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A Preliminary Results

We introduce the following lemmas from prior literature.

Lemma 3 ((Ravikumar et al., 2011, Lemma 1)). Consider a zero-mean random vector x = (x1,...,Zp)
with covariance X, such that each x;/\/3;; is sub-Gaussian with parameter 0. Given n i.i.d. samples, the
associated sample covariance H satisfies the tail bound
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for all t € (0,8(1 + 46 S dmax)-

Lemma 4 ((Hsu et al., 2012, Theorem 1)). Consider a zero-mean sub-Gaussian random vector x = (x1,...,&p)
with parameter o. Then for all t > 0,

P {Hx||2 > 02 (p+2v/pl + th)} <et. (12)

B Technical Lemmas

We introduce the necessary lemmas used in our analysis and provide the proofs.

Lemma 5. For every feature i € [p|, its empirical error ratio 7; fulfills
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PTOOf. Scttlng t = %EH(Z)I{(Z) in Lemma 3, we have |Hl_[(7,),l_[(z) - EH(’L),H(’L)’ S %EH(1)7H(1) with probablhty

at least 1 — 4exp <—?M% for all 4. Similarly, setting ¢ = 1%, 1(; in Lemma 3, we have
nx? .
|Hi,1_[(i) — 2i,H(i)| < %El7n(l) with probablhty at least 1 — 4eXp <3200(1—E;a,-1—2[()12)22) for all i.
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Using a union bound, with probability at least 1 —4 exp —m —4exp —m ,
we have
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Lemma 6. The minimum eigenvalue of the sample covariance matriz follows
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Proof. Using a variational characterization of eigenvalues, we have
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Note that for any u with |Ju|] < 1, X su is sub-Gaussian with parameter at most 2L dmax. It follows
that (Xp su)? — E [(Xy,su)?] is sub-exponential with parameter (3203 . 40°Sqmax). Applying the
sub-exponential tail bound leads to
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Setting t = 8/2 leads to the result. O

Lemma 7. The probability of H’H’SC’S—HSC’SH) is bounded above in the order of
0 (S(p — 5)exp (— ﬁ:{:”)). The probability of ‘

order of O (82 exp (— '

B
Z 24:};’
’fls,s — HS’SHLO > W, is bounded above in the

BA=7/27

Proof. Here we bound ‘Hﬁsc,s - HSC,S‘H and H’ﬁs,g — HS’S‘H . We first consider
Note that for all : € S¢, j € S, we have
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It follows that
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Since My, ;, My, ; is either 0 or 1, we can upper bound the terms above by
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Using Lemma 3, we obtain
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. n2
128(1+40%)%%2

dmax

Then with probability at least 1 — 4 exp ( ), it follows that
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Setting t = ¥; j, we obtain that with high probability,

‘Hi,j — Hi

S 2(1 + 7/;nruaux)QZi,j .

Using Lemma 5, with high probability we have

‘Hm‘ — Hi

< 2(1 + Fonax)*Sij -
Now we consider the infinity norm bound. By using a union bound, we obtain
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where the last inequality follows a sub-Exponential tail bound.

Similarly, for the other infinity norm, we have
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O
C Proof of Lemma 1
Proof. Setting t = %Edmin in Lemma 3, we have |H;; — %, ;| < %Edmin with probability at least 1 —
nzzmin 3 113
4 exp (_Wﬁ)' With the same probability and some algebra, we have
Hi,i < Zi,i + %dein < Edmin + %Edmin < §’
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i Y Ydmin 2
O

D Proof of Lemma 2

Proof. We first look at the concentration properties of ||Xsc g — Hse 5|, and [[Xs,s — Hs,s||.,. By using
Lemma 3 and a union bound, we obtain
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Setting t = 6*3\}, we obtain that
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Similarly, for the other infinity norm, we have
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Now we proceed with the main bound. Note that
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From Assumption 2, we know that ||HT||,, < 1—+. For HT5, we have
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where the last inequality follows from (18) . For HT},, we have
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where the last inequality follows from (17) and (18), given that v < g. This completes the proof. O

E Proof of Theorem 1

Proof. Setting t = %dein in Lemma 3, we have [H;; — %, ;| < %Edmin with probability at least 1 —

na? . . .
4exp (—512(1+4at")‘32dmax> for all 4 and j. It follows that |H; ; + 3; ;| < %Edmin +21%; 5|, and |Hf] - Zij <
132 in T Sdmin [Si,;]. Dividing both sides by X ;, we obtain
H? 220 2 S 1
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Rewriting the last inequality, we have
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It follows from Lemma 1, that
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As a result, to ensure that C}H(i) > 62’73’7 it is sufficient to ensure
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and simplification leads to

Gimigy — 3G > Sy ne | + 312551 + Sdmin -
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