
APPENDIX

A Additional Technical Results

Extra notations. We let Br(z) denote an open ball of radius r centered at z, and let ∥M∥F denote
the Frobenius norm. ∥ · ∥2 is understood as the spectral norm when it is used with a matrix. Further,
for any vector-valued function h : Rdθ → Rl of arbitrary dimensionality l whose first-order partial
derivatives exist, we denote its Jacobian matrix with respect to a variable θ by Jθ(h) ∈ Rl×dθ .

Here we present additional notions and results which we will use for proofs.
Definition A.1 (Quadratic growth condition). For each β∗ ∈ s∗(P), there exists a neighborhood
Br(β

∗) with some r > 0 and a positive constant κ such that

L(β) ≥ L(β∗) + κdist (β, s∗(P))

for all β ∈ Br(β
∗).

The above quadratic growth condition is widely used in nonlinear programming and can be ensured
by various forms of second order sufficient conditions [e.g., 51]. Next, we provide the following
lemma that underpins the construction of our estimator in Section 3.
Lemma A.1. For some fixed functions g : Y → R and h : X → R, let µg,a = E[g(Y ) | X,A = a],
so η = {πa, µg,a}. For any random variable T , let

φa(T ; η) =
1(A = a)

πa(X)
{T − E[T | X,A]}+ E[T | X,A = a],

denote the uncentered efficient influence function for the parameter E{E[T | X,A = a]}. Also,
define our parameter and the corresponding estimator by ψg,a = E[g(Y a)h(X)] and ψ̂g,a =
Pn{φa(g(Y ); η̂)h(X)}, respectively. If we assume that:

(D1) either i) η̂ are estimated using sample splitting or ii) the function class {φa(·; η) : η ∈
(0, 1)2 × R2} is Donsker in η

(D2) P(π̂a ∈ [ϵ, 1− ϵ]) = 1 for some ϵ > 0

(D3) ∥φa(·; η̂)− φa(·; η)∥2,P = oP(1),

Then we have

∥ψ̂g,a − ψg,a∥2 = OP

(
∥π̂a − πa∥2,P∥µ̂g,a − µg,a∥2,P + n−1/2

)
.

If we further assume that

(D4) ∥ψ̂g,a − ψg,a∥2,P∥µ̂g,a − µg,a∥2,P = oP(n
−1/2),

then
√
n(ψ̂g,a − ψg,a)

d−→ N
(
0, var

{
φa(g(Y ); η)h(X)

})
, (5)

and the estimator ψ̂g,a achieves the semiparametric efficiency bound, meaning that there are no
regular asymptotically linear estimators that are asymptotically unbiased and with smaller variance4.

Proof. The proof is indeed very similar to that of the conventional doubly robust estimator for the
mean potential outcome, and we only give a brief sketch here.

Let us introduce an operator IF : ψ → φ that maps functionals ψ : P → R to their influ-
ence functions φ ∈ L2(P). Then it suffices to show that IF(ψg,a) = IF(E[µg,a(X)h(X)]) =
φa(g(Y ); η)h(X). In the derivation of the efficient influence function of the general regression

4This is also a local asymptotic minimax lower bound.
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function in Section 3.4 of [23], when h is known and only depends on X , it is clear to see that
pathwise differentiability [23, Equation (6)] still holds when h(x) is multiplied and thus

IF(µg,a(x)h(x)) =
1(X = x,A = a)

P(X = x,A = a)
{g(Y )h(x)− µg,a(x)h(x)}

= IF(µg,a(X))h(X).

Hence, IF(E[µg,a(X)h(X)]) = φa(g(Y ); η)h(X).

Another way to see this is that since the influence function is basically a (pathwise) derivative (i.e.,
Gateaux derivative) we can think of multiplying by h(x) as multiplying by a constant, which does
not change the form of the original derivative, beyond multiplying by the "constant" h(x). We refer
the reader to [23] and references therein for more details about the efficient influence function and
influence function-based estimators.

B Proofs

For proofs, let us consider the following more general form of stochastic nonlinear programming with
deterministic constraints and some finite-dimensional decision variable x in some compact subset
S ∈ Rk:

minimize
x∈S

f(x)

subject to gj(x) ≤ 0, j = 1, ...,m
(Pnl)

minimize
x∈S

f̂(x)

subject to gj(x) ≤ 0, j = 1, ...,m.
(P̂nl)

We consider the case that f, f̂ are C1 functions. In the proofs, the active set J0 is defined with respect
to Pnl.

B.1 Proof of Theorem 4.1

Lemma B.1. Let x̂ ∈ s∗
(
P̂nl

)
and assume that f is twice differentiable with Hessian positive

definite. Then under Assumption (B1) we have

dist (x̂, s∗(Pnl)) = O

(
sup
x′
∥∇xf̂(x

′)−∇xf(x
′)∥

)
.

Proof. Due to the positive definiteness of the Hessian of f , from the KKT condition at x∗ ∈ s∗(Pnl)
with multipliers γ∗j

∇xL(x
∗, γ∗) = ∇xf(x

∗) +
∑

j∈J0(x∗)

γ∗j∇xgj(x
∗) = 0,

it follows that the following second order condition holds:

d⊤∇2
xL(x

∗, γ∗)d > 0 ∀d.

Hence, by Still [51, Theorem 2.4] the quadratic growth condition holds at x∗. Then by Shapiro [47,
Lemma 4.1] and the mean value theorem, we have

dist (x̂, s∗(Pnl)) ≤ α
(
sup
x′
∥∇xf̂(x

′)−∇xf(x
′)∥

)
for some constant α > 0, which completes the proof.

Now, by the fact that both of the objective functions in (P) and (P̂) are differentiable with respect to
β, by Lemma A.1 and B.1, we obtain the result.
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B.2 Proof of Theorem 4.2

Lemma B.2. Assume that f is twice differentiable whose Hessian is positive definite. Then under
Assumption (B1), (B2), if LICQ and SC hold at x∗, we have

n1/2 (x̂− x∗) d−→
[
∇2

xf(x
∗) +

∑
j γ

∗
j∇2

xgj(x
∗) B(x∗)

B⊤(x∗) 0

]−1 [
1
0

]
Υ,

where

n1/2
(
∇xf̂(x

∗)−∇xf(x
∗)
)

d−→ Υ.

Proof. First consider the following auxiliary parametric program with respect to (Pnl) with the
parameter vector ξ ∈ Rk.

minimize
x∈S

f(x) + x⊤ξ

subject to gj(x) ≤ 0, j = 1, ...,m.
(Pξ)

(Pξ) can be viewed as a perturbed program of (Pnl); for ξ = 0, (Pξ) coincides with the program (Pnl).
Here, the parameter ξ will play a role of medium that contain all relevant stochastic information in
(P̂nl) [48]. Let x̄(ξ) denote the solution of the program Pξ. Clearly, we get x̄(0) = x∗.

We have already shown that x̂
p−→ x∗ at the rate of n1/2 and that the quadratic growth condition holds

at x∗ under the given conditions in Theorem 4.1. Further, since the Hessian ∇2
xf(x

∗) is positive
definite and LICQ holds at x∗, the uniform version of the quadratic growth condition also holds at
x̄(ξ) (see Shapiro [48, Assumption A3]). Hence by Shapiro [48, Theorem 3.1], we get

x̂ = x̄(ξ) + oP(n
−1/2)

where

ξ = ∇xf̂(x
∗)−∇xf(x

∗).

If x̄(ξ) is Frechet differentiable at ξ = 0, we have

x̄(ξ)− x∗ = D0x̄(ξ) + o(∥ξ∥),

where the mapping D0x̄ : Rk → Rk is the directional derivative of x̄(·) at ξ = 0. Since x̄(0) = x∗,
this leads to

n1/2 (x̂− x∗) = D0x̄(n
1/2ξ) + oP(1).

Now we shall show that such mapping D0x̄(·) exists and is indeed linear. To this end, we will show
that x̄(ξ) is locally totally differentiable at ξ = 0, followed by applying an appropriate form of the
implicit function theorem. Define a vector-valued function H ∈ R(k+m) by

H(x, ξ, γ) =

(
∇xf(x) +

∑
j γj∇xgj(x) + ξ

diag(γ)(g(x))

)
where a vector g is understood as a stacked version of g′js. Due to the SC and LICQ conditions, the
solution of H(x, ξ, γ) = 0 satisfies the KKT condition for (Pξ): i.e., H(x̄(ξ), ξ, γ̄(ξ)) = 0 where
γ̄(ξ) is the corresponding multipliers. Now by the classical implicit function theorem [e.g., 11,
Theorem 1B.1] and the local stability result [51, Theorem 4.4], there always exists a neighborhood
Br̄(0), for some r̄ > 0, of ξ = 0 such that x̄(ξ) and its total derivative exist for ∀ξ ∈ Br̄(0). In
particular, the derivative at ξ = 0 is computed by

∇ξx̄(0) = −Jx,γH(x̄(0), 0, γ̄(0))−1 [JξH(x̄(0), 0, γ̄(0))] ,

where in our case x̄(0) = x∗, γ̄(0) = γ∗, and thus

Jx,γH(x̄(0), 0, γ̄(0)) =

[
∇2

xf(x
∗) +

∑
j γ

∗
j∇2

xgj(x
∗) B(x∗)

B⊤(x∗) 0

]
,
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with B =
[
∇xgj(x

∗)⊤, j ∈ J0(x∗)
]
, and

JξH(x̄(0), 0, γ̄(0)) =

[
1
0

]
.

Here the inverse of Jx,γH(x̄(0), 0, γ̄(0)) always exists (see Still [51, Ex 4.5]). Therefore we obtain
that

D0x̄(n
1/2ξ) =

[
∇2

xf(x
∗) +

∑
j γ

∗
j∇2

xgj(x
∗) B(x∗)

B⊤(x∗) 0

]−1 [
1
0

]
n1/2ξ.

Finally, if n1/2ξ d−→ Υ, by Slutsky’s theorem it follows

n1/2 (x̂− x∗) d−→
[
∇2

xf(x
∗) +

∑
j γ

∗
j∇2

xgj(x
∗) B(x∗)

B⊤(x∗) 0

]−1 [
1
0

]
Υ.

Then, the desired result for Theorem 4.2 immediately follows by the fact that

∇βL = −E {Y a(Z; η)h1(V, β) + (1− Y a)h0(V, β)}

where

h1(V, β) =
1

log σ(β⊤b(V ))
b(V )σ(β⊤b(V )){1− σ(β⊤b(V ))},

h0(V, β) = −
1

log(1− σ(β⊤b(V )))
b(V )σ(β⊤b(V )){1− σ(β⊤b(V ))},

followed by applying Lemma A.1.
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