APPENDIX

A Additional Technical Results

Extra notations. We let B,.(z) denote an open ball of radius r centered at z, and let | M || r denote
the Frobenius norm. || - ||2 is understood as the spectral norm when it is used with a matrix. Further,
for any vector-valued function h : R% — R’ of arbitrary dimensionality / whose first-order partial
derivatives exist, we denote its Jacobian matrix with respect to a variable 8 by Jy(h) € R!>d6,

Here we present additional notions and results which we will use for proofs.

Definition A.1 (Quadratic growth condition). For each 8* € s*(P), there exists a neighborhood
B,.(8*) with some r > 0 and a positive constant  such that

L(B) = L(B) + rdist(5,s™(P))
forall B € B,.(8%).

The above quadratic growth condition is widely used in nonlinear programming and can be ensured
by various forms of second order sufficient conditions [e.g., 51]. Next, we provide the following
lemma that underpins the construction of our estimator in Section 3]

Lemma A.1. For some fixed functions g : ) = Rand h: X — R, let 15, =E[g(Y) | X, A = al,
50N = {Ta, lg,a}. For any random variable T let

1(A=a)

Pa(T31) = T;o {T—E[T| X, A} +E[T'| X, A =d],

denote the uncentered efficient influence function for the parameter E{E[T | X, A = a|}. Also,

define our parameter and the corresponding estimator by 14, = E[g(Y*)h(X)] and TZg,a =
Pn{va(g(Y); N)h(X)}, respectively. If we assume that:

(D1) either i) 1) are estimated using sample splitting or ii) the function class {pq(;m) : n €
(0,1)% x R2} is Donsker in 7

(D2) P(7, € [e,1 —€]) = 1 for some € > 0
(D3) |l¢a(-:1) = ¢alsn)ll2p = 0p(1),
Then we have
Bo.e ~palls = O (I — Talapll g — tgalloe +n772).

If we further assume that

(D4) ||wg,a - "/}g,QHZ,IP’”//l\gﬂ — /1’9704”2,]13’ — Op(n_l/g)’

then
Vitg.a = Vo) 5 N(0,var{pa(9(Y )imh(X)} ), 5)

and the estimator 14 , achieves the semiparametric efficiency bound, meaning that there are no
regular asymptotically linear estimators that are asymptotically unbiased and with smaller variance{ﬂ

Proof. The proof is indeed very similar to that of the conventional doubly robust estimator for the
mean potential outcome, and we only give a brief sketch here.

Let us introduce an operator ZF : 1 — ¢ that maps functionals v» : P — R to their influ-
ence functions ¢ € Ly(P). Then it suffices to show that ZF (¢, ,) = ZF (E[pg,qe(X)R(X)]) =
©a(g(Y);n)h(X). In the derivation of the efficient influence function of the general regression

“This is also a local asymptotic minimax lower bound.
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function in Section 3.4 of [23]], when h is known and only depends on X, it is clear to see that
pathwise differentiability [23] Equation (6)] still holds when h(z) is multiplied and thus

Tty Vh(0)) = o) (Y VH(0) — sy ()

= T (uyu (X))(X).
Hence, ZF (E[pg,q (X)R(X)]) = wa(g(Y);n)R(X).

Another way to see this is that since the influence function is basically a (pathwise) derivative (i.e.,
Gateaux derivative) we can think of multiplying by h(z) as multiplying by a constant, which does
not change the form of the original derivative, beyond multiplying by the "constant" h(x). We refer
the reader to [23]] and references therein for more details about the efficient influence function and
influence function-based estimators. O

B Proofs

For proofs, let us consider the following more general form of stochastic nonlinear programming with
deterministic constraints and some finite-dimensional decision variable x in some compact subset
S € R¥:

minimize f(x) minimize  f(z) ~
z€s (P v€S (Pn1)
subjectto  g;(z) <0, j=1,...,m subjectto  g;(z) <0, j=1,...,m.

We consider the case that f, j?are C'" functions. In the proofs, the active set Jj is defined with respect
to P,;.

B.1 Proof of Theorem 4.1

Lemma B.1. Let T € s* and assume that f is twice differentiable with Hessian positive
definite. Then under Assumption we have

dist(@,5"BD) = O (sup 9. F!) ~ V2] )
x/
Proof. Due to the positive definiteness of the Hessian of f, from the KKT condition at z* € s* (P

with multipliers 7

VoL(z®,7") = Vaf (") + Y 7 Vag(a*) =0,
Jj€Jo(x*)

it follows that the following second order condition holds:

d"V2L(z*,4*)d >0 Vd.

Hence, by Still [51, Theorem 2.4] the quadratic growth condition holds at z*. Then by Shapiro [47,
Lemma 4.1] and the mean value theorem, we have

dis (7,5° O2D) < (sup . e') — V. )

for some constant o > 0, which completes the proof. O

Now, by the fact that both of the objective functions in (P) and (Eb are differentiable with respect to
B, by Lemma[A.T|and we obtain the result.
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B.2 Proof of Theorem4.2]

Lemma B.2. Assume that f is twice differentiable whose Hessian is positive definite. Then under

Assumption|[(BT)) if LICQ and SC hold at x*, we have

2 (5 g% {Vﬁf(x*) E;(;*y);vigj(x*) B(g*)}1 H T,

where

nl/2 (me(x*) - me(x*)) 4,

Proof. First consider the following auxiliary parametric program with respect to with the
parameter vector & € R”.

minimize f(z) +z '€

€S (pg)
subjectto  g;(z) <0, j=1,...,m.

(P can be viewed as a perturbed program of (P); for £ = 0, (P¢) coincides with the program (P).
Here, the parameter £ will play a role of medium that contain all relevant stochastic information in

[48]]. Let Z(&) denote the solution of the program@ Clearly, we get Z(0) = x*.

We have already shown that T 2y 2* at the rate of n'/2 and that the quadratic growth condition holds
at #* under the given conditions in Theorem Further, since the Hessian V2 f(z*) is positive
definite and LICQ holds at 2*, the uniform version of the quadratic growth condition also holds at
Z(&) (see Shapiro [48, Assumption A3]). Hence by Shapiro [48| Theorem 3.1], we get

T =2(6) +op(n'?)

where

~

§=Vaf(a") = Vo f(a").
If Z(&) is Frechet differentiable at £ = 0, we have
z(§) — " = Doz(§) + o(lI€]),

where the mapping Doz : R¥ — R* is the directional derivative of z(-) at £ = 0. Since z(0) = x*,
this leads to

n/2 (% — 2*) = Doz(n'/2¢) + op(1).

Now we shall show that such mapping Doz (-) exists and is indeed linear. To this end, we will show
that Z(&) is locally totally differentiable at £ = 0, followed by applying an appropriate form of the

implicit function theorem. Define a vector-valued function H € R(*+™) by

(Ve (@) + 5,7 Ve (@) + €
H(”””’g’”)‘( diag(3)(9(2)) )

where a vector ¢ is understood as a stacked version of g;»s. Due to the SC and LICQ conditions, the

solution of H(x,&,~) = 0 satisfies the KKT condition for (P¢): i.e., H(Z(§),&,7(£)) = 0 where
(&) is the corresponding multipliers. Now by the classical implicit function theorem [e.g., [L1]
Theorem 1B.1] and the local stability result [S1, Theorem 4.4], there always exists a neighborhood
B#(0), for some 7 > 0, of £ = 0 such that Z(£) and its total derivative exist for V¢ € B(0). In
particular, the derivative at £ = 0 is computed by

Vez(0) = —Jz 1 H(2(0),0,5(0)) 7 [J¢H(2(0),0,7(0))],
where in our case Z(0) = z*,7(0) = v*, and thus

_ [Vif@@) + 32575 Vigi(a) B(a¥)

Jx,»yH(i'(O),O,’T/(O)) BT(QS*) 0 ’
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with B = [ngj(x*)‘r’ jE Jo(x*)]’ and

JeH(@(0).0.5(0) = [g]

Here the inverse of J, ,H (Z(0),0,7%(0)) always exists (see Still [51, Ex 4.5]). Therefore we obtain
that

Doz(n'/2¢) = [V%f(x*) : TZ(;-: 3);FV§gj<x*) B((a)c*)] B H a2,

Finally, if n'/2¢ % Y, by Slutsky’s theorem it follows

W2 = gy {V;‘;f(:c*) + ;( vazgxx*) B(g*)}‘l H T,

Then, the desired result for Theorem 4.2 immediately follows by the fact that
VL = —E{Y(Zin)h (V. B) + (1 =Y*)ho(V, B)}

where

1
V) = e o (7))

ho(V, ) =

b(V)o(Bb(V)){1 —a(8"b(V))},

1 . e
_log(lfa(ﬁTb(V)))ba/)U(ﬁ b(V)){1—0a(B b(V))},

followed by applying Lemma[A-T]
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