.4 58.8
X X 75.0 71.7 65.7 60.9

Table 6 provides an additional experiment in the third
row compared to Table 3a in main paper. It demonstrates
that ViT features outperform ResNet152 features with and
without training proxy tasks. Comparing the last two rows
in Table 6, end-to-end feature optimization improves SPL
by 2.1% on val unseen split but decreases SPL by 0.8% on
val seen split. Note that we follow previous VLN works
[11, 18] to select the best model based on val unseen and
use the same model for val seen split. We observe that the
performance on val seen split can be improved with longer
training time. After optimizing visual representations, HAMT converges faster on val unseen split
and achieves the best performance at earlier iterations. Therefore, the performance on val seen split is
slightly worse than no end-to-end optimization. If training longer, the performance with optimized
ViT features on val seen split can be higher.

D.3 Different proxy tasks in end-to-end training

Table 7: Comparison of different proxy
tasks in end-to-end optimization.

Val Seen Val Unseen
SAP(R) SPREL SR SPL SR SPL

× × 70.1 65.9 63.3 57.7
X × 72.5 69.2 64.5 59.4
X X 75.0 71.7 65.7 60.9

In Table 3b of main paper, we fix ViT features to ablate
contributions of different proxy tasks in training. We fur-
ther present the ablation results in a fully end-to-end train-
ing setup in Table 7, where different proxy tasks are used
to train HAMT including the ViT features. The results
show the same trend as Table 3b in main paper, where our
proposed two new proxy tasks (SAP/R and SPREL) are
beneficial. Moreover, we can see that the end-to-end ViT
features are superior to fixed ViT features on val unseen
split for all the three proxy task combinations.

D.4 Two-stage end-to-end (e2e) training strategy

We compare our two-stage e2e training strategy with a single-stage e2e training of HAMT. However,
single-stage e2e training achieves inferior performance to the two-stage training or even no e2e
training. When trained for 25k iterations and evaluated on the val unseen split, the single-stage e2e
training of HAMT results in SPL 53.5 while no e2e training achieves SPL 56.5. We hypothesize that
the single-stage e2e training is less effective for VLN given (a) the limited training data available for
the VLN task and (b) the higher complexity of VLN compared to common vision and language tasks.

D.5 History encoding in long-horizon VLN task

We compare different history encoding approaches on the R2R-Back dataset to show that the history
information is more beneficial for the long-horizon VLN task. Table 8 presents navigation results. All
the models are initialized from weights after training with proxy tasks. In order to successfully return
back, the agent should remember the way it comes to the targets. The recurrent state is insufficient to
capture all the information and achieves the worst navigation performance. Encoding agent’s oriented
view at each step in temporal-only model improves over the recurrent approach. However, as the
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oriented view of the agent in backward trajectory is different from the view in forward trajectory,
temporal-only model does not take advantage of the full memory in previous exploration and performs
inferior to our hierarchical history encoding model. It demonstrates the effectiveness of our proposed
method in long-horizon VLN task that requires long-term dependency. We also show that using the
end-to-end trained ViT features further benefits the navigation performance.

Table 8: Navigation results for R2R-Back dataset.
History

Encoding e2e Val Seen Val Unseen
TL SR↑ SPL↑ nDTW↑ SDTW↑ TL SR↑ SPL↑ nDTW↑ SDTW↑

Recurrent × 22.33 51.4 48.4 67.3 45.7 23.35 41.1 37.7 58.2 35.6
Temporal-only × 22.70 51.6 49.6 67.8 46.7 22.93 45.1 42.9 62.7 40.2
Hierarchical × 23.52 66.8 63.5 73.8 60.4 24.58 56.5 51.7 63.6 48.4
Hierarchical X 22.76 64.8 61.8 73.7 58.9 23.78 57.2 53.1 65.1 49.5

D.6 Structure variants in fine-tuning
Table 9: Comparison of using different
tokens in fSAP in fine-tuning.

Action
Prediction Token Val Seen Val Unseen

obs txt hist SR↑ SPL↑ SR↑ SPL↑
X × × 76.1 72.8 66.0 60.3
X X × 75.0 71.7 65.7 60.9
X × X 78.0 75.9 65.5 60.2
X X X 76.3 73.4 65.5 60.9

Our model reuses the fSAP(o
′
i�x′

cls) in training proxy tasks
to sequentially predict action in fine-tuning. In Table 9,
we compare using different input tokens for the action
prediction in fSAP, including different combinations of the
observation token o′i, global history token h′

cls and special
text token x′

cls. We can see that the performance varies
little on the val unseen split, which indicates that the cross-
modal transformer in our model is able to effectively fuse
different modalities so that the performance is influenced
little by tokens used in prediction.

E Qualitative results

Figures 3-6 illustrate trajectories obtained by our HAMT model and compare them to results of the
state-of-the-art RecBERT [11] model. We can see that HAMT enables to better interpret instructions
(Figure 3), recognize the scene (Figure 4), follow the correct direction (Figure 5), and align the
current observation with the instruction (Figure 6). We also provide some failure cases in Figures 7-8,
where the HAMT model still needs improvements on scene and object recognition.
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(a) Predicted trajectory by RecBERT [11] (failed). (b) Predicted trajectory by HAMT (succeed).

Figure 3: Examples in R2R val unseen split. Navigation steps inside red box are incorrect. The
instruction is “Walk to the right of the stairs. Continue past and to the right of the stairs that go
down. Turn right and stop in the doorway of the double glass doors.” (id: 697_0). The RecBERT
misunderstands the instruction and goes down the stairs instead of turning right. Our HAMT is better
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(a) Predicted trajectory by RecBERT [11] (failed). (b) Predicted trajectory by HAMT (succeed).

Figure 4: Examples in R2R val unseen split. Navigation steps inside red box are incorrect. The
instruction is “Walk into the kitchen area. Walk by the sink and oven. Walk straight into the hallway.
Turn right into the little room. Turn left and walk into the bedroom. Stop by the corner of the bed.”
(id: 155_0). The RecBERT fails to recognize the kitchen area and navigates back and forth in wrong
locations. Our HAMT correctly recognizes the kitchen and follows the instruction.

(a) Predicted trajectory by RecBERT [11] (failed). (b) Predicted trajectory by HAMT (succeed).

Figure 5: Examples in R2R val unseen split. Navigation steps inside red box are incorrect. The
instruction is “Walk straight until you get to a room that has a black table on the left with flowers
on it. Wait there.” (id: 4182_2). The RecBERT takes the wrong direction at the first step, while our
HAMT follows the instruction and successfully stops.
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(a) Predicted trajectory by RecBERT [11] (failed). (b) Predicted trajectory by HAMT (succeed).

Figure 6: Examples in R2R val unseen split. Navigation steps inside red box are incorrect. The
instruction is “Walk out of the bathroom and turn right. Turn left and walk down the hallway. Turn
right and stop by the end table.” (id: 5153_0). The RecBERT correctly performs the first two turns
but fails to track the third turn right action and stops incorrectly. Our HAMT is better to align the
current state with the instruction to correctly perform the third turn right action.

(a) groundtruth trajectory. (b) Predicted trajectory by HAMT (failed).

Figure 7: Failure cases in R2R val unseen split. The instruction is “Go stand underneath the stairs,
next to the liquor shelf. ” (id: 36968_2). Though HAMT correctly goes towards the direction, it fails
to recognize the liquor shelf and results in exploring further the room until reaching the maximum
number of navigation steps.
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(a) Groundtruth trajectory. (b) Predicted trajectory by HAMT (failed).

Figure 8: Failure cases in R2R val unseen split. The instruction is “With the low stone or concrete
barrier behind you, walk parallel to the board covering the floor and turn left before reaching the end.
Move forward to leave the wooden flooring and when on the stone flooring, turn right and stand in
front of the doors leading out of the room.” (id: 5873_1). As the scene is unusual, HAMT fails to
locate itself in the correct direction at the first step.
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