A Preliminary Results

We introduce the following lemmas from prior literature.
Lemma 3 ((Ravikumar et al., 2011, Lemma 1)). Consider a zero-mean random vector $x=\left(x_{1}, \ldots, x_{p}\right)$ with covariance Σ, such that each $x_{i} / \sqrt{\Sigma_{i, i}}$ is sub-Gaussian with parameter σ^{2}. Given n i.i.d. samples, the associated sample covariance H satisfies the tail bound

$$
\begin{equation*}
\mathbb{P}\left\{\left|H_{i, j}-\Sigma_{i, j}\right|>t\right\} \leq 4 \exp \left(-\frac{n t^{2}}{128\left(1+4 \sigma^{2}\right)^{2} \Sigma_{d \max }^{2}}\right) \tag{11}
\end{equation*}
$$

for all $t \in\left(0,8\left(1+4 \sigma^{2}\right) \Sigma_{d \max }\right)$.
Lemma 4 ((Hsu et al., 2012, Theorem 1)). Consider a zero-mean sub-Gaussian random vector $x=\left(x_{1}, \ldots, x_{p}\right)$ with parameter σ^{2}. Then for all $t>0$,

$$
\begin{equation*}
\mathbb{P}\left\{\|x\|^{2}>\sigma^{2} \cdot(p+2 \sqrt{p t}+2 p t)\right\} \leq \mathrm{e}^{-t} \tag{12}
\end{equation*}
$$

B Technical Lemmas

We introduce the necessary lemmas used in our analysis and provide the proofs.
Lemma 5. For every feature $i \in[p]$, its empirical error ratio $\hat{\tau}_{i}$ fulfills

$$
\mathbb{P}\left\{\left|\tau_{i}-\hat{\tau}_{i}\right| \leq \frac{1}{2}\left|\tau_{i}\right|\right\} \geq 1-4 \exp \left(-\frac{n \Sigma_{\Pi(i), \Pi(i)}^{2}}{3200\left(1+4 \sigma^{2}\right)^{2} \Sigma_{d \max }^{2}}\right)-4 \exp \left(-\frac{n \Sigma_{i, \Pi(i)}^{2}}{3200\left(1+4 \sigma^{2}\right)^{2} \Sigma_{d \max }^{2}}\right)
$$

Proof. Setting $t=\frac{1}{5} \Sigma_{\Pi(i), \Pi(i)}$ in Lemma 3, we have $\left|H_{\Pi(i), \Pi(i)}-\Sigma_{\Pi(i), \Pi(i)}\right| \leq \frac{1}{5} \Sigma_{\Pi(i), \Pi(i)}$ with probability at least $1-4 \exp \left(-\frac{n \Sigma_{\Pi(i), \Pi(i)}^{2}}{3200\left(1+4 \sigma^{2}\right)^{2} \Sigma_{\mathrm{dmax}}^{2}}\right)$ for all i. Similarly, setting $t=\frac{1}{5} \Sigma_{i, \Pi(i)}$ in Lemma 3, we have $\left|H_{i, \Pi(i)}-\Sigma_{i, \Pi(i)}\right| \leq \frac{1}{2} \Sigma_{i, \Pi(i)}$ with probability at least $1-4 \exp \left(-\frac{n \Sigma_{i, \Pi(i)}^{2}}{3200\left(1+4 \sigma^{2}\right)^{2} \Sigma_{\mathrm{dmax}}^{2}}\right)$ for all i.
Using a union bound, with probability at least $1-4 \exp \left(-\frac{n \Sigma_{\Pi(i), \Pi(i)}^{2}}{3200\left(1+4 \sigma^{2}\right)^{2} \Sigma_{\mathrm{dmax}}^{2}}\right)-4 \exp \left(-\frac{n \Sigma_{i, \Pi(i)}^{2}}{3200\left(1+4 \sigma^{2}\right)^{2} \Sigma_{\mathrm{dmax}}^{2}}\right)$, we have

$$
\begin{aligned}
\left|\tau_{i}-\hat{\tau}_{i}\right| & =\left|\frac{H_{i, \Pi(i)}}{H_{\Pi(i), \Pi(i)}}-\frac{\Sigma_{i, \Pi(i)}}{\Sigma_{\Pi(i), \Pi(i)}}\right| \\
& \leq\left|\frac{\Sigma_{i, \Pi(i)}+\frac{1}{5} \Sigma_{i, \Pi(i)}}{\Sigma_{\Pi(i), \Pi(i)}-\frac{1}{5} \Sigma_{\Pi(i), \Pi(i)}}-\frac{\Sigma_{i, \Pi(i)}}{\Sigma_{\Pi(i), \Pi(i)}}\right| \\
& =\left|\frac{\Sigma_{i, \Pi(i)}}{2 \Sigma_{\Pi(i), \Pi(i)}}\right| \\
& =\frac{1}{2}\left|\tau_{i}\right|
\end{aligned}
$$

Lemma 6. The minimum eigenvalue of the sample covariance matrix follows

$$
\lambda_{\min }\left(H_{S, S}\right) \geq \beta / 2
$$

with probability at least $1-2 \exp \left(-\min \left\{\frac{n \beta^{2}}{256 \sigma^{{ }^{5}} \Sigma_{d \max }^{2}}, \frac{n \beta}{16 \sigma^{2} \Sigma_{d \text { max }}}\right\}\right)$.

Proof. Using a variational characterization of eigenvalues, we have

$$
\begin{aligned}
\lambda_{\min }\left(H_{S, S}\right) & =\min _{\|u\|=1} u^{\top} H_{S, S} u \\
& =\min _{\|u\|=1} u^{\top} \Sigma_{S, S} u+u^{\top}\left(H_{S, S}-\Sigma_{S, S}\right) u \\
& \geq \beta+\min _{\|u\|=1} \frac{1}{n} \sum_{k=1}^{n} u^{\top}\left(X_{k, S}^{\top} X_{k, S}-\mathbb{E}\left[X_{k, S}^{\top} X_{k, S}\right]\right) u \\
& \geq \beta-\max _{\|u\|=1}\left|\frac{1}{n} \sum_{k=1}^{n}\left(X_{k, S} u\right)^{2}-\mathbb{E}\left[\left(X_{k, S} u\right)^{2}\right]\right|
\end{aligned}
$$

Note that for any u with $\|u\| \leq 1, X_{k, S} u$ is sub-Gaussian with parameter at most $\sigma^{2} \Sigma_{\mathrm{dmax}}$. It follows that $\left(X_{k, S} u\right)^{2}-\mathbb{E}\left[\left(X_{k, S} u\right)^{2}\right]$ is sub-exponential with parameter $\left(32 \sigma^{4} \Sigma_{\mathrm{dmax}}^{2}, 4 \sigma^{2} \Sigma_{\mathrm{dmax}}\right)$. Applying the sub-exponential tail bound leads to

$$
\begin{equation*}
\mathbb{P}\left\{\left|\frac{1}{n} \sum_{k=1}^{n}\left(X_{k, S} u\right)^{2}-\mathbb{E}\left[\left(X_{k, S} u\right)^{2}\right]\right| \geq t\right\} \leq 2 \exp \left(-\min \left\{\frac{n t^{2}}{64 \sigma^{4} \Sigma_{\mathrm{dmax}}^{2}}, \frac{n t}{8 \sigma^{2} \Sigma_{\mathrm{dmax}}}\right\}\right) \tag{13}
\end{equation*}
$$

Setting $t=\beta / 2$ leads to the result.
Lemma 7. The probability of $\left\|\hat{H}_{S^{c}, S}-H_{S^{c}, S}\right\| \|_{\infty} \geq \frac{\beta \gamma}{24 \sqrt{s}}$, is bounded above in the order of $O\left(s(p-s) \exp \left(-\frac{\beta^{2} \gamma^{2} n}{s^{3}}\right)\right)$. The probability of $\left\|\hat{H}_{S, S}-H_{S, S}\right\| \|_{\infty} \geq \frac{\beta \gamma}{48(1-\gamma / 2) \sqrt{s}}$, is bounded above in the order of $O\left(s^{2} \exp \left(-\frac{\beta^{2} \gamma^{2} n}{s^{3}(1-\gamma / 2)^{2}}\right)\right)$.

Proof. Here we bound $\left\|\left\|\hat{H}_{S^{c}, S}-H_{S^{\mathrm{c}}, S}\right\|\right\|_{\infty}$ and $\left\|\left\|\hat{H}_{S, S}-H_{S, S}\right\|\right\|_{\infty}$. We first consider $\left\|\hat{H}_{S^{\mathrm{c}}, S}-H_{S^{\mathrm{c}}, S}\right\| \|_{\infty}$. Note that for all $i \in S^{\mathrm{c}}, j \in S$, we have

$$
\begin{aligned}
\hat{H}_{i, j} & =\frac{1}{n} \sum_{k=1}^{n} \hat{X}_{k, i} \hat{X}_{k, j} \\
& =\frac{1}{n} \sum_{k=1}^{n}\left(M_{k, i} X_{k, i}+\left(1-M_{k, i}\right) \hat{\tau}_{i} X_{k, \Pi(i)}\right)\left(M_{k, j} X_{k, j}+\left(1-M_{k, j}\right) \hat{\tau}_{j} X_{k, \Pi(j)}\right)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left|\hat{H}_{i, j}-H_{i, j}\right| \leq \left\lvert\, \frac{1}{n} \sum_{k=1}^{n}\right. & \left(M_{k, i} M_{k, j}-1\right) X_{k, i} X_{k, j} \\
& +\left(1-M_{k, i}\right)\left(1-M_{k, j}\right) \hat{\tau}_{i} \hat{\tau}_{j} X_{k, \Pi(i)} X_{k, \Pi(j)} \\
& +M_{k, i}\left(1-M_{k, j}\right) \hat{\tau}_{j} X_{k, i} X_{k, \Pi(j)} \\
& +\left(1-M_{k, i}\right) M_{k, j} \hat{\tau}_{i} X_{k, \Pi(i)} X_{k, j} \mid
\end{aligned}
$$

Since $M_{k, i}, M_{k, j}$ is either 0 or 1 , we can upper bound the terms above by

$$
\begin{equation*}
\left|\hat{H}_{i, j}-H_{i, j}\right| \leq \frac{\left(1+\hat{\tau}_{\max }\right)^{2}}{n}\left|\sum_{k=1}^{n} X_{k, i} X_{k, j}\right| \tag{14}
\end{equation*}
$$

Using Lemma 3, we obtain

$$
\begin{equation*}
\mathbb{P}\left\{\left|\frac{1}{n} \sum_{k=1}^{n} X_{k, i} X_{k, j}-\Sigma_{i, j}\right| \geq t\right\} \leq 4 \exp \left(-\frac{n t^{2}}{128\left(1+4 \sigma_{X}^{2}\right)^{2} \Sigma_{\mathrm{dmax}}^{2}}\right) . \tag{15}
\end{equation*}
$$

Then with probability at least $1-4 \exp \left(-\frac{n t^{2}}{128\left(1+4 \sigma_{X}^{2}\right)^{2} \Sigma_{\text {dmax }}^{2}}\right)$, it follows that

$$
\left|\hat{H}_{i, j}-H_{i, j}\right| \leq\left(1+\hat{\tau}_{\max }\right)^{2}\left(\Sigma_{i, j}+t\right)
$$

Setting $t=\Sigma_{i, j}$, we obtain that with high probability,

$$
\left|\hat{H}_{i, j}-H_{i, j}\right| \leq 2\left(1+\hat{\tau}_{\max }\right)^{2} \Sigma_{i, j} .
$$

Using Lemma 5, with high probability we have

$$
\left|\hat{H}_{i, j}-H_{i, j}\right| \leq 2\left(1+\hat{\tau}_{\max }\right)^{2} \Sigma_{i, j}
$$

Now we consider the infinity norm bound. By using a union bound, we obtain

$$
\begin{aligned}
\mathbb{P}\left\{\left\|\left|\hat{H}_{S^{\mathrm{c}}, S}-H_{S^{\mathrm{c}}, S}\right|\right\|_{\infty} \geq t\right\} & \leq s(p-s) \mathbb{P}\left\{\left|\hat{H}_{i, j}-H_{i, j}\right| \geq \frac{t}{s}\right\} \\
& \leq s(p-s) \mathbb{P}\left\{2\left(1+\hat{\tau}_{\max }\right)^{2}\left|\frac{1}{n} \sum_{k=1}^{n} X_{k, i} X_{k, j}\right| \geq \frac{t}{s}\right\} \\
& =s(p-s) \mathbb{P}\left\{\left|\frac{1}{n} \sum_{k=1}^{n} X_{k, i} X_{k, j}\right| \geq \frac{t}{2\left(1+\hat{\tau}_{\max }\right)^{2} s}\right\} \\
& \leq 2 s(p-s) \exp \left(-\frac{n t^{2}}{16\left(1+\hat{\tau}_{\max }\right)^{4} s^{2}}\right)
\end{aligned}
$$

where the last inequality follows a sub-Exponential tail bound.
Similarly, for the other infinity norm, we have

$$
\begin{equation*}
\mathbb{P}\left\{\left\|\hat{H}_{S, S}-H_{S, S} \mid\right\|_{\infty} \geq t\right\} \leq 2 s^{2} \exp \left(-\frac{n t^{2}}{16\left(1+\hat{\tau}_{\max }\right)^{4} s^{2}}\right) \tag{16}
\end{equation*}
$$

C Proof of Lemma 1

Proof. Setting $t=\frac{1}{2} \Sigma_{\text {dmin }}$ in Lemma 3, we have $\left|H_{i, i}-\Sigma_{i, i}\right| \leq \frac{1}{2} \Sigma_{\text {dmin }}$ with probability at least 1 $4 \exp \left(-\frac{n \Sigma_{\text {dmin }}^{2}}{512\left(1+4 \sigma_{X}^{2}\right)^{2} \Sigma_{\text {dmax }}^{2}}\right)$. With the same probability and some algebra, we have

$$
\begin{aligned}
& \frac{H_{i, i}}{\Sigma_{i, i}} \leq \frac{\Sigma_{i, i}+\frac{1}{2} \Sigma_{\mathrm{dmin}}}{\Sigma_{i, i}} \leq \frac{\Sigma_{\mathrm{dmin}}+\frac{1}{2} \Sigma_{\mathrm{dmin}}}{\Sigma_{\mathrm{dmin}}} \leq \frac{3}{2} \\
& \frac{H_{i, i}}{\Sigma_{i, i}} \geq \frac{\Sigma_{i, i}-\frac{1}{2} \Sigma_{\mathrm{dmin}}}{\Sigma_{i, i}} \geq \frac{\Sigma_{\mathrm{dmin}}-\frac{1}{2} \Sigma_{\mathrm{dmin}}}{\Sigma_{\mathrm{dmin}}} \geq \frac{1}{2}
\end{aligned}
$$

D Proof of Lemma 2

Proof. We first look at the concentration properties of $\left\|\mid \Sigma_{S^{c}, S}-H_{S^{\mathrm{c}}, S}\right\|_{\infty}$ and $\left\|\left\|\Sigma_{S, S}-H_{S, S}\right\|_{\infty}\right.$. By using Lemma 3 and a union bound, we obtain

$$
\mathbb{P}\left\{\left\|\Sigma_{S^{\mathrm{c}}, S}-H_{S^{\mathrm{c}}, S}\right\|_{\infty} \geq t\right\} \leq s(p-s) \mathbb{P}\left\{\left|\Sigma_{i, j}-H_{i, j}\right| \geq \frac{t}{s}\right\}
$$

$$
\leq 4 s(p-s) \exp \left(-\frac{n t^{2}}{128 s^{2}\left(1+4 \sigma^{2}\right)^{2} \Sigma_{\mathrm{dmax}}^{2}}\right)
$$

Setting $t=\frac{\beta \gamma}{6 \sqrt{s}}$, we obtain that

$$
\begin{equation*}
\mathbb{P}\left\{\left\|\Sigma_{S^{c}, S}-H_{S^{c}, S}\right\|_{\infty} \geq \frac{\beta \gamma}{6 \sqrt{s}}\right\} \leq 4 s(p-s) \exp \left(-\frac{\beta^{2} \gamma^{2} n}{4608 s^{3}\left(1+4 \sigma^{2}\right)^{2} \Sigma_{\mathrm{dmax}}^{2}}\right) \tag{17}
\end{equation*}
$$

Similarly, for the other infinity norm, we have

$$
\begin{aligned}
\mathbb{P}\left\{\left\|\mid \Sigma_{S, S}-H_{S, S}\right\|_{\infty} \geq t\right\} & \leq s^{2} \mathbb{P}\left\{\left|\Sigma_{i, j}-H_{i, j}\right| \geq \frac{t}{s}\right\} \\
& \leq 4 s^{2} \exp \left(-\frac{n t^{2}}{128 s^{2}\left(1+4 \sigma^{2}\right)^{2} \Sigma_{\mathrm{dmax}}^{2}}\right)
\end{aligned}
$$

Setting $t=\frac{\beta \gamma}{12(1-\gamma) \sqrt{s}}$, we obtain that

$$
\begin{equation*}
\mathbb{P}\left\{\left\|\Sigma_{S, S}-H_{S, S}\right\|_{\infty} \geq \frac{\beta \gamma}{12(1-\gamma) \sqrt{s}}\right\} \leq 4 s^{2} \exp \left(-\frac{\beta^{2} \gamma^{2} n}{18432 s^{3}(1-\gamma)^{2}\left(1+4 \sigma^{2}\right)^{2} \Sigma_{\mathrm{dmax}}^{2}}\right) . \tag{18}
\end{equation*}
$$

Now we proceed with the main bound. Note that

$$
\begin{equation*}
H_{S^{\mathrm{c}}, S} H_{S, S}^{-1}=H T_{1}+H T_{2}+H T_{3}+H T_{4}, \tag{19}
\end{equation*}
$$

where

$$
\begin{align*}
& H T_{1}=\Sigma_{S^{\mathrm{c}}, S} \Sigma_{S, S}^{-1} \tag{20}\\
& H T_{2}=\left(H_{S^{\mathrm{c}}, S}-\Sigma_{S^{\mathrm{c}}, S}\right) \Sigma_{S, S}^{-1} \tag{21}\\
& H T_{3}=\Sigma_{S^{\mathrm{c}}, S}\left(H_{S, S}^{-1}-\Sigma_{S, S}^{-1}\right) \tag{22}\\
& H T_{4}=\left(H_{S^{\mathrm{c}}, S}-\Sigma_{S^{\mathrm{c}}, S}\right)\left(H_{S, S}^{-1}-\Sigma_{S, S}^{-1}\right) \tag{23}
\end{align*}
$$

From Assumption 2, we know that $\left\|\left\|H T_{1}\right\|_{\infty} \leq 1-\gamma\right.$. For $H T_{2}$, we have

$$
\begin{aligned}
\left\|H T_{2}\right\|_{\infty} & =\| \|\left(H_{S^{c}, S}-\Sigma_{S^{c}, S}\right) \Sigma_{S, S}^{-1}\| \|_{\infty} \\
& \leq\left\|H_{S^{c}, S}-\Sigma_{S^{c}, S}\right\|_{\infty}\| \| \Sigma_{S, S}^{-1}\| \|_{\infty} \\
& \leq \sqrt{s} \cdot\left\|H_{S^{c}, S}-\Sigma_{S^{c}, S}\right\|_{\infty} \mid\left\|\Sigma_{S, S}^{-1}\right\| \| \\
& \leq \frac{\sqrt{s}}{\beta} \cdot\left\|H_{S^{c}, S}-\Sigma_{S^{c}, S}\right\|_{\infty} \\
& \leq \frac{\gamma}{6}
\end{aligned}
$$

where the last inequality follows from (17) . For $H T_{3}$, we have

$$
\begin{aligned}
\left\|H T_{3}\right\|_{\infty} & =\| \| \Sigma_{S^{c}, S}\left(H_{S, S}^{-1}-\Sigma_{S, S}^{-1}\right)\| \|_{\infty} \\
& \leq\| \| \Sigma_{S^{c}, S} \Sigma_{S, S}^{-1}\left(\Sigma_{S, S}-H_{S, S}\right) H_{S, S}^{-1}\| \|_{\infty} \\
& \leq\| \| \Sigma_{S^{c}, S} \Sigma_{S, S}^{-1}\| \|_{\infty}\left\|\Sigma_{S, S}-H_{S, S}\right\|\left\|_{\infty}\right\| H_{S, S}^{-1}\| \|_{\infty} \\
& \leq \frac{2(1-\gamma) \sqrt{s}}{\beta} \cdot\left\|\Sigma_{S, S}-H_{S, S}\right\|_{\infty} \\
& \leq \frac{\gamma}{6}
\end{aligned}
$$

where the last inequality follows from (18) . For $H T_{4}$, we have

$$
\begin{aligned}
\left\|H T_{4}\right\| \|_{\infty} & =\| \|\left(H_{S^{\mathrm{c}}, S}-\Sigma_{S^{\mathrm{c}}, S}\right)\left(H_{S, S}^{-1}-\Sigma_{S, S}^{-1}\right)\| \|_{\infty} \\
& \leq\left\|H_{S^{\mathrm{c}}, S}-\Sigma_{S^{\mathrm{c}}, S}\right\|\left\|_{\infty}\right\| H_{S, S}^{-1}-\Sigma_{S, S}^{-1}\| \|_{\infty} \\
& \leq\left\|H_{S^{\mathrm{c}}, S}-\Sigma_{S^{\mathrm{c}}, S}\right\|\left\|_{\infty}\right\| H_{S, S}^{-1}\left(\Sigma_{S, S}-H_{S, S}\right) \Sigma_{S, S}^{-1}\| \|_{\infty} \\
& \leq\left\|H_{S^{\mathrm{c}}, S}-\Sigma_{S^{\mathrm{c}}, S}\right\|\left\|_{\infty}\right\| H_{S, S}^{-1}\| \|_{\infty}\left\|\Sigma_{S, S}-H_{S, S}\right\|\left\|_{\infty}\right\|\left\|\Sigma_{S, S}^{-1}\right\| \|_{\infty} \\
& \leq s \cdot\| \| H_{S^{\mathrm{c}}, S}-\Sigma_{S^{\mathrm{c}}, S}\| \|_{\infty}\| \| H_{S, S}^{-1}\| \|\left\|\Sigma_{S, S}-H_{S, S}\right\|\left\|_{\infty}\right\| \Sigma_{S, S}^{-1} \| \\
& \leq \frac{2 s}{\beta^{2}} \cdot\| \| H_{S^{\mathrm{c}}, S}-\Sigma_{S^{\mathrm{c}}, S}\| \|_{\infty}\left\|\Sigma_{S, S}-H_{S, S}\right\|_{\infty} \\
& \leq \frac{\gamma}{6}
\end{aligned}
$$

where the last inequality follows from (17) and (18), given that $\gamma<\frac{6}{7}$. This completes the proof.

E Proof of Theorem 1

Proof. Setting $t=\frac{1}{2} \Sigma_{\text {dmin }}$ in Lemma 3, we have $\left|H_{i, j}-\Sigma_{i, j}\right| \leq \frac{1}{2} \Sigma_{\text {dmin }}$ with probability at least 1 $4 \exp \left(-\frac{n \Sigma_{\mathrm{dmin}}^{2}}{512\left(1+4 \sigma_{X}^{2}\right)^{2} \Sigma_{\mathrm{dmax}}^{2}}\right)$ for all i and j. It follows that $\left|H_{i, j}+\Sigma_{i, j}\right| \leq \frac{1}{2} \Sigma_{\mathrm{dmin}}+2\left|\Sigma_{i, j}\right|$, and $\left|H_{i, j}^{2}-\Sigma_{i, j}^{2}\right| \leq$ $\frac{1}{4} \Sigma_{\mathrm{dmin}}^{2}+\Sigma_{\mathrm{dmin}}\left|\Sigma_{i, j}\right|$. Dividing both sides by $\Sigma_{j, j}$, we obtain

$$
\left|\frac{H_{i, j}^{2}}{\Sigma_{j, j}}-\frac{\Sigma_{i, j}^{2}}{\Sigma_{j, j}}\right| \leq \frac{\Sigma_{\mathrm{dmin}}^{2}}{4 \Sigma_{j, j}}+\frac{\Sigma_{\mathrm{dmin}}}{\Sigma_{j, j}}\left|\Sigma_{i, j}\right| \leq \frac{1}{4} \Sigma_{\mathrm{dmin}}+\left|\Sigma_{j, j}\right| .
$$

Note that

$$
\begin{aligned}
\left|\frac{H_{i, j}^{2}}{\Sigma_{j, j}}-\frac{\Sigma_{i, j}^{2}}{\Sigma_{j, j}}\right| & =\left|\frac{H_{i, j}^{2} H_{j, j}}{\Sigma_{j, j} H_{j, j}}-\frac{\Sigma_{i, j}^{2}}{\Sigma_{j, j}}\right| \\
& =\left|\frac{H_{j, j}}{\Sigma_{j, j}} \hat{\zeta}_{i, j}-\zeta_{i, j}\right| \leq \frac{1}{4} \Sigma_{\mathrm{dmin}}+\left|\Sigma_{j, j}\right|
\end{aligned}
$$

Rewriting the last inequality, we have

$$
\begin{aligned}
& \frac{\Sigma_{j, j}}{H_{j, j}}\left(\zeta_{i, j}-\frac{1}{4} \Sigma_{\mathrm{dmin}}-\left|\Sigma_{j, j}\right|\right) \\
\leq & \hat{\zeta}_{i, j} \leq \frac{\Sigma_{j, j}}{H_{j, j}}\left(\zeta_{i, j}+\frac{1}{4} \Sigma_{\mathrm{dmin}}+\left|\Sigma_{j, j}\right|\right)
\end{aligned}
$$

It follows from Lemma 1, that

$$
\begin{aligned}
& \frac{2}{3}\left(\zeta_{i, j}-\frac{1}{4} \Sigma_{\mathrm{dmin}}-\left|\Sigma_{j, j}\right|\right) \\
\leq & \hat{\zeta}_{i, j} \leq 2\left(\zeta_{i, j}+\frac{1}{4} \Sigma_{\mathrm{dmin}}+\left|\Sigma_{j, j}\right|\right)
\end{aligned}
$$

As a result, to ensure that $\hat{\zeta}_{i, \Pi(i)}>\hat{\zeta}_{i, j}$, it is sufficient to ensure

$$
\begin{aligned}
\hat{\zeta}_{i, \Pi(i)} & \geq \frac{2}{3}\left(\zeta_{i, \Pi(i)}-\frac{1}{4} \Sigma_{\mathrm{dmin}}-\left|\Sigma_{\Pi(i), \Pi(i)}\right|\right) \\
& >2\left(\zeta_{i, j}+\frac{1}{4} \Sigma_{\mathrm{dmin}}+\left|\Sigma_{j, j}\right|\right) \geq \hat{\zeta}_{i, j}
\end{aligned}
$$

Published in Transactions on Machine Learning Research (02/2024)
and simplification leads to

$$
\zeta_{i, \Pi(i)}-3 \zeta_{i, j}>\left|\Sigma_{\Pi(i), \Pi(i)}\right|+3\left|\Sigma_{j, j}\right|+\Sigma_{\text {dmin }} .
$$

