A Validity of assumptions

In this section, we show that the set of right hand side f satisfying Assumption [2.1]and Assumption
and the set of activation functions o satisfying Assumption|2.7|and Assumption [2.8|are not empty.
We first give a concrete example of f that fulfills Assumption|2.1{and Assumption[2.6

Proposition A.1. Suppose that o = cos. Consider a complex-valued function fy € L*(R?)N LY (R?)
that is compactly supported, it holds that f = Re(F 1 fo) € L*(RY) N Bll%f (RY) for some 0 < Ry <

o0, where F~1 is the inverse Fourier transform.

We first introduce some concepts and facts, which will be useful for proving Proposition and
other results.

Push-forward measure Consider two measure spaces (X, Fx) and (Y, Fy) and a measurable
map T : X — Y. Given any measure ux on (X, Fx), one can define the push-forward measure
ny = T*/.LX via

uy(A):Mx(T_lA), A€ Fy.

If i x is a probability measure, then py = T, x is also a probability measure. For any integrable
function g : Y — R, it holds that

/ o)y (dy) = / o(T () ux (dz).
Y X

Fourier transform Let f := F(f)(¢) be the Fourier transform of f € L'(R%), i.e.
for=ent [ et
Denote by F~*(f) the inverse Fourier transform of f, given by
fla) = FPa) = ) [ e fepae,

if feL! (R9). The Fourier transform and the inverse Fourier transform can be extended to the space
of tempered distributions, i.e., the dual space S/, of the Schwartz space Sy. Recall the Parseval’s

identity for f € L2(R%): || f[122 gy = I FlI22(g0)-

Proof of Proposition[A.1] We use techniques from [2] to prove this proposition. Let fo(§) =
e F (&), where F(€) = |fo(£)|. It holds that

- / (gjro)g cos(¢ @+ 0(§)u'(d¢), = R,

where the measure 4 is defined via pu(A) = [, F(£)d€, ap = p(RY) = [o. F(£)d€, and 1/ = p/ag
is a probability measure. Note that ag < oo because fy € L'(R?). Set the push-forward measure

p="T, where T : R 5 R x R x R, £ — ((2‘“;[],5,9(5)). Then we obtain that
) 2

o) = / acos(w” z + b)p(da, dw, db), x € R%.



Note that fj is compactly supported. There exists some Ry < oo such that fj is supported on EdR ;-
By definition, we know that p and p’ are both supported on EdR - and hence that p is supported on

R x Eé , % R. Therefore, we obtain that

ag
7l < | oot e ) = 7 < o

2m)z2
which implies that f € B}Qf (R?). Moreover, it follows from £l L2 ay < ||}'*1f0||L2(Rd) =
[ foll g2 (ray < oo that f € L*(RY). 0

The next proposition shows that functions who are band-limited, smooth, and periodic satisfy
Assumption[2.7]and Assumption [2.]

Proposition A.2. If o is band-limited, smooth, and periodic, then Assumption[2.7/and Assumption[2.8]
are satisfied. In particular, o = cos satisfies Assumption[2.7\and Assumption 2.8

Proof. The smoothness and periodicity of ¢ imply that o is equal to its Fourier series (recall that the
smoothness of o leads to fast decay of the Fourier coefficients and hence the uniform convergence
of Fourier series). Since o is band-limited, its Fourier series only have finitely many terms as
F(e'9%) = §(& — a). Therefore, there exists k € Ny and {(a;, w;, b;)}r_; € (R\{0}) x R x R such
that o(y) = Zle a; cos(w;y + b;). Without loss of generality, let us assume that |w;| < |wz| <
-+ < |wy|. We also assume that o is not a constant as otherwise the results are trivial. Notice that
cos’(y) = cos(y+7/2), cos” (y) = cos(y+ ), and cos(y1 ) cos(y2) = % cos(y1 +y2)+ % cos(y1 —
y2). Therefore, it suffices to show that there exists m € N and {(v;, &, 7:;)}™; C R x R X R, such
that 3°." | v;0(&y + 1;) = cos(y). This is trivial if & = 1.

Now we consider k > 2. If |w; | # 0, then it holds that

k—1
2 2w,
o (y + |w7;:> —o(y) = E (ai cos (wiy + % + bi> — a; cos(w;y + bl)>

i=1
k-1

= Z a; cos(w;y + b}),
i1

where a} # 0 for 1 <i <k — 1. If wy = 0, then let us choose yo ¢ Ua<;<x{2¢m/w; : £ € Z}, then
it holds that

2
oy +yo) — o(y) =Y _(a; cos(wiy + wiyo + b;) — a; cos(wyy + b;))
1=2
2
= djcos(wiy + b)),

=2

where a; # 0 for 2 < ¢ < k. Both cases are reduced to & — 1. Then we can finish the proof by
induction. O

B Proofs for Section 2.2

In this section, we present proofs of some properties of Barron norms and Barron spaces, say
Proposition [2.4]and Theorem [2.5] Note that the proof techniques are not new. They are borrowed
from [8]] and [2]].

Proof of Proposition[2.4] This proof is modified from [8]], especially the proof in [8, Section 2.5.1].
If ||g||3112(52) = 00, it is clear that ||g||3g(sz) = oo forany 1 < p < oo. Thus, we assume that

lgll B (o) < 00. By Holder’s inequality, it holds that

9151 ) < ll9ll sz, () < 91l () -



Therefore, it suffices to show that || g|| B < lgll B (). Consider any € > 0, there exists a

probability measure p supported on R x E;l{ x R such that
g(x) = /aa(wT:c + b)p(da, dw, db), Vzx € Q,

and that
(= / Jalp(da, dw, db) < |lgll sy o) + €.

Define a new probability measure p supported on {£, —¢} x Eé x R via

1
,u({é} X A) =7 |a’|p(da’7dw,db)7
¢ (0,+00)x A

and
u-tx =g [ lalp(da, duw, db),
C J(—0,0)x A

for any measurable A C R? x R. Then we have

ao(w' z + b)p(da, dw, db)

g9(z)

(-o(w'z+0b)- %p(da, dw, db)

(0,4+00) xRE xR

+/ (—=0) - o(w'z+b) - Mp(da,dw,db)
(—00,0) xRE xR ¢
= / ac(w 'z + b)p(da, dw, db),
for any x € €, which combined with support of y yields that
915 () < € < Nl9llgr (o) + €
Setting € — 0, we obtain that ||g||BIo§(Q) < ||g||B}%(Q). O

Then we prove the approximation theorem in H! norm, i.e., Theorem

Proof of Theorem[2.5] We use techniques from the proofs of [8, Theorem 1] and [2, Theorem 1,
Theorem 2] to prove this theorem. According to Proposition it holds that g € B2%(Q) with

911522y = ll9ll g1 (qa)- There exists a probability measure p supported on R x Ez x R such that

g(x) = /aa(wa + b)p(da, dw,db), x € QyCQ,

and
2 2
[ 1ol otda dw. ) < 2 gl 0, < 2ol
The derivatives of g can also be represented in integral from,

09(x) = /a(w,ej>a’(wa + b)p(da,dw,db), =€ Qy, 1<j<d,

where e; is a vector in R? with the j-th entry being 1 and other entries being 0. Note that the
derivative and the integral are exchangeable since

/sup |a<w,ej>0/(w"'x + b)’ p(da, dw, db) < RCy / la|p(da, dw, db) < oo,



where the last inequality holds since [ |a|?p(da,dw, db) < oo and p is a probability measure. We

sample the set of parameters © = {a;, w;, b; }1<;< With respect to the product measure pX’C and
denote the difference between the neural network and the target function g as

??‘\»—l

k
Z o(w] z +b;) — g(z).

Then it holds that

2
Byt ol = |

(RXRIxR)*

X 2
/ (liZaio w; x4 b;) — (x)) dxdp**
Q0 i=1

2

k

i=1
i 2
/ / Z o(w) z+b;) — g(z)) dp**da
Qo J(RxRIXR)k 7
/ / ao(wz +b) — g(x))” p(da, dw, db)da (B.1)
Qo RdexR
_7/ Var, (ao(w'z +b)) dz
k Ja,
Sl E, [(aa(wa + b))z} dx
k Ja,
2
Q
SCOW;C( O)Ep|a|2
202m(90) 2
SOT Hgstg(Q),

and

2
1
E,«x 10;€0 720 :/ R (81 (kzaidwiwbi)) 5j9(x)> dzdp**
i=1
2

k
1
:/ / fZal w;, e;)0’ (w;' & +b;) — 0jg(x) | dadp**
(RxRExR)* JQq k i—1
1 u ’
=— ai{w;, e;)o’ (w; x4 b;) — d,g(x dp**dx
el Lo, > (afunes ) - J<>)>

k

1

= / / Z (ai(w;, e;)o’ (w; x+bi)—8jg(x))2dekdx

RxRIxR)k 5

:1/ / (w,e;)o’ (w'z +b) fg(:r))Qp(da,dw,db)dx

k ]Rdle
= / Var, (a{w, e;)o’ (w' z + b)) dz

Qo

g% /QO E, {(a(w,eﬁo’(wa + b))2] dz,



which then yields that

d
2 1
prkZ”ajg@Hm(Qo) SE E,
Q() -

j=1 J

d 2
(afw,e;)o’ (w'z + b)) | do

Ju

R? T 2
Sk/no E, [(aa (w'z+1b)) ]dm (B.2)

R2C?*m(Q
< 1k ( O)Ep|a|2

2R2012m(90) 2
L2AmE) 2 o)
Combining (B.T)) with (B.2)), we obtain that
2
2(C§ + R*CT)m(Q0) lgll52 ()
z .
Therefore, there exists some © = {a;, w;, b; }1<;<k such that (2.3) holds. O

2
Epxr €0l oy <

C Proofs for Section 3.1]

In this section, we show the convergence of the iteration (3.I). We first show Proposition [3.1] that
states the contraction property. Recall that the Sobolev space H*(IR?) is characterized by the Fourier
transform as

H*®Y) = {f € Sy1 1+ €]")Ef(©) € PRD}, seR.
Let us define the operator P : H*(R%) — H*~2(R%) by
_ 2\ [
Pf=F" A+ fE)
Given an index 3 € R, we also define the fractional power P? : H*(RY) — H*~2%(R%) by
PP =F M+ €117 F(©)-
Then P~ is identical to (I — A) ™. It is useful to notice that
P2 ulFa gy = (Pu, w1 gy, i ) = lullf gy (€.1)

We first prove some lemmas as the preparation for Proposition [3.1]
Lemma C.1. Suppose that Assumption[2.1)holds. Then the linear operator

P :LP 7% : [2(RY) — L2(RY),
is bounded and self-adjoint.

Proof. Consider any u € L?(R?) with lull 2 (ray = 1. Then @ = P2y € H'(RY) satisfies that
il gy = Nl 2 gy = 1 by @CI). It holds that

|Pieptl

sup P7%£P7%u71)>

L2(]Rd) H")”LQ(Rd):l

L2(Rd)

1
=P 2v I

= } sup <£u, ’U>H*1(Rd),H1(Rd)
HU”HI(Rd)=1

= sup / (AVa - VO + cud)dx
H'B”Hl(Rd):l R4

= sup  max{@max, Cmax} Ha”Hl(]Rd) H{)”Hl(md)
”’D“Hl(Rd):l

= )\max .



Therefore, P~2 LP~2 is bounded on L2(R%).
For any u,v € L?(R?) with @ = P 2yand § = P2, by the symmetry of A, we have that

-1 _1 ~ ~
<P 2LP 2U7’U>L2(Rd) = <£uav>H*1(Rd),H1(]Rd)

= / (AV@ - Vi + cid)da
Rd

= / (Vi - AV + ciid)da
Rd

- <£’lj, a>H*1(Rd),H1(Rd)
- <u,P*%LP*%U>L2(Rd) ,
which implies that P :LP % is self-adjoint on L2(R%). O

The following lemma will also be useful. Let 7" be a bounded linear operator on a Hilbert space H.
Denote by o(T’) the set of spectrum of T" and by 7(T") := sup{|A| | A € o(T")} the spectrum radius.
Define the numerical range W(T') of T by

W(T) = {(Th, b, ] = 1}.

The numerical radius is defined as w(T') := sup{|\|| A € W(T)}.

Lemma C.2. Let T be a bounded linear operator on a Hilbert space H. Then
r(T) < w(T).

Proof. The proof follows directly from the fact that

o(T) c W(T).
See e.g. 21, Theorem 6.2.1] for the statement and proof of the above. O

We then prove Proposition 3.1}

Proof of Proposition[3.1] First it follows from (C.I)) that
—1 2 —1 2

|7 — a1 = A) ‘C)uHHl(Rd) =|(I-aP ‘C)UHHl(Rd)

2

—|pia- aP*lc)u‘

L2(R4)
1 1 1 2
- PE(I—aP_lﬁ)P_fPfu’
L2(R4)
<|P3r = aptoyp-t| P32,
- L2(R?)— L2(R4) L2(R%)
2
_ . _1 _1 2
= || aP 2LP 2 L2 (Ré) s L2 () ||u||H1(Rd)

Notice that the operator I — aP~2 LP~% is bounded and self-adjoint on L2(R%) by Lemma

Therefore H[ —aP-iLP3 = (I — aP~3£P~%). In addition, thanks to
L2(R9)—L2(R4)

LemmalC.2}

r(I—aP 2LP %) <w(l — aP 2LP77).
By the definition of numerical radius and the identity (C.I)), one has that

w(I —aP 3LP™ %)=  sup

”u”L2(]Rd):1

(I—aP 3LP %), u>

L2(R4)

1
=P Zu L
= _sup ’1 — OZ<£U,U>H—1(Rd)7H1(Rd)|
Hu”Hl(Rd)zl

= sup
”a”Hl(Rd):l

l—a/ (AVii - Vii + cfi]?)da| .
Rd




Moreover, thanks to the positivity and boundedness assumptions on A and ¢, we have for any @ with
@)l o ray = 1,

Amin = MIN{@min, Cmin } < / Vi - AVi + cla*dr < max{amax, Cmax} = Amax-
Rd

Therefore we have obtained that
w(l — aP_%ﬁP_%) < Aa).

Combining the estimates above finishes the proof of the first inequality in (3.2). Finally, the second
inequality (3-3) follows by optimizing the function A () with respect to & > 0. In fact it is not hard
to verify that

. )\max - >\min
e W

where o, = ﬁ -
Proof of Corollary[3.2] Tt follows from (3-I)) and Proposition [3.1] that
s = 0| g gy = [ (7 = (T = 8)71L) (e = ") s

)\max - >\min

< _ *
which then implies that
T
A — Ami
||UT - ’LL*HH1(]R7L) < (M) ||UO - U*HHI(]Rd) < €,

for T satisfying (3.2). O

D Proofs for Section

In this section, we give proofs for Lemma [3.3] Lemma [3.4] Lemma [3.5] and Lemma [3.6] These
lemmas show that the updating rule (3.I)) keeps the iterates {u }:cy staying in the Barron space and
estimate the amplification of Barron norm after performing (3-1)).

Proof of Lemma[3.3] (i) (Addition) Let ¢ > 0 be fixed. For any i € {1,2,...,k}, there exists a
probability measure p; supported on R x E?{i x R such that

gi(z) = /ao(wa + b)pi(da, dw,db), € R%

and that
/|a|pi(da,dw7db) < ||9iHB§_ (Re) T €.
‘We have

(g1 + -+ k) (@) = /GU(wTw+b)(p1 +-+ pr)(da, dw, db)

= /k‘aa(w—rm—l—b)wwa,dw,db).

Consider a function F : R x R? x R — R x R? x R, (a,w, b) — (ka,w, b) and the corresponding

.. . —d
push-forward measure p = F*w. Noticing that p is supported on R x By x R, where
R = maxi << I2;, and that

(14 + o) (@) = /ao’(me + b)p(da, dw, db), = € RY,
we obtain that

llg1 +"'+gk||lg}2(Rd) S/\a|p(da,dw,db)



- / \ka|p1+'l.€ﬂ(da,dw,db)

k
=" [ lalos(da.dw. )
=1

< Z ||giHB}1%_(Rd)+k€'
1<i<k ‘

Then we can conclude that [[g1 + - + gkl g1 (ray < Do1<i<i [19ill51, ey by setting € — 0.

(i1) (Scalar multiplication) The result is trivial if A = 0. We then consider A # 0. For any € > 0, there
. S —d
exists a probability measure p supported on R x B X R such that

g(x) = /aa(w—rx +b)p(da, dw,db), € R

and that
/|a|p(da,dw,db) < llgllsy, ey + €
Then it holds that

(A\g)(z) = /)\aa(wa + b)p(da, dw, db) = /aa(wTac +b)p'(da, dw, db),

where p' = F,p is the push-forward measure and F : R x R x R — R x R? x R, (a,w,b)
(Aa,w,b). Since p’ is supported on R x Fé x R, we get that

100l ey < [ lale'(daduo,db) = [ halp(da du, ) < N gl e, + AT
which implies that ||/\g||B}%(Rd) < |Al ||gHB}%(Rd) by setting € — 0. Furthermore, we have that
Mgl oy < 1N gl ey = LA gl oy < A= A 1A sy gty = Al e
Thus, the equalities must hold and ”/\gHB}%(]Rd) = |l HgHB}Q(W)

(iil) (Product) Fix € > 0. For i € {1, 2}, there exists a probability p; supported on R x Eﬁ;i x R such
that

gi(x) = /aa(wa + b)pi(da, dw, db), =€ R%

and that
/|a|pi(da,dw7db) < ||9iHB§_ (Re) T €.

According to Assumption there exists a probability measure p supported on R x Eim x R such
that

o(y1)o(y2) = /70(51111 + &oyo + n)pu(dy, d, dn),  y1,y2 €R,
where £ = (£1,&) T € R2, and

/ [Y|u(dry, d€, dn) < b, + €.

Recall that sup, g |o(y)| < co. By Fubini’s theorem, it holds for any 2 € R that
g1(x)ga2(x) :/ala(wlTx + b1)p1(day, dwy, dby) /ago(w;a: + ba)p2(dag, dws, dbs)
:/alaza(wix + bl)a(w;x + b2)p1 X pa2(day, dwy,dby, das, dws, dby)

- / 4102 / o (Ex(w] @ + by) + Exlwg a + by) + 1) uldy, dé, dn)



p1 X pa2(day, dwy, dby, das, dws, dby)
Z/alaﬂa ((G1wr + &) @ + £1b1 + &b + 1)
p1 X p2 X p(day, dwn,dby, das, dws, dbse, dvy, d€, dn).
Consider a function
FRxRIXRxRxRIXRXxRxR2ZxR—RxR? xR,
(a1, w1, b1, az, wa, ba,v,§,m) = (d W' b)),

where
A
a = aipaz7y,

w' = &wy + Swo,
b = &b + E2b0 + 1.

The push-forward measure p’ = F,(p1 X p2 X 1) is supported on R xEdR xR where R = R,,,(R1+R>)
and it holds that

g1(7)ge(z) = /aa(wa +b)p'(da, dw, db).
Therefore, we have
9192 sy o) < | ! (da. o )
= / layazy|p1 X p2 X p(day, dwy, dby, dag, dws, dbs, dry, dE, dn)
= / [v|p(dry, d€, dn) / la1|p1(da1, dw1,dbr) / |as|pa(daz, dws, dbs)
< (b + ) (lglsy, e+ €) (gl gy +€)
which then implies that [|g192| g1 (may < lm ||g||3}%1 (®R%) ||g||B}%2(Rd) ase — 0.

(iv) (Derivatives) For any € > 0, there exists a probability measure p supported on R x Eé x R such
that

g(z) = /aa(wa + b)p(da, dw,db), x € R?,

and that
/ lal p(da, dw, db) < g1 za) + €.

According to Assumption there exist probability measures y1 and po, supported on R x E}z a1 XR

and R x E}% a2 X R respectively, such that
o'(y) = /WU(EZ/ +n)pi(dy,d€, dn), yER,

o (y) = /W(&y +n)p2(dy, dé,dn), yER,
and
/hlm(dv, dé,dn) < g1+, / V|1 (dry, d€, dn) < Lgo +e.

Recall that sup, g [0(y)| < 00, sup,cg |07 (y)| < 00, sup,cg 0" (y)| < 0o, and [[w| < R for p-ae.
(a,w,b). It holds that

B;g(x) = /a(w,ei>0’(wTa: + b)p(da, dw, db)

- / a(w, e;) / Yo (E(w e+ b) + m)yua (dy, de, dn)p(da, dw, db)



’70‘ w, e’L )Tx+§b+77)p X Ml(daa dw7db7 d’77d€7dn)

/aa w' x4 b)p) (da, dw, db),

and that
0:019() = [ aluw,ei){w.e5)0" (w s + b)p(da, dw, db)
— [ atw,ew.es) [ ro(etwTa+ b) + nna(dy. dé. dn)p(da, dw.db
= [ vatw.ei)w,es)o(€w) o+ €b e+ m)p x palda, b, dy. dé, di)
= /aa(wa + b)ph(da, dw, db),
where p} = Fi(p x pn) and py = Gi(p x pn) with F(a,w,b,7v,&,n) = (ya({w, €;), §w, &b + 1)

\-’7;

and G(a w,b,v,&,n
R x By Ry, r X Rand R X B;d r X Rrespectively. Therefore, we obtain that

(va(w, e;)(w, ej),Ew, &b + n). Note that pj and pf are supported on

015l ey < [ laloh (da dw. b
:/|W<wa€i>|f> x i1 (da, dw, db, dv, d§, dn)
SR/|V|M1(Gl’)’,d§7d77)/IaIp(da,dw,db)

< R(lg1 +¢) (||g||3g(Rd) + 6) ’

and similarly,
1001911, o) < [ laloh(da b
— [ Inatw, ) w.e5)lp x pa(da, du, b, . dé, di)
< RQ/Ivluz(d%d&dn)/IaIp(da,dw,db)

= R?(lgs + €) (Ilgllsmd) + 6) '

Then we can obtain the desired estimates by letting e — 0. O

Proof of Lemma([3.4] This proof is modified from [9]. Consider the one-dimensional case d = 1 first.
The Green’s function G(x) for the screened Poisson equation

d2
(I—dxz>u:g7 x € R,
can be explicitly computed as

_F1 S I L
G(z)=F (1+£2}'(50)—]: (1+£2)—2€ ,

which leads to [, |G(z)|dxz = 1. For any e > 0, there exists a probability measure p supported on
R x B x R such that

g(x) = /ao(wx +b)p(da, dw,db), =z €R,

and that
/|a|p(da,dIU,db) < HQHB}%(R) te

10



It holds that
9\ -1
((1 - 4) g) @) = [ Glgta vy
= /G(y) /aa(w(m —y) + b)p(da, dw, db)dy
_ / G(y)ac(wz — wy + b)p(da, dw, db)dy

- /aa(wx +b)p'(da, dw, db),

where p' = F,(p x m) with m being the Lebesgue measure and FF : Rx R x R x R — R x
R x R, (a,w,b,y) — (G(y)a, w,b — wy). Then p’ is supported on R x B x R and by Fubini’s

theorem,
2N\
H(I da:) 9

< [ lalo'(da, dw.ab
BL(R)

:/|G(y)a|p(da,dw,db)dy

~ [16@ldy [ lalotda. dw,av

< llgllsy, ) + €

which leads to

-1
(I - Ug’%) 9| < ||g||Bll%(R) as € — 0. For a general dimension d > 1, since
By (R)

the operator I — A and the Barron norm are invariant under any orthogonal transformation, for any
w € EdR and b € R, by the analysis for d = 1, it holds that

(= 2) o(w" - +b)HB}z(Rd) < lo(w”- +b)||B}?(Rd> <1

For any € > 0, there exists a probability measure p supported on R x E{é x R such that

g(z) = /aa(w—rx + b)p(da, dw,db), x € R,

and that
/|a|p(da,dw,db) < ||9||B}?(Rd) Te

Therefore, by the Jensen’s inequality for expectation and the convexity of the Barron norm, one has
that

12 = 2) 7 gll sy gy = H / a(I = A) o (wT - +5)p(da, dw, db)

Bp(RY)

< [1al I = 2) w45, o (s . )

< [ lalotda, dw )
< ||9||B}%(Rd) té

which yields that || (1 — A)’lgHB}%(R) < ”9”8}3(11%) ase — 0. O

Proof of Lemma[3.3] According to Lemma [3.3](iv), we have

||8iAij||B}?d &) S ligRa ||Ai,j||5}m (RY)

||8jut||5}%d LR t(Rd) § Ed,lRuyt HUt”B}% t(Rd) 5
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and
Haijut”B}ad’QR“),,(Rd) < gd,ZRi,t HutHB}%u,t(Rd) ,

forany 1 <4, j < d. Then applying Lemma[3.3](iii), we obtain that

leut |1

Rm(Ru,tJch)(Rd) S Km ||Ut||B}?u,t(Rd) ||C||B}?C(Rd) = fmgc ||UtHB}3u,t(Rd) 5

||81A1,33m\|3113 (R%) S émE?l,lRARu,t HAi’jHB}LzA (R) HUtHB}2 t(Rd)

mBRg 1 (Ry,t+RA)
2
S gmgd,lgARARu,t ||ut||5}? (R4) s
Lt
and

40| g2,

2
«m(Rd,zRu,tJrRA)(Rd) § gmgd,ZRu,t ”AinB}{A ||Ut||B}3u,t (R)

< llaalaR2 Hut”B}?u (R

for any 1 < 4,5 < d. Therefore, one can estimate the Barron norm of v; by Lemma@ (1):

”thB}? ,(RY) = (gmgA(gi,lRARu,t + fd,zRi,t)cF + Emﬁc) ||utHB}12 ,(RY) + 45,

where
Rv,t = maX{Rde,l(Ru,t + RA)» Rm(Rd,QRu,t + RA)» Rm(Ru,t + Rc)v Rf}
Then using Lemma [3.4] Lemma[3.3](ii), and Lemma[3.3] (i), we can finally conclude (3-3). O

Proof of Lemma[3.6] Consider any ¢ > 0. There exists a probability measure p supported on
R x Eéu . X R, such that

ug(x) = /acos(chc +b)p(da,dw,db), zeR?,

and
[ lalotda, dw,db) < uslgy, s+

Let us suppose that

Aij(x) = /aA,z'j cos(wp ;@ +baij)paij(dan,dwa g, dba;), = €R?,

c(z) = /ac cos(wCTz + be)pe(dac, dw,,db.), x € RY,

and
f(z) = /af cos(wix+by)ps(day,dwy,dby), = €RY,

where the probability measures p4i;, pc, and py are supported on R x EdR L X R R X Eéc x R,
and R x E}é ;X R, respectively, and satisfy that

/ laaijlpaij(dasij,dwa;j,dba ;) < la+e,

/ |ac|pe(dac, dwe, dbe) < L. + €,

and
/‘af‘,of(dafvdwfvdbf) Stpte
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Then it holds that
vt(x) :Eut — f

,J
T 7r
=— Z aaij(wa,ij, e;) cos (wAﬂ;jx +baij+ 5) dpa,ij
i
T T
- | afa,w;) cos (w x+b+ 5) dp
+ / aAij cos(wlijx +baij)dpaij /a(w, ei)(w, e;) cos(wa +b+ w)dp)
+ /ac cos(w, = + be)dp. / acos(w'z + b)dp

+ fx)= [ ay cos(w;x +by)dpy

_ Z <aA,ija<wA,’i2jaei><w7ej> CoS ((wA,ij + ’LU)TLL' + bA,'L'j + b+ 7T) dpAzJ % dp

i,J
+ aA7ija<wA7i2jz 6i><’LU, ej> cos ((wA,ij _ w)Tx + bA,ij _ b) dpA,ij « dp
aqqial{w,e)(w,e;
4 24 < 5 J{w, e5) CoS ((wA,ij +w) 'z + baij+b+ 7r) dpa,ij % dp
+aA,ija<U/,26i><w7 €j> cos ((wA,'L] _ w)'l'm + bA,'L] —_bh— 71') dpA,z] % dp)

+ a;l cos ((wC + w)Tx + b + b) dpe X dp

Qc

2@ cos ((wC - w)Tx + b, — b) dpe X dp

+
—agcos(wix +by)dpy.

Let us denote

. aai0{wa,ij, €i)(w, €;) T
Ug(T) = — cos ((wa,ij +w) +ba; +b+m)dpa,; X dp
=2 < 2(1 + [|wai; + wl) (s ) ! ) dpas
aagja{wa,ij,e;)(w,e;)
2(1 + Jlwaij — wl*)
aai;alw,e;)(w,e;)
2(1+ [lwaij +wl*)

0S ((wA,ij — w)Tx + bA,ij — b) dpA,ij X dp

cos ((wAyij + w)Tw +bas;+b+ 7r) dpai; x dp

aa,i;a{w, e;)(w,e;)
201+ wai; — wlf®)
a.a

[¢0)] ((wAﬂ'j — ’LU)TIE + bA,ij —b-— 7T) dpA,ij X dp)

+ cos ((we +w) "z + b 4+ b) dpe x dp
2(1 + |Jwe + w|?) ( )
a.a
+ c cos ((we —w) "z + b — b) dpe x dp
2(1 + J|we — wl|®) ( )
ar T
— ————cos(w; x + by)dpy.
1+ [lwg? '

It is straightforward to verify that vy, 9, € L°°(R™) with (I — A)?; = v;. Note that the PDE

(I — A)u = v, has a unique solution in S}, the space of tempered distributions, since the solution

u can be expressed in terms of the inverse Fourier transform of vy, i.e. u = (I — A)~"ly, =

F ( w}' vt). Therefore the uniqueness implies that o; = (I — A)~tvy.
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According to the support of p 4 ;;, we only need to consider w4 ;; with ||wa ;;|| < Ra. For any w, if
lwl|| > 2R 4, then

4,550 (WAij, €i) (W, ¢5) | _ | @oa,ia{Wa,ij €i) (W, e5) | laasial
— Vel
I

2(1 + lwai; + wl|®)

3 llw
On the contrary, if ||w|| < 2R 4, then

aa,ija{wa,ij, ei)(w, e;)
201+ [[wai; £ wll”)

2R?
2A la,ijal = Rlaaijal.

Combining the above two cases, we obtain that

anijawa,ij, ei){w, &) | _ 2 d d
<max{R%,1} |aaijal, VweR" wy,; € Bg,. D.1)
2(1+ [wai; = w|?) a1} -laaal 7 TR
Similarly, we also have that
aai;alw,e;)(w,e;) 9 d —d
<2max{Ry,1} |aaal, VweRY wy,; € Bg,. (D.2)
2(1+HU/A,ijZ|ZwH2) { A } | v | J Ra

Using (D-1), (D-2), and Lemma 3.3| (i), we can estimate the Barron norm of &, = (I — A)~1v; as
follows

7= 8) 0y ey <0 max{ 5.1} [ foassldpass [ lado
+ [tacldp. [ 1aldp-+ [ lasldey
<6d% max{R%,1}({4 + ¢) (||ut||3}% ®a) T e)

8o+ (ol oo+ €) + (+)
where R ; = Ry + max{Ra, R., Ry}. The estimate above directly implies that
H<I - A)_lthB}% L(R9) < (6&4 maX{R?q, 1}d2 + EC) ||ut|‘8}%mt(]1{<d) + L.

Then we can get (3.7) by applying Lemma 3.3] (i)-(ii). O
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