Supplementary Information:
IRRISIGHT: A Large-Scale Multimodal Dataset and Benchmark
for Irrigation Mapping from Satellite Imagery and Structured
Environmental Features

A Data Collection (Additional Details for Section [3)

Our dataset integrates geospatial data from multiple public sources, spanning raster, vector, and
point-based formats. All data are harmonized to the Albers Equal Area Conic projection (EPSG:5070)
for spatial consistency. Table [T] summarizes the core data sources used. Below, we describe each
modality and its metadata in more detail.

Table S1: State-wise Farms and Irrigation Coverage Summary for the labeled dataset.

State  Source Farms  Total (acres) Irrigation Type (%) Year Range  Spatial Coverage
Sprinkler Drip Flood
WA WSDA [77] 12,696 2,000,402 84.9% 7.1% 8.0% 2016-20 100%
uT WRLU [74] 11,404 1,776,424 53.3% 0.1%  46.1% 2023 100%
Cco CDSS [8] 15,203 2,534,391 40.7% 02%  59.2% 2016-20 100%
AZ USGS-VIAgL [69] 4,701 222,135 13.0% 43.1%  31.0% 2016-17 24.7%
FL USGS-VIAgL [69] 11,991 554,587 51.0%  21.7%  25.5% 2016-17 37.5%
GA USGS-VIAgL [69] 6,391 997,630 53%  94.7% - 2016 77.5%

Satellite imagery: Sentinel-2 imagery were obtained from USGS Earth Explorer for 20 studied states
of the US, covering their respective study periods. Sentinel-2A offers 10m visible and near-infrared
resolution with a 5-day revisit cycle. Data acquisition focused on the peak irrigation season (July), a
key period for assessing water use and crop conditions, as imagery from other periods may capture
snow cover, bare soil, or dormant vegetation, making it less useful for irrigation analysis. Images
exceeding 5% cloud cover, snow, or poor quality—identified via the Quality Assessment (QA)
band—were excluded. The imagery includes ten spectral bands: four at 10m resolution (B02—-B04,
BO08) and six at 20m resolution (BO5-B07, B11-B12). Moreover, we excluded spatially redundant
satellite images.

Irrigation labels: Since irrigation label data is not uniformly available from a single national
source, we curated irrigation annotations for six US states by integrating diverse regional datasets.
For Utah (2023), we utilized the Water-Related Land Use (WRLU) datasetﬂ, while irrigation maps
for Washington (2015-2020) were obtained from the Washington State Department of Agriculture
Agricultural Land Use dataset (WSDAﬂ For Colorado (2018-2020), we incorporated shapefiles from
the Colorado Decision Support System (CDSSﬂ which provides GIS layers for agricultural parcels
across river basins. For six additional states (i.e., Arizona, Florida, Georgia, Missouri, New Mexico,
and Texas), we adopted the USGS Verified Irrigated Agricultural Lands datasetﬂ a geodatabase
produced by the U.S. Geological Survey in collaboration with the University of Wisconsin. These
datasets vary significantly in terms of temporal coverage, spatial granularity, and annotation standards.
While all sources include field-level polygons and associated attributes, such as irrigation status,
method type (e.g., drip, pivot, flood), crop classification, and water source, differences in data
collection protocols introduce substantial label noise. We summarize the coverage and content of
each state’s dataset in Table[ST] Notably, for Utah, Washington, and Colorado, we obtained complete
statewide coverage of irrigated lands. In contrast, the data for Arizona, Florida, Georgia, Missouri,
New Mexico, and Texas only cover selected counties or specific agricultural regions. Furthermore,
irrigation practices vary considerably by state. For example, Washington and Utah demonstrate

“Water-Related Land Use, Utah

3Agricultural Land Use, Washington

“Division of Water Resource, Colorado

>Verified Irrigated Agricultural Lands dataset (USDA, 2002-2017)
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high adoption of sprinkler-based systems, while Colorado relies predominantly on flood irrigation,
a pattern often dictated by terrain and legacy water rights. These disparities in irrigation methods
are also reflected in their statistical distributions: Utah’s 1.76 million acres include only 0.01% drip
irrigation, while Arizona’s 412,263 acres include 12% under drip systems. This heterogeneity results
in notable class imbalance across and within states, which poses additional challenges for model
training. Such imbalance, coupled with noisy labels and partial coverage, underscores the importance
of our dataset’s unified representation, standardized structure, and inclusion of auxiliary modalities to
support robust learning under weak supervision.

Land use and crop type: We utilize two national-scale raster products to identify and contextualize
agricultural areas. The MRLC National Land Cover Database (NLCDf] offers 30m-resolution land
cover classifications across 16 categories, including cultivated cropland and pasture. Complementarily,
the USDA Crop Data Layer (CDL) E]provides annual, per-pixel crop type labels from 2008 to 2023,
with over 130 unique crop classes. This crop class includes corn, soybeans, cotton, alfalfa, orchards,
etc. Together, these layers are used to filter cropland regions and enrich patch-level annotations with
crop-specific information.

Water availability: We incorporate environmental observations from the USGS National Water
Information System (NWISﬂ which provides raw, site-specific measurements of groundwater depth,
surface water elevation, and precipitation at daily temporal resolution. These measurements are
recorded at fixed monitoring stations across the United States, with each entry associated with
geographic coordinates. We preprocess this data by filtering for relevant sites within our study regions
and aggregating the daily values into monthly averages spanning 2010 to 2025.

Evapotranspiration: To estimate crop water demand, we incorporate monthly evapotranspiration
(ET) rasters from the USGS Famine Early Warning Systems Network (FEWS) ﬂ These data provide
regional-scale estimates of water loss through soil evaporation and plant transpiration at 1km resolu-
tion. While ET is a critical factor for understanding irrigation needs, it is challenging to integrate with
fine-resolution satellite imagery due to its coarse spatial granularity and atmospheric dependencies.
Nonetheless, we spatially align ET values to image patches to provide a proxy for water stress and
latent demand during peak growing season.

Soil data: We utilize detailed soil information from the USDA NRCS SSURGO database [l The
database contains a nationwide geospatial dataset compiled through extensive field surveys, lab
analysis, and expert interpretation. Note that the data are provided as 1:24,000-scale vector polygons
(map units), where each map unit is linked to a set of relational tables describing soil components,
horizon-level measurements, texture groups, and geomorphic features. Specifically, we use at-
tributes from the component table (e.g., slope, hydrologic group, drainage class, irrigation capability,
composition percentage), the chorizon table (e.g., available water capacity, saturated hydraulic
conductivity, organic matter, bulk density), the chtexturegrp table (soil texture descriptions), and
the cogeomordesc table (geomorphic landform classifications). These properties are crucial for
assessing soil water retention, permeability, and suitability for different irrigation methods. However,
several challenges arise from the hierarchical and compositional nature of the data. Each polygon may
contain multiple components, each with its own set of horizons and weighted percentages, requiring
careful aggregation. Additionally, terminology varies across states and years, and some fields (e.g.,
irrigation capability) are sparse or inconsistently coded. Despite these limitations, soil attributes
provide valuable non-visual context for understanding irrigation behavior, especially in cases where
visual signals in satellite imagery are ambiguous.

*https://www.mrlc.gov/
"https://nassgeodata.gmu.edu/CropScape/
Shttps://waterdata.usgs.gov/nwis
‘https://earlywarning.usgs.gov/fews/product/460/
""https://nrcs.app.box.com/v/soils/folder/233398887779
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County boundaries: We use administrative boundary data from the U.S. Census Bureau’s
TIGER/Line dataselEl, which provides vector geometries for all U.S. counties. Each polygon
includes metadata such as county name, state name, and FIPS codes. This dataset enables spatial
reference and regional context for downstream statistical analysis and cross-county comparisons.

B Data Processing Pipeline (Additional Details for Section 4)

An outline of the various steps involved in data acquisition, processing and integration is provided in
Figure[2] Similarly, an outline of the preparation of the ML-ready dataset is provided in Figure [ST]

B.1 Data Acquisition
B.1.1 Sentinel-2 Data Acquisition

We retrieve Sentinel-2 metadata from the Copernicus Data Space Catalogue, filtering for cloud-free
(less than 5% cloud cover) acquisitions within the growing season window (i.e., June 30 to August
1) by using state-level polygon boundaries. To reduce redundancy and avoid over-representation of
frequently imaged areas, we remove duplicate scenes (i.e., multiple acquisitions covering the same
spatial footprint) to ensure a balanced spatial coverage across the dataset. The associated sentinel-2
image products for the selected scenes are then downloaded via authenticated API requests.

B.1.2 Crop, Land-Use & Soil Data Acquisition

Using state-level polygons, we extract overlapping land cover (from NLCD), crop type (from CDL),
and soil information (from SSURGO). Extracted land use and crop type rasters are reprojected to a
10m grid via nearest-neighbor interpolation. The SSURGO soil data provides polygonal soil map
units with associated horizon-level and component-level attributes.

B.1.3 Hydrological Data Acquisition

We queried the USGS National Water Information System to collect metadata for all active monitoring
sites across U.S. states, including geolocation and site identifiers.

B.2 Data Processing
B.2.1 Satellite Image Processing

Sentinel-2 scenes are parsed into ten multispectral bands (B02-B12) spanning 10m and 20m res-
olutions. Each band is reprojected to a common target projection (EPSG:5070), which preserves
area across the continental U.S., using bilinear resampling. We define a canonical transform (i.e., a
standardized spatial reference system and grid layout) and output grid based on the first valid band
and resample all others into this shared space to ensure sub-pixel alignment across bands. Then the
stacked bands are divided into fixed-size tiles of 224 x 224 pixels. We retain patches only if they
meet the following criteria:

* Cropland threshold: At least 10% of pixels must fall into cropland categories (class 81/82) from
the USDA Cropland Data Layer.

* Valid reflectance: More than 80% of the patch must contain valid (non-zero) reflectance values.
These filters ensure that selected patches are agriculturally meaningful and spatially coherent. All

land use and crop masks are reprojected using nearest-neighbor interpolation to preserve categorical
semantics. The state-wise count of tiles and patches is provided in Table

"https://www.census.gov/geographies/mapping-files/time-series/geo/
tiger-line-file.html
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Table S2: Summary of Collected and Processed Data by State and Label Status

Collected Processed
Status State
#Tiles Storage (GB) #Tiles Storage (GB) #Patches
Washington 3428 813 1029 181.0 145336
Utah 1030 253 279 31.0 24847
Colorado 5411 1224 717 109.5 97087
Labeled Arizona 3053 736 205 11.8 9560
Florida 303 92 24 3.2 2463
Georgia 292 94 50 16.0 12597
Total (Labeled) 15517 3212 2304 3525 293890
Arizona 1794 446 367 20.0 18811
Florida 265 84 69 11.0 9681
Georgia 127 42 67 26.0 24887
Texas 1800 636 796 331.0 318740
Arkansas 244 155 240 99.0 95361
California 2022 1200 1311 238.0 229002
Nebraska 1640 305 613 317.0 305115
Ohio 84 28 51 20 18608
Unlabeled North Carolina 219 64 130 32.0 30765
South Carolina 93 32 32 7.1 6750
Pennsylvania 64 21 39 4.8 4588
West Virginia 31 17 26 1.8 1721
New Jersey 56 15 24 1.7 1619
Michigan 341 101 199 44.0 42086
Indiana 122 35 52 47.0 44371
Maryland 57 19 13 2.1 1969
Oregon 1640 305 430 68 65437
Total (Unlabeled) 11,569 3,595 4,489 1,290.5 1,190,411
Total (All) 27086 6807 6793 1643 1,484,301

To enhance surface property analysis for irrigation mapping, we compute a suite of spectral indices
capturing vegetation health, water presence, and soil conditions{ﬂ Common vegetation indices such
as NDVI, GNDVI, and Clgreen quantify canopy vigor and chlorophyll content, while EVI, SAVI,
and MSAVI account for atmospheric and soil background effects [44, 68| 28]. NDWI estimates water
content and drought stress [17]], and NDTI captures tillage status [80]. Additional indices such as PRI,
OSAVI, and WDRVI further enrich vegetation stress detection and biomass sensitivity [20, 14} 67],
while RVI offers a robust alternative to NDVI under varying conditions [21]]. These derived bands
are appended to the spectral stack, providing physically interpretable features that complement raw
reflectance and aid in downstream irrigation classification. (See Appendix Table[STT]for full index
definitions.)

B.2.2 Soil Data Processing

We standardize gSSURGO soil survey data from the USDA NRCS to construct spatially aligned
soil features suitable for machine learning tasks. This database has a hierarchical structure: each
mapped unit contains multiple overlapping soil components, each with its own attributes, including
(1) horizon-level measurements (depth-specific properties such as available water capacity, organic
matter, and hydraulic conductivity); (ii) soil texture (the relative proportions of sand, silt, and clay);
and (iii) geomorphic attributes (landscape positions such as terraces or floodplains). Each component
differs in spatial dominance, which is defined by its areal proportion within the map unit. To ensure
consistency, we follow a structured aggregation technique:

https://www.nvbgeospatialsoftware.com/docs/AlphabeticallistSpectrallndices.html
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* Irrigability filtering: We systematically exclude soil components and geomorphic features un-
suitable for irrigation using rule-based fuzzy keyword matching against curated exclusion lists.
Component names and geomorphic feature names are extracted from the dataset, cleaned, dedu-
plicated, and compared to expert-defined keywords representing non-irrigable conditions. For
instance, irrigation can not happen in rocky substrates, highly permeable sands, saline soils, satu-
rated wetlands, and unstable slopes. We apply partial string similarity thresholds (fuzzy ratio >
85 for components and geomorphic features) to ensure robust matching despite naming inconsis-
tencies. We include all exclusion lists in Table[S6] This process filtered 1120 out of 14928 total
soil components (7.5%) and 65 out of 404 geomorphic features (16.1%) as irrigation-unsuitable.
The goal of this filtering is to retain only components and landforms that are physically relevant
to irrigation. Therefore, it improves the semantic coherence and practical utility of the resulting
soil attributes. This contributes a physically grounded (i.e., based on real and observable physical
properties of the system) and semantically aligned preprocessing step that supports the extraction
of irrigation-relevant insights. Moreover, this ensures that retained components reflect realistic and
agriculturally meaningful soil and landform conditions.

* Dominant component selection: We retain components with above-median areal composition
to focus on physically representative contributors. We use the median threshold to robustly filter
minor inclusions and reduce sensitivity to small, fragmented components.

» Feature aggregation: Continuous variables (e.g., slope, elevation, water capacity) are aggregated
using composition-weighted averages. Categorical variables (e.g., hydrologic group, drainage
class) are resolved based on the most dominant component, while descriptive categorical fields such
as soil texture and component names are preserved by retaining the top-ranked values according to
areal proportion.

This standardization transforms multi-resolution soil data into uniform and interpretable (i.e., aligned
with domain concepts used in agronomy and hydrology, e.g., slope %, drainage class, texture
categories) spatial features that preserve relevant physical variability while reducing noise.

B.2.3 Hydrological Data Processing

For each hydrological site, retrieved daily measurements of guage height (i.e., the water surface
elevation above a predefined reference point, measured in feet), groundwater level (measured in feet),
or precipitation (measured in inches) and aggregated (by taking the mean) them into monthly means
from 2016 to 2025. Each time series was aligned to a complete (2016-2023) year—-month index to
preserve temporal consistency and explicitly represent missing data.

B.2.4 Text-Prompt-Generation

To supplement satellite imagery with non-visible but agronomically critical information, we generate
structured natural language prompts that describe localized soil and landform characteristics. Features,
such as soil component names, hydrologic group, irrigation capability class, etc., are not directly
observable from remote sensing. However, these features are essential for human decision-making
in irrigation and land management. For example, high runoff potential, poor drainage, or rocky
geomorphology may preclude irrigation despite vegetation signals in satellite data. This textual
representation also encodes the local geospatial context implicitly through place-specific components
and geomorphic formations (e.g., alluvial fan, panoche soil, playa basin), which may reflect historical
sedimentation, erosion, or aquifer accessibility, factors critical for sustainable irrigation planning.
Unlike one-hot or numerical feature vectors, natural language provides a semantically dense, in-
terpretable format that supports alignment with multimodal models, facilitates human-in-the-loop
analysis, and allows flexible conditioning in generative or contrastive learning settings. Thus, the text
modality serves not just as auxiliary metadata but as a linguistically structured, domain-informed
signal that bridges spatial data with real-world irrigation knowledge. We show the rules for prompt
generation in Table
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Table S3: Standardization of Raw Irrigation Labels into irrigation class and subclasses.

Original Label Mapped SubClass Mapped Irrigation

Drip/Micro-Sprinkler, Micro, Micro Sprin- | Micro-Drip Dri
kler, Micro-Bubbler, Micro-Drip, Micro- 1p
Sprinkler, Mirco-Bubbler
Big Gun/Drip, DRIP, Drip, Drip Microirri- | Drip
gation, Drip/Big Gun, Drip/None, Drip/Rill,
Drip/Wheel Line

FLOOD, FURROW, Flood, GATED_PIPE, | Flood Flood
Hand/Rill, None/Rill, Rill

Center Pivot, Center Pivot/Drip/Sprinkler, | Center Pivot

Center Pivot/None, Center Sprinkler
Pivot/Rill/Wheel Line, Cen-

ter Pivot/Sprinkler, Center

Pivot/Sprinkler/Wheel = Line, Center

Pivot/Wheel Line

Big Gun, Big Gun/Center Pivot, Big | Big-Gun
Gun/Sprinkler, Big Gun/Wheel Line, Trav-
eling Gun, Traveling Gun, pivot, sprinkler

Center Pivot - Tow, Hand/Sprinkler, Lat- | Sprinkler
eral Sprinkler, Other Sprinkler, Overhead,
Rill/Sprinkler/Wheel Line, SPRINKLER,
Side Roll, Solid State Sprinkler, Sprinkler,
Sprinkler & Bubbler, Sprinkler/Wheel Line,
Traveler Sprinkler, Wheel Line, Wheel line

Big Gun/Drip, Center Pivot/Drip/Sprinkler, | Removed Removed
Drip/Big Gun, Drip/Micro-Sprinkler,
Drip/None, Drip/Rill, Drip/Rill/Sprinkler,
Drip/Sprinkler, Drip/Sprinkler/Wheel
Line, Drip/Wheel Line, Dry Crop, Micro,
None/Sprinkler, None/Sprinkler/Wheel
Line, None/Wheel Line, Non_irrigated,
NON_IRRIGATED, Not  Specified,
Rill/Sprinkler, Rill/Sprinkler/Wheel Line,
Solid State Sprinkler, Drip Microirrigation,
Sprinkler And Drip, Sub-irrigated, UN-
KNOWN, Unknown, Uncertain

B.3 Data Integration

To construct a unified multimodal dataset, we spatially align all heterogeneous geospatial in-
puts—satellite imagery, environmental variables, and soil attributes—into structured 224 x 224
patches. Each patch combines pixel-level reflectance with auxiliary domain features, including
July-aggregated evapotranspiration (ET), precipitation, groundwater depth, surface water elevation,
and processed soil properties. County-level boundaries are also assigned to provide administrative
context.

All inputs are reprojected to a common EPSG:5070 grid. Patch-level values are extracted using
(¢)polygonal intersection for irrigation labels and soil map units, (i%) centroid-based nearest neighbor
lookup for point data (e.g., groundwater, precipitation), and (¢4%) raster sampling for gridded layers
(e.g., ET). Soil prompts are joined to each patch via spatial intersection; if multiple soil units overlap,
prompts are concatenated. Missing prompts are explicitly flagged.
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Table S4:

Field-wise Prompt Generation Rules and Template

Field

Prompt Template (Rule)

Component Names
Geomorphic Features

Texture Classes
Runoff and Drainage

Hydrologic Group
Hydric Rating
Irrigation Capability
Slope and Elevation
Soil Properties

This soil unit contains the following dominant components:
<compname-1>; ... ;<compname-5>.

The geomorphic setting
<geomorphic-1>;... ;<geomorphic-5>.

Soil texture: <texture-1>;... ;<texture-5>.
The soil has a runoff class of <runoff> and drainage class
<drainagecl>.

Hydrologic group: <hydgrp>.

It is rated as <hydric>.

Irrigation capability: <irrcapcl>, subclass <irrcapscl>.
Average slope: <slope>%, elevation: <elevation> m.

Soil properties: AWC = <awc>, Ksat = <ksat>, OM = <om>, BD =

includes:

<dbovendry>, water content at 1/10 = <wtenthbar>, at 15 bar =
<wfifteenbar>.

Final Prompt Structure This soil unit contains the following dominant components:
<compname-1>; ...; <compname-5>. The geomorphic setting
includes: <geomorphic-1>; ...; <geomorphic-5>. Soil tex-
ture: <texture-1>; ...; <texture-5>. The soil has a runoff
class of <runoff> and drainage class <drainagecl>. Hydrologic
group: <hydgrp>. It is rated as <hydric>. Irrigation capability:
<irrcapcl>, subclass <irrcapscl>. Average slope: <slope>%,
elevation: <elevation> m. Soil properties: AWC = <awc>, Ksat =
<ksat>, OM = <om>, BD = <dbovendry>, water content at 1/10 =
<wtenthbar>, at 15 bar = <wfifteenbar>.

~
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This integration embeds both surface-level observations and subsurface environmental priors into a
consistent spatial framework and enables effective multimodal learning for irrigation classification.

B.4 ML-ready Dataset Preparation

After processing and alignment, we extract a total of 1,484,301 ML-ready patches across 20 states,
with 293,890 labeled and 1,190,206 unlabeled examples. The labeled subset includes states such as
Washington, Utah, Colorado, Arizona, Florida, and Georgia (some with partial coverage), while the
unlabeled pool spans the remaining regions, enabling semi-supervised and pretraining applications.
After reprojecting, masking, and patch extraction, we found 5,649 processed tiles occupying 1,386.5
GB, which represents a 77 % reduction from raw data in storage size compared to the original data
footprint.
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B.4.1 Training and Evaluation Splits

We adopt two complementary strategies for splitting our dataset to support both intra-state generaliza-
tion and cross-regional evaluation: a 70:15:15 spatial split within states and a leave-one-state-out
protocol across states.

Cross-State Splitting (70:15:15). For each labeled state, we perform a split of the dataset into
training (70%), validation (15%), and test (15%) sets. This split is performed at the tile level,
where each tile represents a spatially contiguous region containing a dense grid of patches (typically
covering a fixed Sentinel-2 footprint). Splitting at the tile level, as opposed to randomly splitting
individual patches, ensures that data from the same geographic region does not appear in multiple
splits—thereby preventing spatial leakage. This design is critical in remote sensing settings, where
nearby patches are highly correlated due to shared land cover and climate conditions. Models trained
and evaluated on spatially distinct regions are thus more likely to generalize to unseen geographies.

Holdout-State Splitting (Leave-One-State-Out). To evaluate out-of-distribution generalization,
we perform a leave-one-state-out split. A target state is held out entirely for testing, while the
remaining states contribute data to the training and validation sets. For the training states, we again
split at the tile level and reserve a small portion (typically 10%) for validation. This setting simulates
real-world scenarios where labeled data is unavailable in a new geographic region, and the model must
transfer knowledge learned from other states. By maintaining strict spatial and regional disjointness,
this split allows us to robustly measure a model’s ability to generalize across distinct agricultural,
climatic, and soil regimes.

B.4.2 Irrigation Label Standardization

The irrigation annotations in our dataset originate from multiple geospatial sources and vary widely.
Many raw labels encode specific equipment types (e.g., “Traveling Gun”), compound systems
(e.g., “Center Pivot/Drip”), or non-standard notations (“Drip/None”, “Unknown”). To unify this
heterogeneous label space, we construct a manually curated mapping dictionary that normalizes all
labels into three irrigation classes—Drip, Sprinkler, and Flood—along with fine-grained subclasses
where available. We use a rule-based matching procedure over raw labels to assign each label to
a class and a subclass. Labels that are ambiguous, mixed-mode, or uninformative (e.g., “None”,
“Unknown”, “Center Pivot/Drip”) are excluded to avoid introducing noise into the supervision signal.
This label normalization step is essential for building a consistent and interpretable target space for
training semantic segmentation and classification models. Table[S3|summarizes the key mappings
used.

B.5 Impact of Raster Reprojection and Alignment

While this standardization facilitates multimodal alignment, it can introduce minor spatial smoothing
or misalignment, particularly for coarser layers such as the USDA Cropland Data Layer (CDL)
originally provided at 30 m resolution.

To quantify potential spatial distortions, we performed a reprojection consistency analysis on irrigation
and crop masks. Each 30 m raster was resampled to the unified 10 m grid and then reconstructed
back to 30 m. We compared the reconstructed rasters against the originals using overall accuracy
and Cohen’s x coefficient [61]. For irrigation masks, we obtained 97.6% accuracy and x = 0.96 in
Florida, and 93.9% accuracy with x = 0.89 in Arizona. Crop masks yielded 93.4% accuracy and
x = 0.92 in Arizona, and 92.2% accuracy with k = 0.91 in Colorado. Across all evaluated states,
accuracy exceeded 90% and x values were above 0.85 on average.

These results indicate that the reprojection and resampling process preserves spatial integrity and
label semantics with minimal information loss. Consequently, the uniform 10 m framework enables
accurate alignment across modalities without degrading downstream model performance in the
multimodal fusion pipeline.
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Table S5: Complete List of Excluded Component Lists

Soil Component

10 to 20 inches deep over bedrock soils, 20 to 40 inches deep over bedrock soils, 20 to 60
inches deep over bedrock soils, 40 to 60 inches deep over bedrock soils, achimin, acid igneous
rock land, acidic rock land, acidic rockland, aciidic rock land, active dune land, active land-
slides - bench, active landslides - main scarp, aeric cryaquepts, ahl, airship, alcan, aldine, alice,
alkaline soils, alluvium or colluvium, alo, alpin, alpineco, alumrock, amarose, amboycrater,
andaquepts, ander, andic cryaquepts, andic cryochrepts, andic cryumbrepts, andic durixerepts,
andic dystrocryepts, andic dystrocryrepts, andic dystroxerepts, andic dystrudepts, andic eu-
trocryepts, andic eutrudepts, andic fragiumbrepts, andic humudepts, andic xerochrepts, andic
xerumbrepts, andys, aned, ansel, antelope, antelope springs, antelope springs family, antelope
springs variant, antero, aquandic cryaquepts, aquandic dystrocryepts, aquandic endoaquepts,
aquandic halaquepts, aquandic humaquepts, aquandic humicryepts, aquariusmine, aquepts,
aquic cryandepts, aquic cryumbrepts, aquic dystric xerochrepts, aquic dystrocryepts, aquic
dystroxerepts, aquic dystrustepts, aquic ustochrepts, arave, archrock, areas of 10-20 percent
slope, areas under water in, areas with 10-20 percent slope, areas with 30 to 55% slope, areas
with 40-60 percent slope, areas with 50-100% slope, areas with 6-10 percent slope, aridic
calciustepts, aridic calciustepts family, aridic haplustepts, aridic lithic haplustepts, ashnola,
ashokawna, ashollow, atter, atter family, atwater, atwater variant, aut, ayar, badland, badlands,
badrock, baileyboro, balman, barnetmine, barshaad, basalt rock land, baseline, basic rock
land, batterson, battery, battlerock, baxter, bayboro, bedrock, beetlerock, bemjamin, benjamin,
benlowe, bismarck, bisoodi, bitterwater, blackrock, blewett, bodiecreek, bonesteel, borrow,
borrow pit, borrow pits, bottlerock, boulder, boulder lake, bouldercreek, boulderfan, boulder-
jud, bouldery sandy alluvium, bouldery surface, brewster, bridgewater, bridgewater variant,
briefly flooded areas, briefly flooded soils, britwater, broadwater, brocket, brockgulch, brock-
gulch variant, brockliss, brocksburg, brockwell, budland, bunkwater, bushvalley, calciustepts,
calcixerollic xerochrepts, calpet, calpine, calpine family, calpine variant, calwood, canisrocks,
carmine, carshal, carshal family, carterlake, casrock, castee, castephen, castino extremely
cobbly loam, castino gravelly silt loam, catherine, cavel, caverock, chain, chance, chaney,
chatterdown, chazner, chemwash, chimrock, chinkmin, chirpchatter, choralmont, chumash,
cinder quarries, clapper cobbly loam, clay pits, clayey shallow aridic ustorthents, clayman,
cline, coal mine lands, coarser soils w/o sodium or salts, cobb, cobbly alluvial land, cobbly and
gravelly soils, cobbly clay loam soils, cobbly soils, cobbly surface soils, colluvium deposits,
colorock, contactmine, copalisrock, coppermine, cowmarsh, coyoterock, crestline, crockett,
crop outcrop, crowther, cryandepts, cryaquepts, cryepts, cryochrepts, cryumbrepts, cumulic
humaquepts, cumulic humixerepts, cushool

Geomorphic Component

aa lava flows, backswamps, barrier beaches, beach plains, beach ridges, beach terraces,
beaches, blowouts, bogs, borrow pits, climbing dunes, complex landslides, dredge-deposit
shoals, dune fields, dune lakes, dune slacks, dunes, estuarine tidal streams, falling dunes, filled
marshlands, flood-tidal delta flats, flood-tidal delta slopes, flood-tidal deltas, foredunes, fringe-
tidal marshes, gravel pits, interdunes, landslides, lava domes, lava fields, lava flows, lava plains,
lava plateaus, lava trenches, longitudinal dunes, mangrove swamps, marshes, openpit mines,
parabolic dunes, parna dunes, playa dunes, raised bogs, rock glaciers, rock pediments, rock
spreads, rockfall avalanches, rockfalls, rotational landslides, salt marshes, sand pits, shoals,
shrub-coppice dunes, sinkhole karst, sinkholes, slides, sloughs, spits, submerged upland tidal
marshes, surface mines, swamps, tidal flats, tidal inlets, tidal marshes, urban land, wind-tidal
flats

C Advancements Beyond Prior Works

IRRISIGHT represents a substantial advancement beyond our prior works, IrrMap and KIIM. Unlike
IrrMap, which provided a small four-state dataset, and KIIM, which primarily introduced a model
for modality fusion, IRRISIGHT (Table establishes the first large-scale, multimodal, and vision—
language-ready dataset for irrigation and agricultural water management. It integrates 37 structured
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Table S6: Curated Soil and Geomorphic Features Deemed Unsuitable for Irrigation with Rationale

Component Curated Exclusion List Rationale
sand dune, dune, gravel, cobbly, Poor water retention and unstable
bouldery, channery, steep, slope, col-  structure
Soil luvium, badland
oi
marsh, swamp, peat, muck, flood, Saturated or saline soils that hinder
water, wet, hydric, saline, sodic, rooting and aeration
tidal, playa, histosol
pit, mine, quarry, dumps, borrow Artificial, excavated, or mined soils
with low fertility or structure
lava, rock, outcrop, bedrock Hard or shallow substrates with lim-
ited rooting depth
landslide, shoal Geologically unstable land prone to
movement or collapse
dune, blowout, beach, slough, shoal Shifting or erodible landforms with
limited surface stability
tidal, marsh, swamp, muck, peat, Persistent wetland or tidal condi-
Geomorphic bog, wet, saline tions incompatible with irrigation
pit, mine Excavated or mined geomorphic sur-
faces with disturbed profiles
lava, rock Volcanic or bedrock surfaces with
low permeability
landslide, sinkhole Collapse-prone or unstable land-
forms
urban Impervious, artificial or urbanized
surfaces

geospatial and environmental features—including Sentinel-2 imagery, soil, hydrology, crop data, and
deterministic text prompts—spanning 20 U.S. states and 1.48 million patches.

Beyond scale, IRRISIGHT introduces a scalable fusion pipeline, standardized multimodal schema,
and model-agnostic cross-state benchmarks for evaluating both vision and vision—language archi-
tectures under spatial shift and class imbalance. These innovations transform prior single-purpose
efforts into a unified and extensible resource for multimodal agricultural Al research.

D Experimentation Setting

E Dataset Benchmarking (Additional Details for Section |S)

Table [S9 presents the mean and standard deviation of KIIM model confidence across four irrigation
types for each of the 17 evaluated states. Non-irrigated patches consistently achieve the highest
confidence scores (typically >0.98), indicating strong model certainty in identifying non-irrigated
areas. In contrast, drip irrigation shows the lowest confidence overall (often below 0.50) with
relatively high standard deviation, which suggests more ambiguity and spatial heterogeneity in
its appearance. Flood and sprinkler irrigation classes show higher confidence values (compared
to drip), with noticeable variation across states such as Arizona and Texas (see . Some states
(e.g., Maryland, New Jersey) lack drip annotations, leading to missing values. The disparity in
confidence reflects both inter-class difficulty and regional diversity in irrigation appearance. Overall,
these results highlight where model predictions are most reliable and where further annotation
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Table S7: Comparison of IRRISIGHT with prior works. ‘x’ indicates not available.

Aspect IrrMap [43] KIIM [27] IRRISIGHT (This
Work)

Core Contribution Dataset (4 states)  Model (modality fusion) = Dataset + pipeline +
benchmarks

States Covered 4 4 (IrrMap subset) 20 (6 labeled, 14 unla-
beled)

Patch Count ~260K ~260K 1.48M (293K labeled)

Drip Irrigation Samples ~18K ~18K 61,723 patches with
drip labels

Multimodal Data (Im- X Limited (model input only) v'Full integration into

agery + Soil + Water + dataset

Crop)

Text Prompts (Soil, Ge- X X v Structured, rule-

omorphology) based, localized
prompts

Hydrology (ET, GW, X X v/ Aligned per patch

SW, Precipitation)

Scalable Fusion X X v6.8 TB processed

Pipeline across formats

Cross-State Bench- X Model-specific (KIIM only) v'Model-agnostic LO-

marks state-out evaluation

Vision-Language Mod- X X v'CLIP, RemoteCLIP,

els Evaluated BLIP-2

Semi-Supervised Label- X X v'Confidence-filtered

ing (Synthetic) pseudo labels (Fig. 3)

Table S8: Hyperparameter details for supervised experiments

Parameters
Task Type Irrigation Type Segmentation
Loss Function Cross Entropy
Input Dimensions 224 x 224
Input Channels: RGB 3
Input Channels:RGB+LAND+CROP 24
Output Dimensions 224 x 224
Output Channels 4
Optimizer Adam
Learning Rate 1.00 x 1072
No. Epochs 20
Model Selection Best (Dice on val.)
Framework Pytorch Lightening

or refinement is needed. Additionally, as an initial step, we identified two states (Nebraska and
California) where verified irrigated land maps from past years (2005 and 2014) are available from the
corresponding state’s data [2]. By mapping our model-predicted irrigated areas with these maps, we
observed accuracy scores of 64.5% in Nebraska and 64.6% in California. While limited in scope, this
comparison provides a preliminary measure of model consistency with historical irrigation data.
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Figure S2: Confidence distribution of predicted label for 17 unlabeled states.

Table S9: Per-state confidence (1 £ o) for synthetic labels across irrigation types.

State

Drip

Flood

Sprinkler

Non-Irrigated

Arizona
Arkansas
California
Florida
Georgia
Indiana
Maryland
Michigan
Nebraska

New Jersey
North Carolina
Ohio

Oregon
Pennsylvania
South Carolina
Texas

West Virginia

0.4747 £ 0.0818
0.4113 £ 0.0453
0.5043 £ 0.0591
0.4982 £ 0.0695
0.5063 £ 0.0504
0.4165 £ 0.0782

0.4500 £ 0.0887
0.3704 £ 0.0672

0.4428 £ 0.0731
0.4310 £ 0.0635
0.4984 £ 0.0575

0.4212 £ 0.0850

0.6771 £ 0.0935
0.6289 £ 0.0672
0.6342 £ 0.0879
0.6437 £+ 0.0927
0.5455 £ 0.0503
0.5748 £+ 0.0634
0.5735 £ 0.0504
0.6004 £ 0.0862
0.5931 £ 0.0721
0.6081 £ 0.0508
0.6437 £ 0.0875
0.5879 £ 0.0832
0.5959 £+ 0.1010
0.5660 £ 0.0873
0.6274 £ 0.0918
0.5881 £ 0.0738
0.5499 £ 0.0464

0.5687 £+ 0.0689
0.5130 £ 0.0628
0.5211 £ 0.0753
0.5343 £+ 0.0342
0.5244 £ 0.0220
0.5332 £+ 0.0382
0.5362 £ 0.0349
0.5269 £ 0.0429
0.5402 £ 0.0648
0.5352 £ 0.0151
0.5151 £ 0.0575
0.5363 £+ 0.0297
0.5481 £ 0.0648
0.5089 £ 0.0039
0.5229 £ 0.0205
0.5512 £ 0.0631

0.8933 £ 0.0598
0.9491 £+ 0.0780
0.8971 £ 0.0681
0.9871 £+ 0.0269
0.9903 £+ 0.0105
0.9927 £+ 0.0097
0.9901 £ 0.0158
0.9928 £+ 0.0102
0.9198 £ 0.0652
0.9942 £ 0.0060
0.9900 £ 0.0260
0.9928 £ 0.0096
0.9764 £+ 0.0364
0.9942 £ 0.0084
0.9933 £ 0.0115
0.9590 £ 0.0441
0.9763 £+ 0.0306

Table S10: Crop classification Macro-F1 across states using KIIM vs. CropScape. Higher is better.

Model AZ CO UT WA FL
KIIM 57.7 84.5 612 889 70.0
CropScape 16.9 21.6 328 345 10.9
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Table S11: Summary of Common Vegetation Indices, Their Purpose, and Use Cases

Index Formula Purpose Common Use Cases
NDVI (Normalized Dif- % Measures vegetation | Crop monitoring, land cover

ference Vegetation Index)

greenness and health

classification, drought detec-
tion

EVI (Enhanced Vegeta-
tion Index)

G X (NIR—Red)

(NIRTCy XxRed—C X BluetL)

Reduces atmospheric and
soil background effects

More sensitive
biomass regions

to high

GNDVI (Green Normal-
ized Difference Vegeta-
tion Index)

(NIR—Green)
(NTRFGreen)

More sensitive to chloro-
phyll content than NDVI

Water stress detection, pho-
tosynthetic activity

SAVI (Soil-Adjusted Veg-
etation Index)

(NIR—Red)
(NIR+Re;+L) x (1+1L)

Minimizes soil back-

ground influence

Vegetation monitoring in
arid or semi-arid areas

MSAVI (Modified Soil-
Adjusted Vegetation In-
dex)

2NIR+1—+/(2NIR+1)2—8(NIR—Red)
2

Further reduces soil influ-
ence compared to SAVI

Useful for sparse vegetation
and dry land monitoring

RVI (Ratio Vegetation In-

2
@ [~
b=y}

Alternative to NDVI, less

Biomass and vegetation den-

Red
dex) sensitive to atmospheric sity analysis
conditions
Clgreen (Chlorophyll In- G]\f,ifn -1 Estimates  chlorophyll Plant health monitoring
dex) content

NDWI (Normalized Dif-
ference Water Index)

(NIR—SWIR)
(NTRTSWIR)

Measures water content in
vegetation

Drought monitoring, irriga-
tion management

PRI (Photochemical Re-
flectance Index)

(Green—Blue)
(Green+t Blue)

Measures plant stress and
efficiency

Photosynthesis monitoring

OSAVI (Optimized Soil-
Adjusted Vegetation In-
dex)

(NIR—Red)
(NIR+Red+0.16)

An improved version of
SAVI that minimizes soil
background effects while
maintaining sensitivity to
vegetation.

Used for vegetation monitor-
ing in areas with moderate
soil exposure.

WDRVI (Wide Dynamic
Range Vegetation Index)

aXNIR—Red
aX NIR+Red

A modified NDVI that en-
hances sensitivity to veg-
etation changes in high
biomass areas.

Used in precision agricul-
ture to track crop growth and
stress detection.

NDTI (Normalized Dif-
ference Tillage Index)

(SWIR1—SWIR2)
(SWIRI+SWIR2)

Differentiates  between
tilled and untilled
soil, helping in soil
disturbance and land
management analysis.

Applied in soil erosion stud-
ies and land conservation
planning.
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