
A Broader impact

We note that the restrictions we impose on the defenses allowed in our benchmark could lead to a
potential bias of the community which discourages research in certain directions. It is certainly not
our goal to discourage research in directions which violate restrictions of the benchmark. However,
without these restrictions a reliable evaluation of adversarial robustness is not feasible and a reliable
evaluation of adversarial robustness in order to identify true advances in the field is key for further
progress. Thus we think that these restrictions are unavoidable for a benchmark but we are working
on relaxing the restrictions as much as possible.

Additionally, in motivating higher robustness against adversarial examples, our work may leave
an unwanted side effect on tasks where adversarial attacks can actually be used for beneficial
purposes [76, 125, 109]. However, this is true for any paper that aims at improving adversarial
robustness (either directly or indirectly via, e.g., a standardized benchmark).

On the positive side, in our work, we do not only perform a standardized benchmarking of adversarial
robustness but also analyze multiple other properties of robust models such as calibration, privacy
leakage, fairness, etc. In our opinion, such analyses are important since they allow us to assess the
broader impact of improving robustness on other crucial performance metrics of neural networks.

Finally, we note that a good performance on our benchmark does not guarantee the safety of the
benchmarked model in a real-world deployment which is likely to require more domain-specific
threat models. `p-bounded adversarial attacks can be a realistic threat model in applications where
it is possible to input an image directly in a digital format [141, 116]. However, attacks in-the-
wild [78, 40] are usually much more involved and differ considerably from the presented simple
`p-perturbations. Moreover, the common corruptions we used for evaluation from Hendrycks and
Dietterich [58] are artificially generated, and thus may differ from the corruptions encountered in
the real world. Taking this into account, we suggest to always think critically about the robustness
requirements that are necessary for a particular application at hand.

B Licenses

The code used for benchmarking is released under MIT license. The code of AutoAttack [28] that our
benchmark relies on has been released under the MIT license as well. The classifiers in the Model
Zoo are added according to the permission given by the authors with the license they choose: most of
the models have MIT license, other have more restrictive ones such as Attribution-NonCommercial-
ShareAlike 4.0 International, Apache License 2.0, BSD 3-Clause License. The details can be found at
https://github.com/RobustBench/robustbench/blob/master/LICENSE. The CIFAR-10
and CIFAR-100 datasets [75] are obtained via the PyTorch loaders [105], while CIFAR-10-C and
CIFAR-100-C [58], with the common corruptions, are downloaded from the official release (see
https://zenodo.org/record/2535967#.YLYf9agzaUk and https://zenodo.org/record/
3555552#.YLYeJagzaUk). The validation set of ImageNet is not hosted or downloaded by our
provided evaluation code, but it needs to be downloaded in advance directly by the user.

C Maintenance plan

Here we discuss the main aspects of maintaining RobustBench and the costs associated with it:

• Hosting the website (https://robustbench.github.io/): we host our leaderboard
using GitHub pages4 which is a free service.

• Hosting the library (https://github.com/RobustBench/robustbench): the code of
our library is hosted on GitHub5 which offers the basic features that we need to maintain the
library for free.

4https://pages.github.com/
5https://github.com/
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• Hosting the models: to ensure the availability of the models from the Model Zoo, we host
them in our own cloud storage on Google Drive6. At the moment, they take around 24 GB
of space which fits into the 100 GB storage plan that costs 2 USD per month.

• Running evaluations: we run all evaluations on the GPU servers that are available to our
research groups which incurs no extra costs.

Moreover, as we mention in the outlook (Sec. 5), we also plan to expand the benchmark to new
datasets and threat models which can slightly increase the required maintenance costs since we may
need to upgrade the storage plan. We also expect the benchmark to be community-driven and to
encourage this we have provided instructions7 on how to submit new entries to the leaderboard and to
the Model Zoo.

D Details of the ImageNet leaderboards

Extending the benchmark to ImageNet presents some challenges compared to CIFAR-10 and CIFAR-
100. First, the ImageNet validation set (usually used as the test set) contains 50’000 images which
makes it infeasible to run expensive evaluations on it. Thus, we define a fixed subset (5’000 randomly
sampled images in our case) for faster evaluation, whose image IDs we make available in the Model
Zoo. Second, it is not obvious how to handle the fact that different models may use different
preprocessing techniques (e.g., different resolution, cropping, etc) which makes the search space for
an attack not fully comparable across defenses. For this, we decide to allow models with different
preprocessing steps and input resolution, considering them yet another design choice similarly to the
choice of the network architecture which also has a large influence on the final results. Since in the `∞-
threat model the constraints are componentwise independent, we use the same threshold ε∞ = 4/255
for every classifier, regardless of the input dimensionality which is used after preprocessing.

E Reproducibility and runtime

Here we discuss the main aspects of the reproducibility of the benchmark.

First of all, the code to run the benchmark on a given model is available in our repository, and an
example of how to run it is given in the README file. The installation instructions are also provided
in the README file and the requirements will be installed automatically.

To satisfy other points from the reproducibility checklist8 which are applicable to our benchmark, we
also discuss next the variability of the robust accuracy over random seeds and the average runtime
of the benchmark. Evaluation of the accuracy on common corruptions [58] is deterministic if we
do not take into account non-deterministic operations on computational accelerators such as GPUs9

which, however, do not affect the resulting accuracy. On the other hand, robustness evaluation using
AutoAttack has an element of randomness since it relies on random initialization of the starting points
and also on the randomness in the update of the Square Attack [4]. To show the effect of randomness
on the robust accuracy given by AutoAttack, we repeat evaluation over four random seeds on four
models available in the Model Zoo from different threat models covering all datasets considered. In
Table 2, we report the average robust accuracy with its standard deviation and observe that different
seeds lead to very similar results. Moreover, we indicate the runtime of each evaluation, which is
largely influenced by the size of the model, the computing infrastructure (every run uses a single
Tesla V100 GPU), and the dataset. Moreover, less robust models require less time for evaluation
which is due to the fact that AutoAttack does not further attack a point if an adversarial example is
already found by some preceding attack in the ensemble.

Additionally, as mentioned above, for ImageNet we have randomly sampled and fixed 5000 images
from the validation set. We provide the IDs of those images and code to load them in our repository.
Note that we use the same set of images for `p-robustness and for common corruptions, in which case
for every point 15 types of corruptions at 5 severity levels are applied, consistently with the other
datasets.

6https://www.google.com/drive/
7https://github.com/RobustBench/robustbench#adding-a-new-model
8https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf
9https://pytorch.org/docs/stable/notes/randomness.html
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Finally, when we extended the benchmark to ImageNet, we noticed that different versions of PyTorch
and torchvision may lead to small differences in the standard accuracy (up to 0.16% on 5000
points for the same model). We suspect this is due to minor variations in the implementation of
the preprocessing functions (such as resizing). Thus, we fix in the requirements torch==1.7.1
and torchvision==0.8.2 to ensure reproducibility. Note that the overall ranking and level of
robustness of the defenses should not be influenced by using different versions of these libraries. We
have not noticed similar issues for the other datasets.

Table 2: Statistics about the standardized evaluation with AutoAttack when repeated for four random
seeds. We can see that the robust accuracy has very small fluctuations. We also report the runtime for
the different models which is much smaller for less robust models.

Dataset Leaderboard Paper Architecture Clean acc. Robust acc. Time
CIFAR-10 `∞ Gowal et al. [50] WRN-28-10 89.48% 62.82% ± 0.016 11.8 h
CIFAR-10 `2 Rebuffi et al. [111] WRN-28-10 91.79% 78.80% ± 0.000 15.1 h
CIFAR-100 `∞ Wu et al. [155] WRN-34-10 60.38% 28.84% ± 0.018 6.6 h
ImageNet `∞ Salman et al. [117] ResNet-18 52.92% 25.31% ± 0.010 1.6 h

F Additional analysis

In this section, we show more results on different datasets and/or threat models and discuss some im-
plementation details related to the analysis from Sec. 4. We also additionally analyze the smoothness
and transferability properties of the models from the Model Zoo.

Progress on adversarial defenses. As done in the main part for the `∞-robust models on CIFAR-10,
we show here the same statistics but for `2-robust models on CIFAR-10 in Fig. 8 and for `∞-robust
models on CIFAR-100 in Fig. 9. We observe a few differences compared to the `∞-robust models on
CIFAR-10 reported in Fig. 2. First of all, the amount of robustness overestimation is not large and
in particular there are no models that have zero robust accuracy. Second, we can see that the best
`2-robust models on CIFAR-10 has even higher standard accuracy than a standard model (95.74%
vs 94.78%) while having a significantly higher robust accuracy (82.32% vs 0.00%) and leaving a
relatively small gap between the standard and robust accuracy. Finally, we note that the progress on
the `∞-threat model on CIFAR-100 is more recent and there are only a few published papers that
report adversarial robustness on this dataset.
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Figure 8: Visualization of the robustness and accuracy of 13 CIFAR-10 models from the
RobustBench `2-leaderboard. Robustness is evaluated using `2-perturbations with ε2 = 0.5.

Robustness across distribution shifts. We measure robust accuracy on various distribution shifts
using four dataset, namely CIFAR-10, CINIC-10, CIFAR-10.1, and CIFAR-10-C. In particular, we
compute the robust accuracy in the same threat model as for the original CIFAR-10 dataset, and report
the results in Fig. 10. Interestingly, one can observe that `p adversarial robustness is maintained under
the distribution shifts, and it highly correlates with the robustness on the dataset the models were
trained on (i.e. CIFAR-10).

Calibration. We compute the expected calibration error (ECE) using the code of [52]. We use
their default settings to compute the calibration error which includes, in particular, binning of the
probability range onto 15 equally-sized bins. However, we use our own implementation of the
temperature rescaling algorithm which is close to that of [7]. Since optimization of the ECE over the
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Figure 9: Visualization of the robustness and accuracy of 12 CIFAR-100 models from the
RobustBench `∞-leaderboard. Robustness is evaluated using `∞-perturbations with ε∞ = 8/255.
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Figure 10: Robust accuracy of the robust classifiers, trained against `∞ and `2 threat model, respec-
tively, from our Model Zoo on various distribution shifts. The data points with 0% robust accuracy
correspond to a standardly trained model.

softmax temperature is a simple one-dimensional optimization problem, we can solve it efficiently
using a grid search. Moreover, the advantage of performing a grid search is that we can optimize
directly the metric of interest, i.e. ECE, instead of the cross-entropy loss as in [52] who had to
rely on a differentiable loss since they used LBFGS [87] to optimize the temperature. We perform
a grid search over the interval t ∈ [0.001, 1.0] with a grid step 0.001 and we test both t and 1/t
temperatures. Moreover, we check that for all models the optimal temperature t is situated not at the
boundary of the grid.

We show additional calibration results for `2-robust models in Fig. 11. The overall trend of the ECE
is the same as for `∞-robust models: most of the `2 models are underconfident (since the optimal
temperature is less than one) and lead to worse calibration before and after temperature rescaling.
The main difference compared to the `∞ threat model is that among the `2 models there are two
models that are better-calibrated: one before (Engstrom et al. [37] with 1.41% ECE vs 3.71% ECE
of the standard model) and one after (Gowal et al. [50] with 1.00% ECE vs 1.11% ECE of the
standard model) temperature rescaling. Moreover, we can see that similarly to the `∞ case, the only
overconfident models are either the standard one or models that maximize the margin instead of using
norm-bounded perturbations, i.e. Ding et al. [34] and Rony et al. [114].
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Figure 11: Expected calibration error (ECE) before (left) and after (middle) temperature rescaling,
and the optimal rescaling temperature (right) for the `2-robust models.

Out-of-distribution detection. Fig. 12 complements Fig. 5 and shows the ability of `2-robust models
trained on CIFAR-10 to distinguish inputs from other datasets (CIFAR-100, SVHN, Describable
Textures). We find that `2 robust models have in general comparable OOD detection performance
to standardly trained models, while the model by Augustin et al. [7] achieves even better perfor-
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mance since their approach explicitly optimizes both robust accuracy and worst-case OOD detection
performance.
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Figure 12: Visualization of the quality of OOD detection (higher AUROC is better) for the `2-robust
models on three different OOD datasets: CIFAR-100 (left), SVHN (middle), Describable Textures
(right).

Fairness in robustness. We report the results about fairness for robust models in the `2-threat model
in Fig. 13, similarly to what done for `∞ above. We see that the difference in robustness among
classes is similar to what observed for the `∞ models. Also, the RSD of robustness over classes
decreases, which indicates that the disparity among subgroups is reduced, as the average robust
accuracy improves. To compute the robustness for the experiments about fairness we used APGD on
the targeted DLR loss [28] with 3 target classes and 20 iterations each on the whole test set. Note
that even with this smaller budget we achieve results very close to that of the full evaluation, with an
average difference smaller than 0.5%.
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Figure 13: Left: classwise standard (dotted lines) and robust (solid) accuracy of `2-robust models.
Right: relative standard deviation (RSD) of robust accuracy over classes vs its average.

Privacy leakage. We use membership inference accuracy, referred to as inference accuracy, as a
measure of the leakage of training data details from pre-trained neural networks. It measures how
successfully we can identify whether a particular sample was present in the training set. We closely
follow the methodology described in Song and Mittal [130] to calculate inference accuracy. In
particular, we measure the confidence in the correct class for each input image with a pre-trained
classifier. We measure the confidence for both training and test set images and calculate the maximum
classification accuracy between train and test images based on the confidence values. We refer to this
accuracy as inference accuracy using confidence. We also follow the recommendation from Song
et al. [131] where they show that adversarial examples are more successful in estimating inference
accuracy on robust networks. In our experiments, we also find that using adversarial examples leads
to higher inference accuracy than benign images (Figure 14). We also find that robust networks in
the `2 threat model have relatively higher inference accuracy than robust networks in the `∞ threat
model.

A key reason behind privacy leakage through membership inference is that deep neural networks often
end up overfitting on the training data. One standard metric to measure overfitting is the generalization
gap between train and test set. Naturally, this difference in the accuracy on the train and test set is
the baseline of inference accuracy. We refer to it as inference accuracy using label and report it in
Figure 15. We consider both benign and adversarial images. When using benign images, we find
confidence information does lead to higher inference accuracy than using only labels. However, with
adversarial examples, which achieve higher inference accuracy than benign images, we find that
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inference accuracy based on confidence information closely follows the inference accuracy calculate
from labels.
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Figure 14: Comparing privacy leakage of different networks. We compare membership inference
accuracy from benign and adversarial images across both `∞ and `2 threat model.

50% 55% 60% 65% 70%
Inference accuracy Using label 

[= 50 + (generalization-gap) / 2]

50%

55%

60%

65%

70%

In
fe

re
nc

e 
ac

cu
ra

cy
 u

sin
g 

co
nf

id
en

ce

Models without extra data
Models with extra data

(a) Benign (`∞)

50% 55% 60% 65% 70%
Inference accuracy Using label 

[= 50 + (generalization-gap) / 2]

50%

55%

60%

65%

70%

In
fe

re
nc

e 
ac

cu
ra

cy
 u

sin
g 

co
nf

id
en

ce

Models without extra data
Models with extra data

(b) Adversarial (`∞)

50% 55% 60% 65% 70%
Inference accuracy Using label 

[= 50 + (generalization-gap) / 2]

50%

55%

60%

65%

70%

In
fe

re
nc

e 
ac

cu
ra

cy
 u

sin
g 

co
nf

id
en

ce

Models without extra data
Models with extra data

(c) Benign (`2)

50% 55% 60% 65% 70%
Inference accuracy Using label 

[= 50 + (generalization-gap) / 2]

50%

55%

60%

65%

70%

In
fe

re
nc

e 
ac

cu
ra

cy
 u

sin
g 

co
nf

id
en

ce

Models without extra data
Models with extra data

(d) Adversarial (`2)

Figure 15: Comparing privacy leakage with different output statistics. We measure privacy
leakage using membership inference accuracy, i.e., classification success between train and test set.
We measure it using two baselines 1) based on correct prediction i.e., using predicted class label
and 2) based on classification confidence in correct class. We also measure it using both benign and
adversarial images.

Smoothness. Previous work [162] has shown that smoothness of a model, together with enough
separation between the classes of the dataset for which it is trained, is necessary to achieve both
natural and robust accuracy. They use local Lipschitzness as a measure for model smoothness, and
observe empirically that robust models are more smoother than models trained in a standard way.
Our Model Zoo enables us to check this fact empirically on a wider range of robust models, trained
with a more diverse set of techniques, in particular with and without extra training data. Moreover, as
we have access to the model internals, we can also compute local Lipschitzness of the model up to
arbitrary layers, to see how smoothness changes between layers.

We compute local Lipschitzness using projected gradient descent (PGD) on the following optimization
problem:

L =
1

N

N∑
i=1

max
x1:‖x1−xi‖∞≤ε,
x2:‖x2−xi‖∞≤ε

‖f(x1)− f(x2)‖1
‖x1 − x2‖∞

, (2)

where xi represents each sample around which we compute local Lipschitzness, N is the number of
samples across which we average (N = 256 in all our experiments), and f represents the function
whose Lipschitz constant we compute. As mentioned above, this function can be either the full model,
or the model up to an arbitrary intermediate layer.

Since the models can have similar smoothness behavior, but at a different scale, we also consider
normalizing the models outputs. One such normalization we use is given by the projection of the
model outputs on the unit `2 ball. This normalization aims at capturing the angular change of the
output, instead of taking in consideration also its magnitude. We compute the “angular” version of
the Lipschitz constant as

L =
1

N

N∑
i=1

max
x1:‖x1−xi‖∞≤ε,
x2:‖x2−xi‖∞≤ε

∥∥∥ f(x1)
‖f(x1)‖2 −

f(x2)
‖f(x2)‖2

∥∥∥
1

‖x1 − x2‖∞
. (3)

For both variations of Lipschitzness, we compute it with ε = 8/255, running the PDG-like procedure
for 50 steps, with a step size of ε /5.
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Figure 16: Lipschitzness. Computation of the local Lipschitz constant of the WRN-28-10 `∞-robust
models in our Model Zoo with ε = 8/255. The color coding of the models is the same across both
figures. For the correspondence between model IDs (shown in the legend) and papers that introduced
them, see Appendix G.
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Figure 17: Lipschitzness vs Robustness. Local Lipschitz constant of the output layer vs. robust
accuracy of a subset of the `∞-robust models in our Model Zoo.

In Fig. 16 we compute the layerwise Lipschitzness for all `∞ models trained on CIFAR-10 from
the Model Zoo that have the WRN-28-10 architecture. We observe that the standard model is the
least smooth at all the layers, and that all the robustly trained models are smoother. Moreover, we
can notice that in Fig. 16a there are two models in the middle ground: these are the models by
Gowal et al. [50] and Rebuffi et al. [111], which are the most robust ones, up to the last layer, the
smoothest. Nonetheless, in the middle layers, they are the second and third least smooth, according
to the unnormalized local Lipschitzness. This can be due to the different activation function used in
these models (Swish vs ReLU). For this reason, we also compute “angular” Lipschitzness according
to Eq. 3. Indeed, in Fig. 16b, all the robust models are in the same order of magnitude at all layers.

Finally, we also show the Lipschitz constants of the output layer for a larger set of `∞ models from
the Model Zoo that are not restricted to the same architecture. We plot the Lipschitz constant vs. the
robust accuracy for these models in Fig 17. We see that there is a clear relationship between robust
accuracy and Lipschitzness, hence confirming the findings of Yang et al. [162].

Transferability. We generate adversarial examples for a network, referred to as source network, and
measure robust accuracy of every other network, referred to as target network, from the model zoo
on them. We also include additional non-robust models10, to name a few, VGG19, ResNet18, and
DenseNet121, in our analysis. We consider both ten step PGD attack and FGSM attack to generate
adversarial examples as two transferability baselines commonly used in the literature. For both
attacks, we use the cross-entropy loss, and for the PGD attack we use ten iterations and step size ε/4.

We present our results in Figure 18, 19 where the correspondence between model IDs and papers
that introduced them can be found in Appendix G. We find that transferability to each robust target
network follows a similar trend where adversarial examples transfer equally well from another robust

10We train then for 200 epochs and achieve 93-95% clean accuracy for all networks on the CIFAR-10 dataset.
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networks. Though slight worse than robust network, adversarial example from non-robust network
also transfer equally well to robust networks. We observe a strong transferability among non-robust
networks with adversarial examples generated from PGD attacks. Adversarial examples generated
using the FGSM attack also transfer successfully. However, they achieve lower robust accuracy on
the target network. Intriguingly, we observe the weakest transferability from a robust to a non-robust
network. This observation holds for all robust source networks across both FGSM and PGD-attack in
both `∞ and `2 threat model.

G Leaderboards

We here report the details of all the models included in the various leaderboards, for the `∞-, `2-threat
models and common corruptions. In particular, we show for each model the clean accuracy, robust
accuracy (either on adversarial attacks or corrupted images), whether additional data is used for
training, the architecture used, the venue at which it appeared and, if available, the identifier in the
Model Zoo (which is also used in some of the experiments in Sec. F).
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Figure 18: Measuring transferability of adversarial examples (`∞, ε = 8/255). We use a ten step
PGD attack in top figure and FGSM attack in bottom figure. Lower robust accuracy implies better
transferability. 26
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Figure 19: Measuring transferability of adversarial examples (`2, ε = 0.5). We use a ten step
PGD attack in top figure and FGSM attack in bottom figure. Lower robust accuracy implies better
transferability.
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Table 3: Leaderboard for the `∞-threat model, CIFAR-10.
Model Clean Robust Extra data Architecture Venue Model Zoo ID

1 Rebuffi et al. [111] 92.23 66.56 Y WRN-70-16 arXiv, Mar 2021 Rebuffi2021Fixing_70_16_cutmix_extra
2 Gowal et al. [50] 91.10 65.87 Y WRN-70-16 arXiv, Oct 2020 Gowal2020Uncovering_70_16_extra
3 Rebuffi et al. [111] 88.50 64.58 N WRN-106-16 arXiv, Mar 2021 Rebuffi2021Fixing_106_16_cutmix_ddpm
4 Rebuffi et al. [111] 88.54 64.20 N WRN-70-16 arXiv, Mar 2021 Rebuffi2021Fixing_70_16_cutmix_ddpm
5 Rade and Moosavi-Dezfooli [107] 91.47 62.83 Y WRN-34-10 OpenReview, Jun 2021 Rade2021Helper_extra
6 Gowal et al. [50] 89.48 62.76 Y WRN-28-10 arXiv, Oct 2020 Gowal2020Uncovering_28_10_extra
7 Rade and Moosavi-Dezfooli [107] 88.16 60.97 N WRN-28-10 OpenReview, Jun 2021 Rade2021Helper_ddpm
8 Rebuffi et al. [111] 87.33 60.73 N WRN-28-10 arXiv, Mar 2021 Rebuffi2021Fixing_28_10_cutmix_ddpm
9 Wu et al. [154] 87.67 60.65 Y WRN-34-15 arXiv, Oct 2020 N/A

10 Sridhar et al. [133] 86.53 60.41 Y WRN-34-15 arXiv, Jun 2021 Sridhar2021Robust_34_15
11 Wu et al. [155] 88.25 60.04 Y WRN-28-10 NeurIPS 2020 Wu2020Adversarial_extra
12 Sridhar et al. [133] 89.46 59.66 Y WRN-28-10 arXiv, Jun 2021 Sridhar2021Robust
13 Zhang et al. [171] 89.36 59.64 Y WRN-28-10 ICLR 2021 Zhang2020Geometry
14 Carmon et al. [19] 89.69 59.53 Y WRN-28-10 NeurIPS 2019 Carmon2019Unlabeled
15 Sehwag et al. [123] 85.85 59.09 N WRN-34-10 arXiv, Apr 2021 Sehwag2021Proxy
16 Rade and Moosavi-Dezfooli [107] 89.02 57.67 Y PreActRN-18 OpenReview, Jun 2021 Rade2021Helper_R18_extra
17 Gowal et al. [50] 85.29 57.14 N WRN-70-16 arXiv, Oct 2020 Gowal2020Uncovering_70_16
18 Sehwag et al. [121] 88.98 57.14 Y WRN-28-10 NeurIPS 2020 Sehwag2020Hydra
19 Rade and Moosavi-Dezfooli [107] 86.86 57.09 N PreActRN-18 OpenReview, Jun 2021 Rade2021Helper_R18_ddpm
20 Gowal et al. [50] 85.64 56.82 N WRN-34-20 arXiv, Oct 2020 Gowal2020Uncovering_34_20
21 Rebuffi et al. [111] 83.53 56.66 N PreActRN-18 arXiv, Mar 2021 Rebuffi2021Fixing_R18_ddpm
22 Wang et al. [148] 87.50 56.29 Y WRN-28-10 ICLR 2020 Wang2020Improving
23 Wu et al. [155] 85.36 56.17 N WRN-34-10 NeurIPS 2020 Wu2020Adversarial
24 Uesato et al. [144] 86.46 56.03 Y WRN-28-10 NeurIPS 2019 N/A
25 Hendrycks et al. [60] 87.11 54.92 Y WRN-28-10 ICML 2019 Hendrycks2019Using
26 Sehwag et al. [123] 84.38 54.43 N RN-18 arXiv, Apr 2021 Sehwag2021Proxy_R18
27 Pang et al. [102] 86.43 54.39 N WRN-34-20 ICLR 2021 N/A
28 Pang et al. [101] 85.14 53.74 N WRN-34-20 NeurIPS 2020 Pang2020Boosting
29 Cui et al. [30] 88.70 53.57 N WRN-34-20 ICCV 2021 Cui2020Learnable_34_20
30 Zhang et al. [170] 84.52 53.51 N WRN-34-10 ICML 2020 Zhang2020Attacks
31 Rice et al. [113] 85.34 53.42 N WRN-34-20 ICML 2020 Rice2020Overfitting
32 Huang et al. [64] 83.48 53.34 N WRN-34-10 NeurIPS 2020 Huang2020Self
33 Zhang et al. [168] 84.92 53.08 N WRN-34-10 ICML 2019 Zhang2019Theoretically
34 Cui et al. [30] 88.22 52.86 N WRN-34-10 ICCV 2021 Cui2020Learnable_34_10
35 Qin et al. [106] 86.28 52.84 N WRN-40-8 NeurIPS 2019 N/A
36 Chen et al. [23] 86.04 51.56 N RN-50 CVPR 2020 Chen2020Adversarial
37 Chen et al. [22] 85.32 51.12 N WRN-34-10 arXiv, Oct 2020 Chen2020Efficient
38 Sitawarin et al. [129] 86.84 50.72 N WRN-34-10 arXiv, Mar 2020 Sitawarin2020Improving
39 Engstrom et al. [37] 87.03 49.25 N RN-50 GitHub, Oct 2019 Engstrom2019Robustness
40 Singh et al. [128] 87.80 49.12 N WRN-34-10 IJCAI 2019 N/A
41 Mao et al. [91] 86.21 47.41 N WRN-34-10 NeurIPS 2019 N/A
42 Zhang et al. [165] 87.20 44.83 N WRN-34-10 NeurIPS 2019 Zhang2019You
43 Madry et al. [88] 87.14 44.04 N WRN-34-10 ICLR 2018 N/A
44 Andriushchenko and Flammarion [3] 79.84 43.93 N PreActRN-18 NeurIPS 2020 Andriushchenko2020Understanding
45 Pang et al. [99] 80.89 43.48 N RN-32 ICLR 2020 N/A
46 Wong et al. [153] 83.34 43.21 N PreActRN-18 ICLR 2020 Wong2020Fast
47 Shafahi et al. [124] 86.11 41.47 N WRN-34-10 NeurIPS 2019 N/A
48 Ding et al. [34] 84.36 41.44 N WRN-28-4 ICLR 2020 Ding2020MMA
49 Kundu et al. [77] 87.32 40.41 N RN-18 ASP-DAC 2021 N/A
50 Atzmon et al. [6] 81.30 40.22 N RN-18 NeurIPS 2019 N/A
51 Moosavi-Dezfooli et al. [94] 83.11 38.50 N RN-18 CVPR 2019 N/A
52 Zhang and Wang [166] 89.98 36.64 N WRN-28-10 NeurIPS 2019 N/A
53 Zhang and Xu [167] 90.25 36.45 N WRN-28-10 OpenReview, Sep 2019 N/A
54 Jang et al. [65] 78.91 34.95 N RN-20 ICCV 2019 N/A
55 Kim and Wang [72] 91.51 34.22 N WRN-34-10 OpenReview, Sep 2019 N/A
56 Zhang et al. [169] 44.73 32.64 N 5-layer-CNN ICLR 2020 N/A
57 Wang and Zhang [147] 92.80 29.35 N WRN-28-10 ICCV 2019 N/A
58 Xiao et al. [156] 79.28 7.15 N DenseNet-121 ICLR 2020 N/A
59 Jin and Rinard [66] 90.84 1.35 N RN-18 arXiv, Mar 2020 N/A
60 Mustafa et al. [96] 89.16 0.28 N RN-110 ICCV 2019 N/A
61 Chan et al. [20] 93.79 0.26 N WRN-34-10 ICLR 2020 N/A
62 Standard 94.78 0.0 N WRN-28-10 N/A N/A
63 Alfarra et al. [1] 91.03 0.00 N WRN-28-10 arXiv, Jun 2020 N/A

Table 4: Leaderboard for the `2-threat model, CIFAR-10.
Model Clean Robust Extra data Architecture Venue Model Zoo ID

1 Rebuffi et al. [111] 95.74 82.32 Y WRN-70-16 arXiv, Mar 2021 Rebuffi2021Fixing_70_16_cutmix_extra
2 Gowal et al. [50] 94.74 80.53 Y WRN-70-16 arXiv, Oct 2020 Gowal2020Uncovering_extra
3 Rebuffi et al. [111] 92.41 80.42 N WRN-70-16 arXiv, Mar 2021 Rebuffi2021Fixing_70_16_cutmix_ddpm
4 Rebuffi et al. [111] 91.79 78.80 N WRN-28-10 arXiv, Mar 2021 Rebuffi2021Fixing_28_10_cutmix_ddpm
5 Augustin et al. [7] 93.96 78.79 Y WRN-34-10 ECCV 2020 Augustin2020Adversarial_34_10_extra
6 Augustin et al. [7] 92.23 76.25 Y WRN-34-10 ECCV 2020 Augustin2020Adversarial_34_10
7 Rade and Moosavi-Dezfooli [107] 90.57 76.15 N PreActRN-18 OpenReview, Jun 2021 Rade2021Helper_R18_ddpm
8 Sehwag et al. [123] 90.31 76.12 N WRN-34-10 arXiv, Apr 2021 Sehwag2021Proxy
9 Rebuffi et al. [111] 90.33 75.86 N PreActRN-18 arXiv, Mar 2021 Rebuffi2021Fixing_R18_cutmix_ddpm

10 Gowal et al. [50] 90.90 74.50 N WRN-70-16 arXiv, Oct 2020 Gowal2020Uncovering
11 Wu et al. [155] 88.51 73.66 N WRN-34-10 NeurIPS 2020 Wu2020Adversarial
12 Sehwag et al. [123] 89.52 73.39 N RN-18 arXiv, Apr 2021 Sehwag2021Proxy_R18
13 Augustin et al. [7] 91.08 72.91 Y RN-50 ECCV 2020 Augustin2020Adversarial
14 Engstrom et al. [37] 90.83 69.24 N RN-50 GitHub, Sep 2019 Engstrom2019Robustness
15 Rice et al. [113] 88.67 67.68 N PreActRN-18 ICML 2020 Rice2020Overfitting
16 Rony et al. [114] 89.05 66.44 N WRN-28-10 CVPR 2019 Rony2019Decoupling
17 Ding et al. [34] 88.02 66.09 N WRN-28-4 ICLR 2020 Ding2020MMA
18 Standard 94.78 0.0 N WRN-28-10 N/A Standard
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Table 5: Leaderboard for common corruptions, CIFAR-10.
Model Clean Corr. Extra data Architecture Venue Model Zoo ID

1 Calian et al. [14] 94.93 92.17 Y RN-50 arXiv, Apr 2021 N/A
2 Kireev et al. [73] 94.75 89.60 N RN-18 arXiv, Mar 2021 Kireev2021Effectiveness_RLATAugMix
3 Hendrycks et al. [61] 95.83 89.09 N ResNeXt29_32x4d ICLR 2020 Hendrycks2020AugMix_ResNeXt
4 Hendrycks et al. [61] 95.08 88.82 N WRN-40-2 ICLR 2020 Hendrycks2020AugMix_WRN
5 Kireev et al. [73] 94.77 88.53 N PreActRN-18 arXiv, Mar 2021 Kireev2021Effectiveness_RLATAugMixNoJSD
6 Rebuffi et al. [111] 92.23 88.23 Y WRN-70-16 arXiv, Mar 2021 Rebuffi2021Fixing_70_16_cutmix_extra_L2
7 Gowal et al. [50] 94.74 87.68 Y WRN-70-16 arXiv, Oct 2020 N/A
8 Kireev et al. [73] 94.97 86.60 N PreActRN-18 arXiv, Mar 2021 Kireev2021Effectiveness_AugMixNoJSD
9 Kireev et al. [73] 93.24 85.04 N PreActRN-18 arXiv, Mar 2021 Kireev2021Effectiveness_Gauss50percent
10 Gowal et al. [50] 90.90 84.90 N WRN-70-16 arXiv, Oct 2020 N/A
11 Kireev et al. [73] 93.10 84.10 N PreActRN-18 arXiv, Mar 2021 Kireev2021Effectiveness_RLAT
12 Rebuffi et al. [111] 92.23 82.82 Y WRN-70-16 arXiv, Mar 2021 Rebuffi2021Fixing_70_16_cutmix_extra_Linf
13 Gowal et al. [50] 91.10 81.84 Y WRN-70-16 arXiv, Oct 2020 N/A
14 Gowal et al. [50] 85.29 76.37 N WRN-70-16 arXiv, Oct 2020 N/A
15 Standard 94.78 73.46 N WRN-28-10 N/A Standard

Table 6: Leaderboard for the `∞-threat model, CIFAR-100.
Model Clean Robust Extra data Architecture Venue Model Zoo ID

1 Gowal et al. [50] 69.15 36.88 Y WRN-70-16 arXiv, Oct 2020 Gowal2020Uncovering_extra
2 Rebuffi et al. [111] 63.56 34.64 N WRN-70-16 arXiv, Mar 2021 Rebuffi2021Fixing_70_16_cutmix_ddpm
3 Rebuffi et al. [111] 62.41 32.06 N WRN-28-10 arXiv, Mar 2021 Rebuffi2021Fixing_28_10_cutmix_ddpm
4 Cui et al. [30] 62.55 30.20 N WRN-34-20 ICCV 2021 Cui2020Learnable_34_20_LBGAT6
5 Gowal et al. [50] 60.86 30.03 N WRN-70-16 arXiv, Oct 2020 Gowal2020Uncovering
6 Cui et al. [30] 60.64 29.33 N WRN-34-10 ICCV 2021 Cui2020Learnable_34_10_LBGAT6
7 Rade and Moosavi-Dezfooli [107] 61.50 28.88 N PreActRN-18 OpenReview, Jun 2021 Rade2021Helper_R18_ddpm
8 Wu et al. [155] 60.38 28.86 N WRN-34-10 NeurIPS 2020 Wu2020Adversarial
9 Rebuffi et al. [111] 56.87 28.50 N PreActRN-18 arXiv, Mar 2021 Rebuffi2021Fixing_R18_ddpm

10 Hendrycks et al. [60] 59.23 28.42 Y WRN-28-10 ICML 2019 Hendrycks2019Using
11 Cui et al. [30] 70.25 27.16 N WRN-34-10 ICCV 2021 Cui2020Learnable_34_10_LBGAT0
12 Chen et al. [22] 62.15 26.94 N WRN-34-10 arXiv, Oct 2020 Chen2020Efficient
13 Sitawarin et al. [129] 62.82 24.57 N WRN-34-10 ICML 2020 Sitawarin2020Improving
14 Rice et al. [113] 53.83 18.95 N PreActRN-18 ICML 2020 Rice2020Overfitting

Table 7: Leaderboard for common corruptions, CIFAR-100.
Model Clean Corr. Extra data Architecture Venue Model Zoo ID

1 Hendrycks et al. [61] 78.90 65.14 N ResNeXt29_32x4d ICLR 2020 Hendrycks2020AugMix_ResNeXt
2 Hendrycks et al. [61] 76.28 64.11 N WRN-40-2 ICLR 2020 Hendrycks2020AugMix_WRN
3 Gowal et al. [50] 69.15 56.00 Y WRN-70-16 arXiv, Oct 2020 Gowal2020Uncovering_extra_Linf
4 Gowal et al. [50] 60.86 49.46 N WRN-70-16 arXiv, Oct 2020 Gowal2020Uncovering_Linf

Table 8: Leaderboard for the `∞-threat model, ImageNet.
Model Clean Robust Extra data Architecture Venue Model Zoo ID

1 Salman et al. [117] 68.46 38.14 N WRN-50-2 NeurIPS 2020 Salman2020Do_50_2
2 Salman et al. [117] 64.02 34.96 N RN-50 NeurIPS 2020 Salman2020Do_R50
3 Engstrom et al. [37] 62.56 29.22 N RN-50 GitHub, Oct 2019 Engstrom2019Robustness
4 Wong et al. [153] 55.62 26.24 N RN-18 ICLR 2020 Wong2020Fast
5 Salman et al. [117] 52.92 25.32 N RN-50 NeurIPS 2020 Salman2020Do_R18
6 Standard_R50 76.52 0.0 N RN-50 N/A Standard_R50

Table 9: Leaderboard for common corruptions, ImageNet.
Model Clean Corr. Extra data Architecture Venue Model Zoo ID

1 Hendrycks et al. [62] 76.88 51.61 N RN-50 ICCV 2021 Hendrycks2020Many
2 Hendrycks et al. [61] 76.98 46.91 N RN-50 ICLR 2020 Hendrycks2020AugMix
3 Geirhos et al. [44] 74.88 44.48 N RN-50 ICLR 2019 Geirhos2018_SIN_IN
4 Geirhos et al. [44] 77.44 40.77 N RN-50 ICLR 2019 Geirhos2018_SIN_IN_IN
5 Standard_R50 76.52 38.12 N RN-50 N/A Standard_R50
6 Geirhos et al. [44] 60.24 37.95 N RN-50 ICLR 2019 Geirhos2018_SIN
7 Salman et al. [117] 68.46 34.60 N WRN-50-2 NeurIPS 2020 Salman2020Do_50_2_Linf
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