APPENDIX

A Additional Technical Results

Extra notations. We let $\mathbb{B}_r(z)$ denote an open ball of radius r centered at z, and let $\|M\|_F$ denote the Frobenius norm. $\|\cdot\|_2$ is understood as the spectral norm when it is used with a matrix. Further, for any vector-valued function $h: \mathbb{R}^{d_{\theta}} \to \mathbb{R}^l$ of arbitrary dimensionality l whose first-order partial derivatives exist, we denote its Jacobian matrix with respect to a variable θ by $J_{\theta}(h) \in \mathbb{R}^{l \times d_{\theta}}$.

Here we present additional notions and results which we will use for proofs.

Definition A.1 (Quadratic growth condition). For each $\beta^* \in s^*(P)$, there exists a neighborhood $\mathbb{B}_r(\beta^*)$ with some r > 0 and a positive constant κ such that

$$\mathcal{L}(\beta) \ge \mathcal{L}(\beta^*) + \kappa \textit{dist}(\beta, \mathsf{s}^*(\mathsf{P}))$$

for all $\beta \in \mathbb{B}_r(\beta^*)$.

The above quadratic growth condition is widely used in nonlinear programming and can be ensured by various forms of second order sufficient conditions [e.g., 51]. Next, we provide the following lemma that underpins the construction of our estimator in Section 3.

Lemma A.1. For some fixed functions $g: \mathcal{Y} \to \mathbb{R}$ and $h: \mathcal{X} \to \mathbb{R}$, let $\mu_{g,a} = \mathbb{E}[g(Y) \mid X, A = a]$, so $\eta = \{\pi_a, \mu_{g,a}\}$. For any random variable T, let

$$\varphi_a(T;\eta) = \frac{\mathbb{1}(A=a)}{\pi_a(X)} \left\{ T - \mathbb{E}[T \mid X, A] \right\} + \mathbb{E}[T \mid X, A=a],$$

denote the uncentered efficient influence function for the parameter $\mathbb{E}\{\mathbb{E}[T\mid X,A=a]\}$. Also, define our parameter and the corresponding estimator by $\psi_{g,a}=\mathbb{E}[g(Y^a)h(X)]$ and $\widehat{\psi}_{g,a}=\mathbb{P}_n\{\varphi_a(g(Y);\widehat{\eta})h(X)\}$, respectively. If we assume that:

(D1) either i) $\widehat{\eta}$ are estimated using sample splitting or ii) the function class $\{\varphi_a(\cdot;\eta):\eta\in(0,1)^2\times\mathbb{R}^2\}$ is Donsker in η

(D2)
$$\mathbb{P}(\widehat{\pi}_a \in [\epsilon, 1 - \epsilon]) = 1$$
 for some $\epsilon > 0$

(D3)
$$\|\varphi_a(\cdot; \widehat{\eta}) - \varphi_a(\cdot; \eta)\|_{2,\mathbb{P}} = o_{\mathbb{P}}(1),$$

Then we have

$$\|\widehat{\psi}_{g,a} - \psi_{g,a}\|_{2} = O_{\mathbb{P}} \left(\|\widehat{\pi}_{a} - \pi_{a}\|_{2,\mathbb{P}} \|\widehat{\mu}_{g,a} - \mu_{g,a}\|_{2,\mathbb{P}} + n^{-1/2} \right).$$

If we further assume that

(D4)
$$\|\widehat{\psi}_{g,a} - \psi_{g,a}\|_{2,\mathbb{P}} \|\widehat{\mu}_{g,a} - \mu_{g,a}\|_{2,\mathbb{P}} = o_{\mathbb{P}}(n^{-1/2}),$$

then

$$\sqrt{n}(\widehat{\psi}_{g,a} - \psi_{g,a}) \xrightarrow{d} N\left(0, var\{\varphi_a(g(Y); \eta)h(X)\}\right),$$
 (5)

and the estimator $\widehat{\psi}_{g,a}$ achieves the semiparametric efficiency bound, meaning that there are no regular asymptotically linear estimators that are asymptotically unbiased and with smaller variance⁴.

Proof. The proof is indeed very similar to that of the conventional doubly robust estimator for the mean potential outcome, and we only give a brief sketch here.

Let us introduce an operator $\mathcal{IF}: \psi \to \varphi$ that maps functionals $\psi: \mathbb{P} \to \mathbb{R}$ to their influence functions $\varphi \in L_2(\mathbb{P})$. Then it suffices to show that $\mathcal{IF}(\psi_{g,a}) = \mathcal{IF}(\mathbb{E}[\mu_{g,a}(X)h(X)]) = \varphi_a(g(Y); \eta)h(X)$. In the derivation of the efficient influence function of the general regression

⁴This is also a local asymptotic minimax lower bound.

function in Section 3.4 of [23], when h is known and only depends on X, it is clear to see that pathwise differentiability [23, Equation (6)] still holds when h(x) is multiplied and thus

$$\mathcal{IF}(\mu_{g,a}(x)h(x)) = \frac{\mathbb{1}(X = x, A = a)}{\mathbb{P}(X = x, A = a)} \{g(Y)h(x) - \mu_{g,a}(x)h(x)\}$$
$$= \mathcal{IF}(\mu_{g,a}(X))h(X).$$

Hence, $\mathcal{IF}(\mathbb{E}[\mu_{q,a}(X)h(X)]) = \varphi_a(g(Y);\eta)h(X).$

Another way to see this is that since the influence function is basically a (pathwise) derivative (i.e., Gateaux derivative) we can think of multiplying by h(x) as multiplying by a constant, which does not change the form of the original derivative, beyond multiplying by the "constant" h(x). We refer the reader to [23] and references therein for more details about the efficient influence function and influence function-based estimators.

B Proofs

For proofs, let us consider the following more general form of stochastic nonlinear programming with deterministic constraints and some finite-dimensional decision variable x in some compact subset $S \in \mathbb{R}^k$:

$$\begin{array}{lll} \underset{x \in \mathcal{S}}{\operatorname{minimize}} & f(x) & & \underset{x \in \mathcal{S}}{\operatorname{minimize}} & \widehat{f}(x) \\ \operatorname{subject to} & g_j(x) \leq 0, & j = 1, ..., m & & \\ \end{array} \quad \begin{array}{ll} \underset{x \in \mathcal{S}}{\operatorname{minimize}} & \widehat{f}(x) \\ & \text{subject to} & g_j(x) \leq 0, & j = 1, ..., m. \end{array} \quad (\widehat{\mathsf{P}}_{nl})$$

We consider the case that f, \hat{f} are C^1 functions. In the proofs, the active set J_0 is defined with respect to P_{nJ} .

B.1 Proof of Theorem 4.1

Lemma B.1. Let $\hat{x} \in s^*(\widehat{P}_{nl})$ and assume that f is twice differentiable with Hessian positive definite. Then under Assumption (B1) we have

$$dist(\widehat{x}, \mathsf{s}^*(\mathsf{P}_{nl})) = O\left(\sup_{x'} \|\nabla_x \widehat{f}(x') - \nabla_x f(x')\|\right).$$

Proof. Due to the positive definiteness of the Hessian of f, from the KKT condition at $x^* \in s^*(P_{nl})$ with multipliers γ_i^*

$$\nabla_x L(x^*, \gamma^*) = \nabla_x f(x^*) + \sum_{j \in J_0(x^*)} \gamma_j^* \nabla_x g_j(x^*) = 0,$$

it follows that the following second order condition holds:

$$d^{\top} \nabla_x^2 L(x^*, \gamma^*) d > 0 \quad \forall d.$$

Hence, by Still [51, Theorem 2.4] the quadratic growth condition holds at x^* . Then by Shapiro [47, Lemma 4.1] and the mean value theorem, we have

$$\mathsf{dist}\left(\widehat{x}, \mathsf{s}^*(\mathsf{P}_{nl})\right) \leq \alpha \left(\sup_{x'} \|\nabla_x \widehat{f}(x') - \nabla_x f(x')\| \right)$$

for some constant $\alpha > 0$, which completes the proof.

Now, by the fact that both of the objective functions in (P) and (\widehat{P}) are differentiable with respect to β , by Lemma A.1 and B.1, we obtain the result.

B.2 Proof of Theorem 4.2

Lemma B.2. Assume that f is twice differentiable whose Hessian is positive definite. Then under Assumption (B1), (B2), if LICQ and SC hold at x^* , we have

$$n^{1/2}\left(\widehat{x}-x^*\right) \xrightarrow{d} \begin{bmatrix} \nabla_x^2 f(x^*) + \sum_j \gamma_j^* \nabla_x^2 g_j(x^*) & \mathsf{B}(x^*) \\ \mathsf{B}^\top(x^*) & 0 \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \end{bmatrix} \Upsilon,$$

where

$$n^{1/2}\left(\nabla_x \widehat{f}(x^*) - \nabla_x f(x^*)\right) \xrightarrow{d} \Upsilon.$$

Proof. First consider the following auxiliary parametric program with respect to (P_{nl}) with the parameter vector $\xi \in \mathbb{R}^k$.

$$\label{eq:problem} \begin{split} & \underset{x \in \mathcal{S}}{\text{minimize}} & & f(x) + x^\top \xi \\ & \text{subject to} & & g_j(x) \leq 0, \quad j = 1, ..., m. \end{split}$$

 (P_{ξ}) can be viewed as a perturbed program of (P_{nl}) ; for $\xi=0$, (P_{ξ}) coincides with the program (P_{nl}) . Here, the parameter ξ will play a role of medium that contain all relevant stochastic information in (\widehat{P}_{nl}) [48]. Let $\bar{x}(\xi)$ denote the solution of the program P_{ξ} . Clearly, we get $\bar{x}(0)=x^*$.

We have already shown that $\widehat{x} \xrightarrow{p} x^*$ at the rate of $n^{1/2}$ and that the quadratic growth condition holds at x^* under the given conditions in Theorem 4.1. Further, since the Hessian $\nabla_x^2 f(x^*)$ is positive definite and LICQ holds at x^* , the uniform version of the quadratic growth condition also holds at $\overline{x}(\xi)$ (see Shapiro [48, Assumption A3]). Hence by Shapiro [48, Theorem 3.1], we get

$$\widehat{x} = \bar{x}(\xi) + o_{\mathbb{P}}(n^{-1/2})$$

where

$$\xi = \nabla_x \widehat{f}(x^*) - \nabla_x f(x^*).$$

If $\bar{x}(\xi)$ is Frechet differentiable at $\xi = 0$, we have

$$\bar{x}(\xi) - x^* = D_0 \bar{x}(\xi) + o(\|\xi\|),$$

where the mapping $D_0\bar{x}: \mathbb{R}^k \to \mathbb{R}^k$ is the directional derivative of $\bar{x}(\cdot)$ at $\xi = 0$. Since $\bar{x}(0) = x^*$, this leads to

$$n^{1/2}(\widehat{x} - x^*) = D_0 \bar{x}(n^{1/2}\xi) + o_{\mathbb{P}}(1).$$

Now we shall show that such mapping $D_0\bar{x}(\cdot)$ exists and is indeed linear. To this end, we will show that $\bar{x}(\xi)$ is locally totally differentiable at $\xi=0$, followed by applying an appropriate form of the implicit function theorem. Define a vector-valued function $H \in \mathbb{R}^{(k+m)}$ by

$$H(x,\xi,\gamma) = \begin{pmatrix} \nabla_x f(x) + \sum_j \gamma_j \nabla_x g_j(x) + \xi \\ \operatorname{diag}(\gamma)(g(x)) \end{pmatrix}$$

where a vector g is understood as a stacked version of g'_js . Due to the SC and LICQ conditions, the solution of $H(x,\xi,\gamma)=0$ satisfies the KKT condition for (P_ξ) : i.e., $H(\bar x(\xi),\xi,\bar\gamma(\xi))=0$ where $\bar\gamma(\xi)$ is the corresponding multipliers. Now by the classical implicit function theorem [e.g., 11, Theorem 1B.1] and the local stability result [51, Theorem 4.4], there always exists a neighborhood $\mathbb{B}_{\bar r}(0)$, for some $\bar r>0$, of $\xi=0$ such that $\bar x(\xi)$ and its total derivative exist for $\forall \xi\in\mathbb{B}_{\bar r}(0)$. In particular, the derivative at $\xi=0$ is computed by

$$\nabla_{\xi} \bar{x}(0) = -\mathbf{J}_{x,\gamma} H(\bar{x}(0), 0, \bar{\gamma}(0))^{-1} \left[\mathbf{J}_{\xi} H(\bar{x}(0), 0, \bar{\gamma}(0)) \right],$$

where in our case $\bar{x}(0) = x^*, \bar{\gamma}(0) = \gamma^*$, and thus

$$\boldsymbol{J}_{x,\gamma}H(\bar{x}(0),0,\bar{\gamma}(0)) = \begin{bmatrix} \nabla_x^2 f(x^*) + \sum_j \gamma_j^* \nabla_x^2 g_j(x^*) & \mathsf{B}(x^*) \\ \mathsf{B}^\top(x^*) & 0 \end{bmatrix},$$

with
$$\mathsf{B} = \left[\nabla_x g_j(x^*)^\top, j \in J_0(x^*) \right]$$
, and

$$J_{\xi}H(\bar{x}(0),0,\bar{\gamma}(0)) = \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \end{bmatrix}.$$

Here the inverse of $J_{x,\gamma}H(\bar{x}(0),0,\bar{\gamma}(0))$ always exists (see Still [51, Ex 4.5]). Therefore we obtain that

$$D_0 \bar{x}(n^{1/2}\xi) = \begin{bmatrix} \nabla_x^2 f(x^*) + \sum_j \gamma_j^* \nabla_x^2 g_j(x^*) & \mathsf{B}(x^*) \\ \mathsf{B}^\top(x^*) & 0 \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \end{bmatrix} n^{1/2}\xi.$$

Finally, if $n^{1/2}\xi \xrightarrow{d} \Upsilon$, by Slutsky's theorem it follows

$$n^{1/2}\left(\widehat{x}-x^*\right) \xrightarrow{d} \begin{bmatrix} \nabla_x^2 f(x^*) + \sum_j \gamma_j^* \nabla_x^2 g_j(x^*) & \mathsf{B}(x^*) \\ \mathsf{B}^\top(x^*) & 0 \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \end{bmatrix} \Upsilon.$$

Then, the desired result for Theorem 4.2 immediately follows by the fact that

$$\nabla_{\beta} \mathcal{L} = -\mathbb{E} \left\{ Y^a(Z; \eta) h_1(V, \beta) + (1 - Y^a) h_0(V, \beta) \right\}$$

where

$$h_1(V,\beta) = \frac{1}{\log \sigma(\beta^{\top} \boldsymbol{b}(V))} \boldsymbol{b}(V) \sigma(\beta^{\top} \boldsymbol{b}(V)) \{1 - \sigma(\beta^{\top} \boldsymbol{b}(V))\},$$

$$h_0(V,\beta) = -\frac{1}{\log(1 - \sigma(\beta^{\top} \boldsymbol{b}(V)))} \boldsymbol{b}(V) \sigma(\beta^{\top} \boldsymbol{b}(V)) \{1 - \sigma(\beta^{\top} \boldsymbol{b}(V))\},$$

followed by applying Lemma A.1.