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Two Teachers are Better Than One: Semi-supervised Elliptical
Object Detection by Dual-Teacher Collaborative Guidance

Supplementary Material

1 MORE ON EXPERIMENTAL DEATILS
1.1 Implementation Details
In addition to the experimental details presented in the main paper,
we illustrate the training loss curves of DTCG on two datasets.
Specifically, the loss on the GED dataset is depicted in Fig. 1 left,
where the blue, red, and green curves represent the supervised loss
L𝑠𝑢𝑝 , the unsupervised loss L𝑢 , and the total loss L𝑡𝑜𝑡𝑎𝑙 . During
the early stage, as only supervised training is conducted, thus the to-
tal loss L𝑡𝑜𝑡𝑎𝑙 coincides with the supervised loss L𝑠𝑢𝑝 , decreasing
rapidly. Afterwards, when semi-supervised training L𝑢 emerges, it
results in an increase in L𝑡𝑜𝑡𝑎𝑙 . Overall, we observe that L𝑢 rises
temporarily, possibly due to instability in the initial phase. Subse-
quently, as training progresses, L𝑢 , L𝑠𝑢𝑝 , and L𝑡𝑜𝑡𝑎𝑙 all eventually
exhibit a steady convergence trend. Similarly, the training on the
SmartPhone dataset comprises three phases, with a trend similar
to that of the GED dataset, as shown in Fig. 1 right.

1.2 Evaluation Metrics
The evaluation metrics including Precision, Recall, and F-Measure
are defined as follows:

Recall =
TP

TP + FN
,

Precision =
TP

TP + FP
,

F-Measure =
2 × Precision × Recall
Precision + Recall

,

(1)

where TP is the number of correctly detected ellipses, the threshold
value used for determining TP is 0.8 for GED and SmartPhone
datasets, FP is the number of falsely detected ellipses, and FN is
the number of undetected ellipses. All these three measures target
higher values for higher quality results.

1.3 More Results with Cross-dataset
In practice, it’s not always guaranteed that labeled and unlabeled
data originate from the same dataset. Hence, we conduct cross-
dataset experiments to address this variability. In addition to the
experiments detailed in the main paper, we provide supplemen-
tary results obtained from testing on another test set. The aim is
to ascertain whether the model can enhance it’s performance by
leveraging knowledge from unlabeled data sourced from a different
dataset. The supplementary results are outlined in Tab. 1, including
the first part of the first row and the second part of the second
row. In this presentation, arrows are used to signify improvements
relative to the supervised baseline, which represents the outcome
of training solely with labeled data.

Specifically, in the first part of the first row, we employ the GED
training set as labeled data and the SmartPhone training set as
unlabeled data, resulting in a notable enhancement in our DTCG
performance: 5.94% increase in Precision, 3.73% in Recall, and 3.54%

in F-Measure compared to the supervised baseline. Compared to
the other two semi-supervised methods, our precision shows an im-
provement of at least 1.88%, recall by 0.4%, and F-Measure by 1.23%.
When utilizing SmartPhone as labeled data and GED as unlabeled
data, we achieve equally remarkable improvements: a 1.38% en-
hancement in precision, a 2.66% in recall, and a 2.07% in F-measure.
This advancement notably surpasses other semi-supervised meth-
ods, demonstrating the efficacy of our approach in leveraging unla-
belled data from another dataset to improve detection performance.
Interestingly, we also observe a decrease in the performance of
SOOD and Dense Teacher in this configuration. We speculate that
this may be attributed to the simpler task of the SmartPhone dataset,
potentially exacerbated by the introduction of noise from the GED
dataset. This observation once again underscores the robustness
inherent in our method.

1.4 Comparison with Fully-supervised methods
As reported in Table 1 of the main paper, the comparison has veri-
fied the superiority of DTCG over two semi-supervised methods.
Apart from that, this experiment aims to compare DTCG with two
top-performing ellipse detection methods based on fully-labeled
data, including ElDet [3] and FCOS [2]. For a fair comparison, we
implement these two methods using partially labeled data (like
10%, 20%, 30%), instead of a set of fully labeled data. As can be
seen from the results reported in Table 2, our DTCG consistently
outperforms the other two methods for various settings (10%, 20%,
30%). Specifically, on the GED dataset, we improve Precision by
an average of 1.77%, Recall by an average of 4.87%, and F-Measure
by an average of 4.17% compared to the second best method. Simi-
larly, on the SmartPhone dataset, our improvement is even more
significant, outperforming the methods by at least an average of
6.14% Precision, 13.66% Recall, 12.31% F-Measure, respectively. All
these results reveal that leveraging additional unlabeled data is a
significant solution to remedy the label scarcity and improve the
representation learning.

1.5 More Qualitative Results
In addition to the qualitative results presented in the main paper,
we conduct a comprehensive qualitative comparison, as illustrated
in Fig. 2. Our DTCG consistently outperforms both fully supervised
methods [2, 3], and semi-supervised methods [1, 4]. Specifically,
DTCG demonstrates superior prediction accuracy and detection
quality compared to Dense Teacher and SOOD. In the third and
fourth columns of Fig. 2, both ElDet and SOOD exhibit mistakes in
several targets, while FCOS and Dense Teacher produce conspicu-
ous false-positive instances. Additionally, in the fifth column, ElDet,
FCOS, and Dense Teacher fail to accurately predict angles, result-
ing in prediction frames that do not align well with target frames,
thus potentially compromising detection accuracy. This highlights
the robustness of our approach even in challenging scenarios. In a
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Figure 1: We show the training loss curves on the GED and SmartPhone datasets, where the x-axis represents the training
iteration and the y-axis represents the loss cost.
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Figure 2: Qualitative comparison with other methods in the GED dataset.
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Table 1: More cross-dataset evaluations using the GED and SmartPhone datasets.

Labeled Unlabeled Method Test (GED) Test (SmartPhone)

P R F-M P R F-M

GED SmartPhone
Dense Teacher[4] 77.82

+3.38−−−−→ 81.20 68.13
+3.33−−−−→ 71.46 73.72

+2.31−−−−→ 76.03 48.67 53.14 50.81
SOOD [1] 77.82

+4.06−−−−→ 81.88 68.13
+2.81−−−−→ 70.94 73.72

+2.3−−−→ 76.02 66.76 59.66 63.01
DTCG (Ours) 77.82

+5.94−−−−→ 83.76 68.13
+3.73−−−−→ 71.86 73.72

+3.54−−−−→ 77.26 71.01 64.49 67.59

SmartPhone GED
Dense Teacher[4] 49.05 38.36 43.05 82.47

−8.34−−−−−→ 74.10 69.32
−4.34−−−−−→ 64.98 75.33

−6.09−−−−−→ 69.24
SOOD [1] 47.50 39.12 43.10 82.47

−3.58−−−−−→ 78.89 69.32
−4.1−−−−→ 65.22 75.33

−4−−→ 71.33
DTCG (Ours) 60.81 39.66 48.01 82.47

+1.38−−−−→ 83.71 69.32
+2.66−−−−→ 71.98 75.33

+2.07−−−−→ 77.40

Table 2: Quantitative comparison on GED and SmartPhone datasets, under the partially labeled data settings. In addition, we
show the average scores across the three settings.

Dataset Method 10% 20% 30% Average
P R F-M P R F-M P R F-M P R F-M

GED
ElDet [3] 48.07 46.34 47.19 60.96 55.46 58.08 68.54 62.14 65.18 59.19 54.65 56.82
FCOS [2] 69.66 55.35 61.84 75.38 62.35 68.25 76.21 64.90 70.10 73.75 61.87 66.73

DTCG (Ours) 72.10 64.69 68.19 76.53 66.38 71.10 77.95 69.35 73.41 75.52 66.74 70.9

SmartPhone
ElDet [3] 67.74 45.65 54.54 87.05 58.45 69.94 75.76 60.39 67.20 76.85 54.83 63.89
FCOS [2] 43.35 33.09 37.53 77.22 67.19 71.83 79.67 70.04 74.55 66.75 56.77 61.30

DTCG (Ours) 78.27 67.87 72.70 80.75 67.87 73.75 89.94 75.60 82.15 82.99 70.45 76.2

notable failure case, our DTCG overlooks a single blue ball in the
image of the last column, whereas the other methods miss multiple
targets.
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