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A Preliminary Results

We introduce the following lemmas from prior literature.
Lemma 3 ((Ravikumar et al., 2011, Lemma 1)). Consider a zero-mean random vector x = (x

1

, . . . , xp)
with covariance �, such that each xi/


�i,i is sub-Gaussian with parameter ‡2

. Given n i.i.d. samples, the

associated sample covariance H satisfies the tail bound

P {|Hi,j ≠ �i,j | > t} Æ 4 exp
3

≠ nt2

128(1 + 4‡2)2�2

dmax

4
, (11)

for all t œ (0, 8(1 + 4‡2)�
dmax

).
Lemma 4 ((Hsu et al., 2012, Theorem 1)). Consider a zero-mean sub-Gaussian random vector x = (x

1

, . . . , xp)
with parameter ‡2

. Then for all t > 0,

P
Ó

ÎxÎ2 > ‡2 ·
!
p + 2

Ô
pt + 2pt

"Ô
Æ e≠t . (12)

B Technical Lemmas

We introduce the necessary lemmas used in our analysis and provide the proofs.
Lemma 5. For every feature i œ [p], its empirical error ratio ·̂i fulfills

P
;

|·i ≠ ·̂i| Æ 1
2 |·i|

<
Ø 1 ≠ 4 exp

A
≠

n�2

�(i),�(i)

3200(1 + 4‡2)2�2

dmax

B
≠ 4 exp

A
≠

n�2

i,�(i)

3200(1 + 4‡2)2�2

dmax

B
.

Proof. Setting t = 1

5

�
�(i),�(i) in Lemma 3, we have

--H
�(i),�(i) ≠ �

�(i),�(i)

-- Æ 1

5

�
�(i),�(i) with probability

at least 1 ≠ 4 exp
3

≠ n�

2

�(i),�(i)

3200(1+4‡2

)

2

�

2

dmax

4
for all i. Similarly, setting t = 1

5

�i,�(i) in Lemma 3, we have
--Hi,�(i) ≠ �i,�(i)

-- Æ 1

2

�i,�(i) with probability at least 1 ≠ 4 exp
3

≠ n�

2

i,�(i)

3200(1+4‡2

)

2

�

2

dmax

4
for all i.

Using a union bound, with probability at least 1 ≠ 4 exp
3

≠ n�

2

�(i),�(i)

3200(1+4‡2

)

2

�

2

dmax

4
≠ 4 exp

3
≠ n�

2

i,�(i)

3200(1+4‡2

)

2

�

2

dmax

4
,

we have

|·i ≠ ·̂i| =
----

Hi,�(i)

H
�(i),�(i)

≠
�i,�(i)

�
�(i),�(i)

----

Æ

-----
�i,�(i) + 1

5

�i,�(i)

�
�(i),�(i) ≠ 1

5

�
�(i),�(i)

≠
�i,�(i)

�
�(i),�(i)

-----

=
----

�i,�(i)

2�
�(i),�(i)

----

= 1
2 |·i| .

Lemma 6. The minimum eigenvalue of the sample covariance matrix follows

⁄
min

(HS,S) Ø —/2 ,

with probability at least 1 ≠ 2 exp(≠ min{ n—2

256‡4

�

2

dmax

, n—
16‡2

�
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}).
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Proof. Using a variational characterization of eigenvalues, we have

⁄
min

(HS,S) = min
ÎuÎ=1

u€HS,Su

= min
ÎuÎ=1

u€�S,Su + u€(HS,S ≠ �S,S)u

Ø — + min
ÎuÎ=1

1
n

nÿ

k=1

u€(X€
k,SXk,S ≠ E

#
X€

k,SXk,S

$
)u

Ø — ≠ max
ÎuÎ=1

-----
1
n

nÿ

k=1

(Xk,Su)2 ≠ E
#
(Xk,Su)2

$
----- .

Note that for any u with ÎuÎ Æ 1, Xk,Su is sub-Gaussian with parameter at most ‡2�
dmax

. It follows
that (Xk,Su)2 ≠ E

#
(Xk,Su)2

$
is sub-exponential with parameter (32‡4�2

dmax

, 4‡2�
dmax

). Applying the
sub-exponential tail bound leads to

P
I-----

1
n

nÿ

k=1

(Xk,Su)2 ≠ E
#
(Xk,Su)2

$
----- Ø t

J
Æ 2 exp

3
≠ min{ nt2

64‡4�2
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,
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8‡2�
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}
4

. (13)

Setting t = —/2 leads to the result.

Lemma 7. The probability of

---
---
---ĤSc,S ≠ HSc,S

---
---
---
Œ

Ø —“
24

Ô
s
, is bounded above in the order of

O
1

s(p ≠ s) exp
1

≠ —2“2n
s3

22
. The probability of

---
---
---ĤS,S ≠ HS,S

---
---
---
Œ

Ø —“
48(1≠“/2)

Ô
s
, is bounded above in the

order of O
1

s2 exp
1

≠ —2“2n
s3

(1≠“/2)

2

22
.

Proof. Here we bound
---
---
---ĤSc,S ≠ HSc,S

---
---
---
Œ

and
---
---
---ĤS,S ≠ HS,S

---
---
---
Œ

. We first consider
---
---
---ĤSc,S ≠ HSc,S

---
---
---
Œ

.
Note that for all i œ Sc, j œ S, we have

Ĥi,j = 1
n

nÿ

k=1

X̂k,iX̂k,j

= 1
n

nÿ

k=1

!
Mk,iXk,i + (1 ≠ Mk,i)·̂iXk,�(i)

" !
Mk,jXk,j + (1 ≠ Mk,j)·̂jXk,�(j)

"
.

It follows that
---Ĥi,j ≠ Hi,j

--- Æ
---
1
n

nÿ

k=1

(Mk,iMk,j ≠ 1)Xk,iXk,j
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--- .

Since Mk,i, Mk,j is either 0 or 1, we can upper bound the terms above by
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Using Lemma 3, we obtain
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Then with probability at least 1 ≠ 4 exp
1

≠ nt2

128(1+4‡2

X )

2

�
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2
, it follows that

---Ĥi,j ≠ Hi,j

--- Æ (1 + ·̂
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)2(�i,j + t) .

Setting t = �i,j , we obtain that with high probability,
---Ĥi,j ≠ Hi,j

--- Æ 2(1 + ·̂
max

)2�i,j .

Using Lemma 5, with high probability we have
---Ĥi,j ≠ Hi,j

--- Æ 2(1 + ·̂
max

)2�i,j .

Now we consider the infinity norm bound. By using a union bound, we obtain

P
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---ĤSc,S ≠ HSc,S

---
---
---
Œ

Ø t
Ô

Æ s(p ≠ s)P
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1
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s

J
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1
n

nÿ
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3
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16(1 + ·̂
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4
,

where the last inequality follows a sub-Exponential tail bound.

Similarly, for the other infinity norm, we have

P
Ó---

---
---ĤS,S ≠ HS,S

---
---
---
Œ

Ø t
Ô

Æ 2s2 exp
3
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16(1 + ·̂
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4
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C Proof of Lemma 1

Proof. Setting t = 1

2

�
dmin

in Lemma 3, we have |Hi,i ≠ �i,i| Æ 1

2

�
dmin

with probability at least 1 ≠
4 exp

1
≠ n�

2

dmin

512(1+4‡2

X )

2

�

2
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2
. With the same probability and some algebra, we have

Hi,i

�i,i
Æ

�i,i + 1

2

�
dmin

�i,i
Æ

�
dmin

+ 1

2

�
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�
dmin

Æ 3
2 ,

Hi,i

�i,i
Ø

�i,i ≠ 1

2

�
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�i,i
Ø

�
dmin

≠ 1

2

�
dmin

�
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Ø 1
2 .

D Proof of Lemma 2

Proof. We first look at the concentration properties of |||�Sc,S ≠ HSc,S |||Œ and |||�S,S ≠ HS,S |||Œ. By using
Lemma 3 and a union bound, we obtain

P
)
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;
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Æ 4s(p ≠ s) exp
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4
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Setting t = —“
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, we obtain that
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<
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Similarly, for the other infinity norm, we have

P
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4
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Setting t = —“
12(1≠“)

Ô
s
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P
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Now we proceed with the main bound. Note that

HSc,SH≠1

S,S = HT
1

+ HT
2

+ HT
3

+ HT
4

, (19)

where

HT
1

= �Sc,S�≠1

S,S , (20)
HT

2
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3
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HT
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From Assumption 2, we know that |||HT
1

|||Œ Æ 1 ≠ “. For HT
2

, we have
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6 ,

where the last inequality follows from (17) . For HT
3

, we have
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where the last inequality follows from (18) . For HT
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where the last inequality follows from (17) and (18), given that “ < 6

7

. This completes the proof.

E Proof of Theorem 1

Proof. Setting t = 1

2
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Rewriting the last inequality, we have
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It follows from Lemma 1, that
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As a result, to ensure that ’̂i,�(i) > ’̂i,j , it is su�cient to ensure
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and simplification leads to

’i,�(i) ≠ 3’i,j >
--�

�(i),�(i)

-- + 3 |�j,j | + �
dmin

.
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