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ABSTRACT

We investigate the capability of Transformer large language models (LLMs) to
generalize on unseen symbols when trained on tasks that rely on abstract symbols
(e.g., variables in programming and mathematics). Such a ‘variable-binding’ ca-
pability has long been studied in the neuroscience literature as one of the most
basic ‘reasoning’ capabilities. For (i) binary classification tasks, we prove that
Transformers can generalize to unseen symbols but require astonishingly large
training data. For (ii) tasks with labels dependent on input symbols, we show an
“inverse scaling law”: Transformers fail to generalize to unseen symbols as their
embedding dimension increases. For both cases (i) and (ii), we propose a Trans-
former modification, adding two trainable parameters per head that can reduce the
amount of data needed.

1 INTRODUCTION

Reasoning can be defined as the ability to use logical rules to generalize outside of one’s training
data. During most of the history of Al, reasoning was widely thought to be achievable only through
programs that manipulated mathematical symbols using hand-coded logical rules (Newell et al.,
1959; Marcus, 1998). However, recent developments have challenged this paradigm: as large lan-
guage models (LLMs) are trained with increasing quantities of data, they start to exhibit the ability
to reason mathematically (Kaplan et al., 2020; Yuan et al., 2023). But why does more data help an
LLM to reason outside of its training set? And how efficient can we make LLMs in that regard?

In this paper, we focus on how LLMs learn to reason in tasks involving abstract symbols (known as
variable-binding tasks in the neuroscience literature). The reasoning capability required for these
tasks is basic, but crucial to many domains and has been hypothesized to be necessary for much
of human cognition (Fodor, 1975; Newell, 1980; Marcus, 1998; Kriete et al., 2013; Webb et al.,
2020b). For example, variable-binding is a building block of mathematics and computer science,
where abstract symbols (i.e., variable names) refer to concrete values in a proof or program.

See Figure 1 for an illustrative variable-binding task, where we train an LLM to evaluate Python pro-
grams x;, and return their output y;. Memorizing the training data is easy (Zhang et al., 2021a), but
we wish to measure reasoning: will the LLM learn to treat the variable names as abstract symbols,
enabling generalization beyond its training dataset? To evaluate this, we adopt an out-of-distribution
setting, where the train and test data distributions differ (Marcus, 1998; Abbe et al., 2023). The test
dataset consists of the same programs, but with different variable names never seen during training.
Remarkably, as the training set size increases, the LLM’s ability to reason outside of its training data
improves.

In Figure 2, we consider a variable-binding task with one extra layer of complexity: each sample is
labeled with a symbol (instead of a real number +1 or —1 as in Figure 1). For the LLM to generalize
to symbols unseen at train time, not only must it track the value stored in a variable, but it also must
learn to predict symbolic labels at test time that do not occur in its training data. On this more
sophisticated task, we observe that a transformer requires much more training data to generalize.

1.1 OUR CONTRIBUTIONS

To understand these phenomena, we study a framework of reasoning tasks of which Figures 1 and 2
are special cases. (i) For the real-valued label tasks as in Figure 1, we prove that transformers will
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Figure 1: (a,b) Variable names in the test data never appear in the train data (indicated by
lower/upper-case names). (c) Our theory motivates a slightly modified transformer architecture (see
Observation 1.2), which solves the reasoning task with less training data. Details in Appendix A.
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Figure 2: (a,b) A task where labels are also symbols. (c) Our modified transformer learns the
reasoning task with less data (see Observation 1.2 and Theorem 1.4). Details in Appendix A.

learn to generalize, but require a large quantity of data. (ii) For the symbolic-label tasks as in Fig-
ure 2, we prove that transformers will fail. For settings (i) and (ii) we propose small parametrization
adjustments that improve data efficiency and allow for success, respectively. Finally, we support our
claims experimentally, and also cast light on how pretraining helps improve reasoning abilities.

1.1.1 TEMPLATE TASKS: A FRAMEWORK FOR REASONING WITH ABSTRACT SYMBOLS

Building on a long line of work in neuroscience (Marcus, 1998; Kim et al., 2018; Webb et al.,
2020b), we formalize a framework of reasoning tasks called template tasks. These tasks come in
two kinds: real-label as in Figure 1, and symbolic-label as in Figure 2.

Real-label template tasks A real-label template task is specified by a collection of “templates”
labeled by real numbers, which are used to generate the train and test data. For instance, the data in
Figure 1 is generated from the templates

“a=1;p/=-1;print(a)” — label=+1 and “a=1;p=-1;print(8)” — label=-1, (1)

because every sample (x;,v;) € X* x ) is formed by picking a template and replacing the place-
holder symbols «, 5 (which we call “wildcards”) with variable names. Each template should be
thought of as a logical rule enforcing that all data matching the template must have the template’s
label. Therefore, a template task measures the ability of an LLM to learn logical rules on abstract
symbols: the LLM must infer the templates from training data, and at test time match samples to the
corresponding templates to derive their labels. This framework captures several natural tasks:

» Same/different task. With templates “aa” and “a5” labeled by +1 and —1, the task is to
distinguish between equal symbols (e.g., AA, BB) or distinct symbols (e.g., AB, BC).
This task has been empirically studied as a basic reasoning task (Kim et al., 2018).

* More complex relations. More complex mathematical functions of strings are also easy to
encode: e.g., with templates “aa/3” and “aSa” labeled with 41, and “Baa’” labeled with
—1 the task is whether the first token occurs in the majority. See also (Webb et al., 2020b)
for three other such tasks.

* Word problems. Many popular word problems follow a simple template. For example, the
template “If « gives 5 5 v, how many ~ does § have?” labeled by +5, could generate the
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data “If Alice gives Bob 5 oranges, how many oranges does Bob have?” or the data “If Rob
gives Ada 5 apples, how many apples does Ada have?”

Symbolic-label template tasks A symbolic-label template task is the same, except that the tem-
plates are labeled by a wildcard. The data in Figure 2 is generated by:

“a:"'y" ;5:"5" ;prlnt (a)” — labelz’y and “a="’y" ;ﬁ="6" ;prlnt (/8)” — label=6 5 (2)

where «, 3,7, § are wildcards. Other examples include:

* Programming. The template “print("a")” labeled with v generates (print("A"),A) or
(print("dog"),dog), and so captures the ability to robustly evaluate print statements.

» Word problems. The template “If v gives 8 § v, how many -y does 5 have?”, labeled by 9,
can generate several of the above word problems. An LLM that solves this task will output
the correct answer of, say 10 if 6 = 10 at test time even if 4 # 10 in all training data.

In practice, such template tasks may occur as a natural component of a larger reasoning or word
problem, but we isolate them here so that we can perform a theoretical analysis. We analyze the
real- and symbolic-label settings separately, as they give complementary insights.

1.1.2 ANALYTICAL RESULTS FOR TEMPLATE TASKS with real labels

(1) MLPs fail to generalize to unseen symbols A classical criticism of connectionism by Marcus
(1998) is that neural networks cannot mimic human abilities to reason because of their poor gener-
alization on symbols that do not occur in their train data. In Appendix I, we support this criticism by
proving that classical MLP architectures (a.k.a. fully-connected networks) trained by SGD or Adam
will not generalize in template tasks on symbols unseen at training, regardless of the train data size.

(2) Transformers generalize to unseen symbols, but require large data diversity Nevertheless,
the criticism of Marcus (1998) is not entirely valid for modern transformer architectures (Vaswani
et al., 2017). We analyze the training dynamics of a transformer model and establish:

Theorem 1.1 (Informal Theorem 4.4). For any real-label template task, a wide-enough transformer
architecture trained by gradient flow on sufficiently many samples generalizes on unseen symbols.

Here the key points are: (a) Universality. The transformer architecture generalizes on symbols un-
seen in train data regardless of which and how many templates are used to define the reasoning task.
(b) Large enough number of samples. Our theoretical guarantees require the training dataset size to
be large, and even for very basic tasks like the two-template task in Figure 1, good generalization
begins to occur only at a very large number of training samples considering the simplicity of the
task. This raises the question of how the inductive bias of the transformer can be improved.

(3) Improving data-efficiency of transformers The proof of Theorem 1.1 inspires a parametriza-
tion modification that empirically lowers the quantity of data needed by an order of magnitude, by
making it easier for the transformer to use the incidence matrix of the input string with itself:

Observation 1.2. Adding one trainable parameter a to each attention head so that WKW5 is
replaced by W WS + al dramatically improves transformers’ data-efficiency on template tasks.

1.1.3 ANALYTICAL RESULTS FOR TEMPLATE TASKS with symbolic labels

(4) Transformers fail at copying unseen symbols Surprisingly, the story is different for
symbolic-label tasks. Transformers’ performance degrades as the model grows (an “inverse scal-
ing” law (McKenzie et al., 2023)). Transformers fail even for the task of copying the input.

Theorem 1.3 (Informal Theorem 5.1). Transformers with large embedding dimension fail to gener-

« 9 “ 9

alize on unseen symbols for the copy-task outputting label “a” on template “o.”.

(5) Modifying transformers for success However, a small modification corrects this failure.

Theorem 1.4 (Informal Theorem 5.2). Adding one trainable parameter b to each attention head so
that Wy, Wg is replaced by Wy, Wép + bl makes transformers generalize on the task of Theorem 1.3.
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1.1.4 EXPERIMENTAL VALIDATION AND EXPLORATION

We conclude with experimental validation, including showing that the transformer modifications
proposed in Observation 1.2 and Theorem 1.4 improve performance in GPT-2 trained on Wikitext.
We also show data-efficiency improvements on template tasks by fine-tuning a pretrained model,
and give as an explanation the pronounced diagonals in W WS and Wy WJ matrices of pretrained
models (Trockman & Kolter, 2023), which coincide with the proposed transformer modifications.

1.2  RELATED LITERATURE

A spate of recent work studies whether and how LLMs perform various reasoning tasks, each fo-
cusing on one component of reasoning: these include recognizing context-free grammars (Zhao
et al., 2023; Allen-Zhu & Li, 2023), generalizing out-of-distribution when learning Boolean func-
tions (Abbe et al., 2023), performing arithmetic (Nanda et al., 2023), learning in context (Garg et al.,
2022; Ahn et al., 2023; Zhang et al., 2023), reasoning analogically Webb et al. (2020b), and evalu-
ating indexing Zhang et al. (2021b). Our setting can be seen as a generalization of the tasks in (Kim
et al., 2018) and (Webb et al., 2020b). Kim et al. (2018) shows experimentally that feedforward
networks trained on the same/different templates cvar vs. a8 do not generalize to symbols not seen
in the training data (we provide a proof in Appendix I). Webb et al. (2020b) considers four tasks that
can be viewed as template tasks with wildcard-only templates, proposes a network architecture and
experimentally shows the benefits of training with Temporal Context Normalization (Webb et al.,
2020a). In contrast, our focus is on understanding when the transformer architecture learns or fails
to learn, and how to modify it to improve its data-efficiency for reasoning.

2 TRANSFORMER DEFINITION

We interchangeably denote an input by a string € X* or a matrix X € R¥*™ constructed
by stacking the one-hot vectors X = [e,,,...,e,,]7 of the string’s tokens. We study a depth-
1 transformer architecture (Vaswani et al., 2017). The transformer has H heads with parameters
W, Won Wyn Woy € RincaaXdems an embedding layer W € R™*deme  positional
embeddings P € R¥*demv an MLP layer with parameters W 4, W € R%mi»Xdems 3 final un-
embedding layer with weights wy € R%mb, and an activation function ¢. The network takes in
X € RF¥*™ and outputs

Srrans( X5 0) = w%zz eR (Unembedding layer)
where
29 = WEG(W 421) € Rdeme (MLP layer)
z1 = Z Agek € Rems (Attention layer output at final token)
he[H]
A, =smax(BZoW e W qnZ ) ZoW 1, Wo,j, € RFXdem (Attention heads)
Zy=XWg+yP ¢ RFdems (Embedding layer)

Here 3,+ > 0 are two hyperparameters that control the inverse temperature of the softmax and
the strength of the positional embeddings, respectively. The architecture is standard, except that
we remove skip connections and layer norm as these are not needed for our theoretical results.
Additional notations are: [n] = {1,...,n}.

3 TEMPLATE TASKS

We formally define template tasks with real labels. The case of symbolic labels is in Appendix J.

Definition 3.1. A template is a string z € (X U W)k , where X is an alphabet of tokens, and W
is an alphabet of “wildcards”. A substitution map is an injective function s : W — X. We write
sub(z,s) € X for the string where each wildcard is substituted with the corresponding token:
sub(z,s); = 2 if z; € X, and sub(z,s); = s(z;) if z; € W. The string * € X* matches the
template z if = sub(z, s) for some substitution map s and also s(W) N {z;},cpp = 0: ie., the
substituted tokens did not already appear in the template z.
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Example Using Greek letters to denote the wildcards and Latin letters to denote regular tokens,
the template “aaB.ST” matches the string “QQRST”, but not “QQQST” (because the substitution
map is not injective) and not “QQSST” (because 3 is replaced by S which is already in the template).

A template task’s training data distribution is generated by picking a template randomly from a
distribution, and substituting its wildcards with a random substitution map.

Definition 3.2. A real-label template data distribution D = D (fttmpits { fsub,z } =, fx, ) is given by

» a template distribution ftympi; supported on templates in (X U W)¥,
* for each z € supp(ftempit), @ distribution gis,p, » over substitution maps s : W — X,

* template labelling function f, : supp(temprt) — R, and a label-noise parameter o > 0.

We draw a sample (x,y) = (sub(z,s), f«(z) + &) ~ D, by drawing a template 2 ~ fimplt, @
substitution map s ~ fsup, 2, and label noise £ ~ N (0, 02).

Finally, we define what it means for a model to generalize on unseen symbols; namely, the model
should output the the correct label for any string z € X'*, regardless of whether the string is in the
support of the training distribution.

Definition 3.3. A (random) estimator f : X* — R generalizes on unseen symbols with (¢, § )-error
if the following is true. For any € X'* that matches a template z € supp( femplit ), We have

(f(z) = fu(2))* <,

with probability at least 1 — § over the randomness of the estimator f .

Example If the training data is generated from a uniform distribution on templates
“aa” with label 1 and “af” for label -1, then it might consist of the data samples
{(44,1),(BB,1),(AB,—1),(BA,—1)}. An estimator that generalizes to unseen symbols must
correctly label string C'C with +1 and string C'D with —1, even though these strings consist of sym-
bols that do not appear in the training set. This is a nontrivial reasoning task: a model that succeeds
must effectively infer what the templates are given the training data, and then infer the label of the
test string by matching it to the appropriate template.

4  ANALYSIS FOR TEMPLATE TASKS WITH REAL LABELS

We establish that transformers generalize on unseen symbols on any real-label template task, when
trained with enough data. It is important to note that this is not true for all architectures, as we prove
in Appendix I that MLPs trained by SGD or Adam will not succeed.

Our achievability result for transformers requires the templates in the distribution fi¢mpl: to be “dis-
joint”, since otherwise the correct label for a string @ is not uniquely defined, because x could match
more than one template:

Definition 4.1. Two templates z, 2’ € (X UW)* are disjoint if no z € X'* matches both z and z’.
Furthermore, in order to ensure that the samples are not all copies of each other (which would not
help generalization), we have to impose a diversity condition on the data.

Definition 4.2. The data diversity is measured by p = Ml gupp(jum) MilteX 52— 5] -
SNUsub,z “

When the data diversity p is large, then no token is much more likely than others to be substituted.
If p is on the order of the number of samples n, then most pairs of data samples will not be equal.

4.1 TRANSFORMER RANDOM FEATURES KERNEL

We analyze training only the final wy layer of the transformer, keeping the other weights fixed
at their random Gaussian initialization. Surprisingly, even though we only train the final layer of
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the transformer, this is enough to guarantee generalization on unseen symbols.! Taking the width
parameters H, demp, dmip, dheqq to infinity, and the step size to 0, the SGD training algorithm with
weight decay converges to kernel gradient flow with the following kernel Kians.’

Kattn(XaX) Kattn(XvY) ) (3)
Kattn(YaX) Kattn(YvY)

where Kotin(X,Y) = Ery(x),m(y) [smax(,é’m(X))T(XYT + 72 I)smax(Bm(Y))]
XXT+92T XYT +421 )
Y XT 4421 YYT +421|

Kirans (X, ¥) = Eu o [6(u)0(0)] for . v ~ N(0, [

[m(X), m(Y)] ~ N(0

The function outputted by kernel gradient flow is known to have a closed-form solution in terms of
the samples, the kernel, and the weight-decay parameter A, which we recall in Proposition 4.3.

Proposition 4.3 (How kernel gradient flow generalizes; see e.g., Welling (2013).). Let

(X1,y1)s .-, (X, yn) be training samples. With the square loss and ridge-regularization of mag-
nitude A\, kernel gradient flow with kernel K converges to the following solution

F(X) =y (K + D) 'k(X) @
where y = [y1,...,yn] € R™ are the train labels, K € R™" js the empirical kernel matrix and

as entries Ai-: i, X ), an € R"™ has entries k; = is .
h K;j = K(X;,X; d k(X R™ h k(X K(X;, X

4.2 TRANSFORMERS GENERALIZE ON UNSEEN SYMBOLS

We analyze the solution to the kernel gradient flow with the transformer random features, which
corresponds to training the last layer with SGD with weight decay in the infinitely-wide, infinitely-
small-step-size limit.

Theorem 4.4 (Transformers generalize on unseen symbols). Let [ismplt be supported on a finite set of
pairwise-disjoint templates ending with [CLS] tokens. Then, for almost any (3,7, b1, by parameters
(except for a Lebesgue-measure-zero set), the transformer random features with ¢(t) = cos(b1t+bs)
generalizes on unseen symbols.> Formally, there are constants c,C' > 0 and ridge regularization
parameter X\ > 0 that depend only 3,7, by, ba, ftemplt, [+, 0, such that for any x matching a template

z € supp(fumpit) the kernel ridge regression estimator f in (4) with kernel Kyans satisfies

[f(x) — f.(2)] < C\Vlog(1/8)/n+C\/1/p,

with probability at least 1 — 6 — exp(—cn) over the random samples.

The first term is due to the possible noise in the labels. The second term quantifies the amount of
sample diversity in the data. Both the sample diversity and the number of samples must tend to
infinity for an arbitrarily small error guarantee.

Proof sketch (1) In Lemma 4.5 we establish with a sufficient condition for kernel ridge regression
to generalize on unseen symbols. (2) We prove that Kyans satisfies it.

(1) Sufficient condition. Let iympi: be supported on templates 21, ..., 2,. Let R = Uiclk],jelr] {zﬂ}
be the tokens that appear in the templates. Let [n] = Z; UZ, U- - -UZ, be the partition of the samples
such that if a € Z; then sample (x4, y,) is drawn by substituting the wildcards of template z;.

Two samples x,, x; that are drawn from the same template z; are not necessarily similar to each
other as measured by the kernel: i.e., they might not have large kernel inner product K (x,, xp).
However, they will have similar relationship to most other samples: for most ¢ € [n] we will have,

K(zy,x;) =~ K(xp, x;) .

"Empirically, we observe that generalization improves when all layers are trained; see Appendix B.

2This kernel is derived in Appendix H, and assumes that every string  ends with a special [CLS] classifi-
cation token that does not appear elsewhere in the string.

3We analyze the shifted and rescaled cosine activation function ¢(t) = cos(bit + ba) out of technical
convenience, but conjecture that most non-polynomial activation functions should succeed.
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This is increasingly true as the data diversity parameter p grows, as it becomes increasingly likely
that samples x,, and x; have their wildcards substituted by disjoint sets of tokens that did not appear
in the templates, and similarly for x; and @;, in which case K (x,,x;) = K(xp, ;). Therefore,
as the sample diversity increases, the empirical kernel matrix K becomes approximately block-
structured with blocks Z; x Z;:. In other words, for most samples x,, x; corresponding to template
z;, and most ., oy corresponding to template z;» we have

K(xz,,xq) = K(xp, xy ) = K(sub(zj, s),sub(z;,s")) := N, j, %)
where s, s’ : W — X are substitution maps satisfying
sW)NsW)=0 and sW)NR=sW)NR = 0. (6)

One can check that (5) and (6) uniquely define a matrix N € R"*" which gives the entries in the
blocks of K, with one block for each pair of templates.* If the matrix IV is nonsingular and the
number of samples is large, then the span of the top r eigenvectors of K will align with the span of
the indicator vectors on the sets 7y, . .., Z,. Furthermore, when testing a string x**! that matches
template z;, but might not have appeared in the training set, it holds that for most a € Z;, we have

k(z') = [K(mt“t,wl), e K(mt“t,mn)] ~ [K(xg, 21),. .., K(®a, x,)] = Ka .

In words, the similarity relationship of x!¢*¢ to the training samples is approximately the same as
the similarity relationship of x, to the training samples. So the kernel ridge regression solution (4)
approximately equals the average of the labels of the samples corresponding to template z;, which
in turn is approximately equal to the template label by a Chernoff bound,

. 1
y (K + M) k(ze?) ~ T Z yi = fu(zj). (7)
J aEIj

Therefore, kernel ridge regression generalizes on x'¢s!. It is important to note that the number of

samples needed until (7) is a good approximation depends on the nonsingularity of IN. This yields
the sufficient condition for kernel ridge regression to succeed (proof in Appendix C).

Lemma 4.5 (Informal Lemma C.2). If IN is nonsingular, then (4) generalizes to unseen symbols.

(2) Kirans satisfies the sufficient condition. We now show that for any collection of disjoint templates
Z1,...,2p, the matrix Nyans ;= N € R™*" defined with kernel K = Kia,s is nonsingular.
This is challenging because Ky ans does not have a closed-form solution because of the expectation
over softmax terms in its definition (3). We analyze the MLP layer and the attention layer of the
transformer separately. We observe that a “weak” condition on K, can be lifted into the “strong”
result that Ny, is nonsingular. The intuition is that as long as K, is not a very degenerate kernel,
it is unlikely that the MLP layer has the cancellations that to make IN,,,s nonsingular.

Lemma 4.6 (Nonsingularity of N ans). Suppose for every non-identity permutation T € S, \ {id},
Z Kt (sub(z;, ), sub(z;, ")) # Z Katn (sub(z;, 5),sub(z,(;), ")), (8)

i€[r] i€lr]

where s, s are the substitution maps in the definition of Nirans in (6). Let the MLP layer’s activation
Sfunction be ¢(t) = cos(bit + bz). Then for almost any choice of by, bs (except for a Lebesgue-
measure-zero set), the matrix IN ans 1S nonsingular.

This is proved in Appendix E, by evaluating a Gaussian integral and showing N.ns has Vander-
monde structure. Although we use the cosine activation function, we conjecture that this result holds
for most non-polynomial activation functions. Next, we prove the condition on IV .

Lemma 4.7 (Non-degeneracy of Kau,). The condition (8) holds for Lebesgue-almost any 3, .

The proof is in Appendix F. First, we prove the analyticity of the kernel K, in terms of the
hyperparameters /3 and . Because of the identity theorem for analytic functions, it suffices to show
at least one choice of hyperparameters § and +y satisfies (8) for all non-identity permutations 7.
Since K, does not have a closed-form solution, we find such a choice of 5 and «y by analyzing the
Taylor-series expansion of Ky, around 5 = 0 and v = 0 up to order-10 derivatives.

*This assumes a “token-symmetry” property of K that is satisfied by transformers; details in the full proof.
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4.3 IMPROVING TRANSFORMER DATA-EFFICIENCY WITH WKW(g + al PARAMETRIZATION

Can we use these insights to improve transformers’ data-efficiency in template tasks? In the proof,
the nonsingularity of IN in Lemma 4.5 drives the model’s generalization on unseen symbols. This
suggests that an approach improve data-efficiency is to make IN better-conditioned by modifying
the transformer parametrization. We consider here the simplest task, with templates “ca’ and “a5”
labeled with +1 and —1, respectively. For tokens A, B, C, D € X, the matrix IN is

_ |K(AA,BB) K(AA,BC)

T |K(BC,AA) K(AB,CD)

If K is an inner-product kernel, K(z,@') = r(3 ;¢ 1(zi = 7)), as from an MLP, then
K(AA,BB) = K(AA,BC) = K(BC,AA) = K(AB,CD) = k(0), so N is singular and
generalization is not achieved. Intuitively, every sample x; has the same “similarity profile to other
data” IA(L: = [K(x;,x1),...,K(x;,x,)], so the kernel method cannot identify the samples that
come from the same template as x**** via the similarity profile. In contrast, the transformer kernel
succeeds since it incorporates information about the incidence matrix X X T, which is different be-
tween templates, and does not depend on the symbol substitution. By reparametrizing each head to
Wk Wg + oI, we add a scaling of X X and further emphasize it in the transformer.

N

5 ANALYSIS FOR TEMPLATE TASKS WITH SYMBOLIC LABELS

In the previous section, we considered tasks under a regression setting with mean-squared error loss.
We now switch to a next-token prediction setting with the cross-entropy loss. The symbolic-label
variant of template tasks is analogous to the real-label template tasks studied so far, except that
the output label is a token as in the example of Figure 2; formal definition is in Appendix J. For
simplicity, we consider the architecture with just the attention layer, and we tie the embedding and
unembedding weights as in practice:

fattn (X§ 0) = Wgzan € R™. &)

We also consider the simplest template task with symbolic labels and show that transformers will
fail to generalize: template “«” labeled by “a’”. An example dataset generated from this template
couldbe {(A4, A), (B, B),(C,C)}, where A, B,C' € X are tokens. Because the template has length
k = 1, the architecture simplifies to

farn(X;0) = Wp( Y W Wy, (WELXT +4PT). (10)
he[H]

Despite the simplicity of the task, faitn does not generalize on unseen symbols when trained, when
we take the embedding dimension large. Our evidence is from analyzing the early time of training.
Define the train loss and test loss as follows, where £ is the cross-entropy loss and x*** is a token

that does not appear in the training data,

1
Etrm‘n(a) = E Z g(fattn (xi§ 0)7 yi) and Etest(o) = E(fattn (ItESt)v ytESt) .

i=1

n

We train with gradient flow, and show that the generalization loss on unseen symbols does not
decrease for infinite-width transformers on the symbolic-label “copying” task where the template is

“a” and is labeled by “a”.
Theorem 5.1 (Failure of transformers at copying). For any learning rates such that —

O(1), we must have that % lt=0— 0 as demp — 0.

9Ltrain
ot

t=0=—

The intuition comes from examining (10), and noting that at early times the evolution of the weights
W5 Wy, will roughly lie in the span of {W e,,eZ W g}ic[,), which as the embedding di-

mension becomes large will be approximately orthogonal to the direction W% € test eftest W g that
would lower the test loss. However, this suggests the following:

Theorem 5.2 (Adding one parameter allows copying). After reparametrizing the attention (9) so
that in each head Wg,th,h is replaced by WgthV,h + b I where by, is a trainable parameter,
there are learning rates such that —% lt=o= O(1) and —% lt—o= Q(1) as demp — 0.
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(a) Vanilla transformer (b) Transformer with Wy W + bl

1\ il

Figure 3: (a) Inverse scaling law: Transformers fail on copy task as embedding dimension d¢,p
grows (Theorem 5.1) (b) Success when reparametrizing Wy Wg as Wy W +bI (Theorem 5.2).

GPT-2 | GPT-2 + KQ, VO identity
Wikitext2 64.00 60.46
Wikitext103 | 16.83 16.40

Figure 4: Perplexity of GPT-2 trained with Adam learning rate 3e-4 for 20 epochs on Wikitext
(smaller is better). GPT-2 has 117M parameters, and we add an extra 288 parameters (2 per head).

Figure 3 illustrates the benefit of this additional per-head parameter on the copying task. Our pro-
posed reparametrization is similar to adding a trainable skip connection He et al. (2016), but not
equivalent since there is an important subtle difference. The addition of b, I encodes an attention-
modulated skip connection, and thus allows copying tokens between the transformer’s streams.

6 EXPERIMENTS

Figures 1 and 2 show our reparametrizations can give a significant benefit on template tasks. Figure 4
shows they can also give improvements on real data. In Figure 5, we find that fine-tuning a pretrained
model helps with a template task. This might be explained by several heads of the pretrained model
with diagonals stronger from other weights (originally observed in (Trockman & Kolter, 2023)).
These learned diagonals resemble our proposed transformer modifications and so might be driving
the data-efficiency of fine-tuning a pretrained model. Appendix B provides extensive experiments on
the effect of hyperparameters, inductive biases of different models, and varying levels of difficulty.

Performance WKWéP Head 12, Layer 5 Wy WJ Head 12, Layer 11

Figure 5: Left: Pretrained versus from-scratch GPT-2 test loss on aSa vs. a8 template task.
Right: example GPT-2 pretrained heads that have learned diagonals (zoomed in to 100x100 corner).

7  DISCUSSION

Our investigation of Transformers’ ability to generalize to unseen symbols reveals that, while this
architecture is powerful, it is far from optimal, since it requires large amounts of data to learn basic
reasoning abilities and fails altogether at copying unseen symbols. The transformer reparametriza-
tions proposed are a step towards promoting an inductive bias towards logic in LLMs. Architectural
modifications should be explored in analyses of complementary reasoning tasks (such as analogies
and syllogisms) that in practical settings are combined with the ability to generalize on abstract sym-
bols. Apart from architectural modifications, data augmentation approaches (e.g., by concatenating
the tensorization X X7 to the input to encourage use of these features) should also be investigated.
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A DETAILS FOR FIGURES IN MAIN TEXT

In Figure 1, The architecture is a 2-layer transformer with 16 heads per layer, embedding dimension
128, head dimension 64, MLP dimension 256, trained with Adam with learning rate 1e-3 and batch-
size 1024. The n training samples are chosen by picking the variable names at random from an
alphabet of n tokens. The test set is the same two programs but with disjoint variable names. The
reported error bars are on average over 5 trials. The learning rate for each curve is picked as the
one achieving best generalization in {107°,10~%,1073,1072}. In Figure 2, the setting is the same
except that the transformer is 4-layer transformer and has embedding dimension 512. In Figure 3
the same hyperparameters as in Figure 1 are used.

In order to measure the generalization performance of the learned model on unseen symbols, we
evaluate it on a test set and a validation set which each consist of 100 samples drawn in the same
way as the training dataset, but each using a disjoint alphabet of size 100. Therefore, there is no
overlap in the support of the train, test, and validation distributions. We use the validation loss to
select the best epoch of training out of 1000 epochs. We report the test loss on this saved model.

B ADDITIONAL EXPERIMENTS

We report extensive additional experiments probing the template task framework. In each of these,
the training dataset consists of n random training samples. Each sample is drawn according to a
template distribution. The following are template tasks on which we test.

e afa vs. aff task. Uniform on two templates oS and o33 with labels 1, -1 respectively
and « and 3 are wildcards.

e afaf vs. aafB task. Same as above, except with templates aSa g and aa35.

14
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s Length-k majority task. Uniform on 2~! templates o x {a, 3}*~! where a and /3 are
wildcards. A template z has label 1 if its first token occurs in the majority of the rest of the

. M 1
string, and -1 otherwise. Namely, f.(z) = { ’1 otherwise
-1, wi

* Random template task. A certain number r of templates are drawn uniformly from (W U
X)*, conditioned on being pairwise distinct. The task is the uniform distribution over these
r templates, with random Gaussian labels centered and scaled so that the trivial MSE is 1.

For any of these tasks, we generate n training samples as follows. We substitute the wildcards for
regular tokens using a randomly chosen injective function s : YW — X where X is an alphabet of
size n (which is the same size as the number of samples). For example, if a given sample is generated
from template oS with substitution map s mapping s(A) = 12, s(B) = b, then the sample will be
[12,5,12]. Error bars are over 5 trials, unless otherwise noted.

B.1 EFFECT OF TRANSFORMER HYPERPARAMETERS

We test an out-of-the-box transformer architecture on the afa vs. af task, varying some of the
hyperparameters of the transformer to isolate their effect while keeping all other hyperparameters
fixed. The base hyperparameters are depth 2, embedding dimension 128, head dimension 64, number
of heads per layer 16, trained with Adam with minibatch size 1024 for 1000 epochs. Our experiments
are as follows:

* Learning rate and n. In Figure 6 we vary the learning rate and n.

* Learning rate and depth. In Figure 7 and Figure 8, we vary the learning rate and the depth,
for n = 512 and n = 1024, respectively.

* Learning rate and number of heads. In Figure 9 and 10, we vary the learning rate and
number of heads, for n = 512 and n = 1024, respectively.

* Learning rate and embedding dimension. In Figure 11 we vary the learning rate and em-
bedding dimension for n = 1024.

* Learning rate and batch size. In Figure 12, we vary the learning rate and batch-size for
n = 512. In Figure 13 we vary the batch-size and n for learning rate 0.001.

B.2 EFFECT OF COMPLEXITY OF TASK

We test an out-of-the-box transformer architecture with depth 2, embedding dimension 128, head
dimension 64, number of heads 16, trained with Adam with batch-size 1024 for 1000 epochs, on
various template tasks.

» Comparing difficulty of various tasks. Figure 14 we plot the performance on various simple
tasks.

* Random tasks. In Figures 15, 16, 17, and 18, we test on random template tasks, and in-
vestigate the effects of template length, wildcard alphabet size, regular token alphabet size,
number of templates.

B.3 EFFECT OF INDUCTIVE BIAS OF MODEL
We provide experiments probing the effect of the inductive bias of the model:

* Different architectures. In Figure 19, we plot the test loss for different architectures on the
afa vs. aff template task, including transformers with trainable identity perturbations to
WoWE, to Wy WE, to both WoW L and Wy WJ, or to neither.

* Size of model. In Figure 20 we compare the test loss of fine-tuning small, medium and large
pretrained GPT-2 networks on the oS« vs. a3 template task.

o MLP with X X" data augmentation vs. transformer. In Figure 21, we compare the test loss
of a transformer with the test loss of an MLP where the input data has been augmented by
concatenating vec(X X7T), which is a data augmentation that improves performance under
the NTK criterion similarly to the discussion in Section 4.3 and the discussion section.
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Figure 6: Learning rate versus n = number of samples = training alphabet size. Taking too large or
too small of a learning rate can hurt generalization even when the train loss is close to zero.
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Figure 7: Learning rate vs. depth at n = 512. No clear relationship between depth and generaliza-
tion. Too large or too small of a learning rate can hurt generalization.

) 00Transformer test loss vs. learning rate and depth, at n = 1024 ) 0(;I'ransformer train loss vs. learning rate and depth, at n = 1024

—— depth 1 —— depth 1
1.754 —— depth 2 1.754 —— depth 2
—e— depth 4 —e— depth 4
—e— depth 8 " —e— depth 8
1.504 —— depth 16 § 1.504 —— depth 16
&
1.251 § 1.251
ﬁ —
+ 1.00 A < 1,00
? a
2 Kl
c
0.75 A s 0.75 A
%
0.50 A & 0.50 4
0.25 A 0.25 A
0.00 ‘ ; ‘ 0.00 % ; —
1074 1073 1072 1074 1073 1072
learning rate learning rate

Figure 8: Learning rate vs. depth at n = 1024. Unlike n = 512 case, in previous figure, larger depth
typically performs better.
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Figure 10: Learning rate vs. number of heads at n = 1024. More heads are better.
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Figure 11: Learning rate vs. embedding dimension at n = 1024. Smaller embedding dimension is

generally better.
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Figure 12: Learning rate vs. batch-size at n = 512. Smaller batch size is better.
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Figure 13: Batch size vs. n = number of training samples = training alphabet size. Smaller batch
size is generally better, which is most visible at n = 512.

Transformer test loss on various tasks

2.00

1.759

1.501

1.251

1.001

Test loss

0.75 A

0.50 A

0.25 A

ABA vs. ABB, Ir 0.001
AABB vs. ABAB, Ir 0.001
length-2 majority, Ir 0.001
length-4 majority, Ir 0.001
length-6 majority, Ir 0.001
length-8 majority, Ir 0.001

0.00

T
10t

T T T
10? 10° 104

n = train alphabet size = # samples

Best train loss in 1000 epochs

Transformer train loss on various tasks

2.00

1.759

1.501

1.251

1.001

0.75 A

0.50 A

0.25 A

ABA vs. ABB, Ir 0.001
AABB vs. ABAB, Ir 0.001
length-2 majority, Ir 0.001
length-4 majority, Ir 0.001
length-6 majority, Ir 0.001
length-8 majority, Ir 0.001

T T T
10? 10° 10%

n = train alphabet size = # samples

T
10t

Figure 14: Test and train loss of transformer for various tasks. The aSa vs. aff task consists of
two templates oS and o35 with labels +1, -1. The a3 vs. afa3 task has templates +1, -1. For
each k, the length-k majority task consists of all templates in {a} x {, 3}¥~1, where each template
has label 1 if & occurs more times in the last £ — 1 entries, and label +1 if « occurs fewer times in
the last £ — 1 entries. The trivial model that outputs 0 always will achieve test loss of 1.
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Figure 15: Performance on tasks corresponding of two, distinct random templates with two wild-
cards «, 8, and with labels 1, —1, respectively. Performance degrades as the template length in-

creases.
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Figure 16: Performance on tasks corresponding of two random templates of length 5, labeled with
1, —1, respectively. Each template is sampled randomly from WW?, conditioned on the two templates
being distinct. We vary the wildcard alphabet size |W|. Performance generally degrades as the
wildcard alphabet size increases.
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Figure 17: Performance on tasks corresponding of two random templates of length 5, labeled with
1, —1, respectively. Each template is sampled randomly from (W U X)°, conditioned on the two
templates being distinct. We keep |WW| = 2 and vary the regular token alphabet size | X’| between 0
and 2. Performance quickly improves as the regular token alphabet size increases.
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Figure 18: Performance on tasks corresponding of two random templates of length 5, labeled with
1, —1, respectively. Each template is sampled randomly from (W U X)%, conditioned on the two
templates being distinct. We keep |[WW| = 2 and vary the regular token alphabet size |X'| between 0
and 2. Performance quickly improves as the regular token alphabet size increases.
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Figure 19: Different architectures on oS vs. a53 task. Transformer outperforms, especially with
the reparametrization that prioritizes identities in heads.
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Figure 20: Pretrained GPT-2 of different sizes fine-tuned on aSav vs. a5 task.
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Figure 21: Test loss of MLP with X X7 data augmentation, where it is concatenated to input, versus
MLP without data augmentation, versus transformer.

21



Under review as a conference paper at ICLR 2024

C PROOF OF THEOREM 4.4

There are two main parts to the proof. First, in Section C.1 we establish a lemma with a sufficient
condition for a kernel method to have good test loss. Second, in Section C.2 we prove that the trans-
former random features kernel K5 satisfies this condition for almost any 3, v, b1, b2 parameters.
We conclude in Section C.3.

C.1 PART 1. GENERAL SUFFICIENT CONDITION FOR GOOD TEST LOSS

We restrict ourselves to token-symmetric kernels, which are kernels whose values are unchanged if
the tokens are relabeled by a permutation.
Definition C.1 (Token-symmetric kernel). K is token-symmetric if for any permutation7 : X — X

we have K (x,y) = K([r(z1),...,7(zk)], [7(y1),- .., 7(yx)])-

Token-symmetry is a mild condition, as most network architectures used in practice (including trans-
formers) have token-symmetric neural tangent kernels at initialization. We emphasize that token-
symmetry is not sufficient for good test loss since MLPs are a counterexample (see Appendix I.)

To state the sufficient condition for good test loss, let {z1, ..., z,} = supp(tempie) be the template
distribution support. Define also the set R = U;c (i), je[r){2;,i} of tokens that appear in the templates.
Finally, define N € R"*" by

Njj = K(sub(z;, s),sub(z;,5')), (11)
where s, s : W — X are substitution maps satisfying
sW)NsW)=0 and sW)NR=sW)NR =0. (12)

One can check that because of the token-symmetry of the kernel K, the matrix IN is uniquely-
defined regardless of the substitution maps s, s’ chosen, as long as they satisfy (12).

Lemma C.2 (It suffices for IN to be nonsingular). If K is a token-symmetric kernel, and N is
nonsingular, then kernel ridge regression achieves vanishing test loss.

Formally, there are constants c¢,C' > 0 and ridge regularization parameter A > 0 depending only
on fmplt, 0, (W), [N and | K || oo = max,, K (x, ), such that for any x matching a template
z € supp(pumpit) the kernel ridge regression estimator f in (4) with kernel K satisfies

) - ral <oy 2 o 2

with probability at least 1 — 6 — exp(—cn) over the random samples.

The proof is in Appendix D, but we develop an intuition here on why the nonsingularity of the
matrix IN is important. Let [n] = Z3 U Zy U --- U Z,, be the partition of the samples such that if
i € Z; then sample (x;,y;) is drawn by substituting the wildcards of template z; with substitution
map s; : YW — X. We show that for any string  matching template z, the kernel ridge regression
solution (4) is approximately equal to the average of the labels of the samples corresponding to
template j,

. _ 1
Yy (K + A k(w) ~ — Y ui = fulz;). (13)
\Z;1 ;
€L,
In order to see why this is true, consider the regime in which the sample diversity is very high, i.e.,
p > 1. Since p is large, any particular token is highly unlikely to be substituted. This has the
following implications:
* For most sample pairs ¢ # i’ € [n], the maps s; and s;- have disjoint range: s,(WW)Ns, (V).
* For most samples ¢ € [n], the substituted tokens are not in the templates: s;(W) "R = (.
These are the same conditions as in (6). So by the token-symmetry of the kernel, for most pairs of
samples the empirical kernel matrix is given by IN:
Ki,i’ = K(:]Zi,.’lli/) = Njﬂ‘/ for most i € Ij,i/ € Zj/ .

So if N is nonsingular, then K has r large eigenvalues, and n — r much smaller eigenvalues. This
turns out to be sufficient for (7) to hold. We refer the reader to Appendix D for more details.
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C.2 PART 2. ANALYZING THE TRANSFORMER RANDOM FEATURES KERNEL

We show that the transformer random features kernel K,.ns satisfies the sufficient condition of
Lemma C.2 for vanishing test loss. It is clear that the kernel is token-symmetric because the defi-
nition is invariant to the permutation relabelings of the tokens. The difficult part is to show that the
matriX Nians := IV defined with kernel K = Kians in (11) is nonsingular. The main challenge
is that the transformer kernel does not have a known closed-form solution because of the softmax
terms in its definition (3). Furthermore, the result is especially challenging to prove because it must
hold for any collection of disjoint templates z1, ..., 2.

We analyze the MLP layer and the attention layer of the transformer separately. We observe that
a “weak” condition on K, can be lifted into the “strong” result that INans is nonsingular. Intu-
itively, as long as K,y is not a very degenerate kernel, it is very unlikely that the MLP layer has the
cancellations that would be needed to make N,ns nonsingular.

Lemma C.3 (Nonsingularity of N¢ns, restatement of Lemma 4.6). Suppose for every non-identity
permutation T € S, \ {id},

Z Katen(sub(zy, 5),sub(z;,s")) # Z Katn (sub(z;, 5),sub(z,(;), ")), (14)

i€[r] iglr]

where s, s' are the substitution maps in the definition of N yans in (12). Let the MLP layer’s ac-
tivation function be ¢(t) = cos(bit + be). Then for almost any choice of by,bs (except for a
Lebesgue-measure-zero set), the matrix N yans IS nonsingular.

This lemma is proved in Appendix E, by explicitly evaluating the Gaussian integral, which is pos-
sible since the activation function is the cosine function. Although in our proof we use the cosine
activation function, we conjecture that this result should morally hold for sufficiently generic non-
polynomial activation functions. Next, we prove the condition on IN gp.

Lemma C.4 (Non-degeneracy of K, restatement of Lemma 4.7). The condition (14) holds for
Lebesgue-almost any 3, .

The proof is in Appendix F. First, we prove the analyticity of the kernel K4, in terms of the hyper-
parameters § and «y which control the softmax inverse temperature and the positional embeddings.
Because of the identity theorem for analytic functions, it suffices to show at least one choice of hy-
perparameters 3 and -y satisfies (14) for all non-identity permutations 7. Since K, does not have
a closed-form solution, we find such a choice of $ and by analyzing the Taylor-series expansion
of K,ttn around 5 = 0 and v = 0 up to order-10 derivatives, which happens to suffice.

C.3 CONCLUDING THE PROOF OF THEOREM 4.4

By Lemma C.2, it suffices to prove the nonsingularity of the matrix Ny, defined in (11) with
kernel K = Kjians. Lemma 4.6 gives a condition for nonsingularity that holds for almost any b1, bs.
Lemma 4.7 proves this condition for almost any 3, . Therefore, Theorem 4.4 follows.

D SUFFICIENT CONDITION FOR KERNEL METHOD TO GENERALIZE ON
UNSEEN SYMBOLS (PROOF OF LEMMA C.2)

We restate and prove Lemma C.2. Let K be a token-symmetric kernel as in Definition C.1. Let
Htmplt be a distribution supported on disjoint templates z1, . . ., z,- and define R = Uje[,,jer {25 }-
Recall the definiton of the matrix N € R"™*" with
Niiw = K(sub(zy,s),sub(zy,s")).

for substitution maps s : W — X, s’ : W — X satisfying s(OW) N s'W) = sW)NR =
s'(W)NR = 0. Recall that this is well-defined by the token-symmetry of the kernel K.

Lemma D.1 (Restatement of Lemma C.2). Suppose that K is token-symmetric and N is nonsingu-
lar. Then there are constants 0 < ¢ < C'and 0 < ¢’ < C' depending only on fimpit, 0, W), N7t I

and || K ||oo = maxg K (x,x) such that the following holds. Consider any regularization parame-
ter X € ['n,C'n), and any string x matching template z € supp(pumpit). Then with probability
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> 1— 0 — exp(—cn), the kernel ridge regression estimator f achieves good accuracy on x:

(@) - £.(2)] sc@wﬁ.

Proof. Note that some proofs of helper claims are deferred to Section D.1. Let
(x1,91), .-+, (€n,yn) be the samples seen by the kernel method. We know from (4) that kernel
ridge regression outputs the estimator

fx)=y" (K + X)) o(z), (Kernel ridge regression)
where the empirical kernel matrix K e R™ " s
Kij = K(zi,2;),
andy = [y1,...,yn), and v(x) = [K (21, ),..., K(x,, )] € R™

Idealized estimator when sample diversity is high If the sample diversity is sufficiently high,
then for most pairs of samples ¢ # i’ € [n], it will be the case that &; and x; do not share any of
the wildcard substitution tokens. In other words, the wildcard substitution map used to form x; will
have disjoint range from the wildcard substitution map used to form x;/. This means that we should
expect the estimator f to perform similarly to the following idealized estimator:

N ~ ideal .

fzdeal(w) _ yT(KZ ca + )\I)-‘r,vzdeal(w)’ (15)
~_ideal . ~

where K € R™ ™ and v'e?!(z) € R™ are idealized versions of K and v(x), formed below.

They correspond to the limit of infinitely-diverse samples, when all token substitution maps have

disjoint range. For each j € [r], let Z; C [n] be the indices of samples x; formed by substituting

from template z;. For any i € Z;,i’ € Zj, let

Afgleal = Nj,j'? (16)
Also, similarly define v'®®!(x) € R". For any i € Z;, let
videal(z) = K(sub(z;,s), ), (17)

where s : W — X is a substitution map with s(W) "R = s(W) N {zi}icip) = 0, i.e., it does not
overlap with the templates or with « in the tokens substituted for the wildcards. The expressions
(16) and (17) are well-defined because of the token-symmetry of the kernel.

If the sample diversity is high, then we show that the idealized estimator f ideal jg indeed close to
the kernel ridge regression solution f.

Claim D.2 (Idealized estimator is good approximation to true estimator). Suppose ||K|oc =
maxg |K(x,x)| < oo. Then there are constants C,c > 0 depending only on |\W|, || K||co, k,
such that the following holds. For any x, with probability at least 1 — exp(—cn),

Fideal ; c Cn
|f (m)if(m)lngr)\i\/f)’

where p is defined in Definition 4.2 and measures the diversity of the substitution map distribution.

Analyzing the idealized estimator using its block structure The matrix K wdeal has block struc-
ture with blocks Zi,...,Z,. Namely, it equals K; ;; = N;j forall i € Z;,i’ € Z;. Similarly,
v'@eal () also has block structure with blocks Zi, ..., Z,. This structure allows us to analyze esti-
mator f ideal and to prove its accuracy.

In order to analyze the estimator, we prove the following technical claim. The interpretation of this

_ . _ideal
ideal () is equal to any of the rows in K that

~_ideal . .
correspond to template a. In other words, we should have (K e Ytrvidead(z) = 17, /|Z,|, which
is the indicator vector for samples that come from template a. The following technical claim is a

more robust version of this observation.

claim is that if  matches template z,, then v

24



Under review as a conference paper at ICLR 2024

Claim D.3. Let « be a string that matches template z,. Suppose that 0 < A\ < T =
~_ideal
min;c, |Z;|/||IN 7| Then (K + M) is invertible and the following are satisfied

~_ideal : 1 T
K A —1, ideal <
I e AD)  @) < [ ().

and, letting 17, € R™ be the indicator vector for set L,

1 T

11 ~_ideal
< — —1).
|Ia|(7'f)\ )

| A (K + ) ot ()| <

Using the above technical claim, we can prove that fideal is an accurate estimator. The insight is
. - ideal ; . . .1
that since (K T )~ twideal(g) is approximately the indicator vector 17, /|Z,| for samples

corresponding to template a, the output of the idealized estimator is the average of the labels for
samples corresponding to template a.

Claim D.4 (Idealized estimator gets vanishing test loss on unseen symbols). There are c,C > 0
depending only on |W|, pimplt, 0 such that the following holds for any 0 < X < cn. Let x be
any string that matches template z € supp(tumpit). Then, for any 6 > 0, with probability >
1 — 0 — exp(—cn) over the random samples, the idealized estimator has error upper-bounded by

|fideal(w) _ f*(Z)| <C log(l/(s) )

n

Proof of Claim D.4. Let E; be the event that npuempr(2;) > |Z;]/2 for all j € [r], i.e., all templates
are well-represented in the dataset. By a Hoeffding bound,

P[El} 2 1- eXp(_nNtmplt(za)/2)~

Suppose that £ matches template z,. By Claim D.3, under event E, there is a constant C' > 0 such
that

|f-ideal(w) . f*(za)| _ |yT(Kideal + )\I)flvideal(m) _ f*(za”

]'Ia 1 T
‘Ial f*(za)‘+ (T_)\

|Za|

17 \F

< T < — * a —.
<ly ) fe(za)| +C "

We conclude since P[|y” ‘11;1' —fe(za)| > C W | E4] < 6 by atail bound for Gaussians. [

<|y"

—1)

Putting the elements together to conclude the proof of the lemma Combined, Claims D.2 and

D.4 imply the lemma if we take A\ = ©(n), then we obtain error O(/log(1/§)/n + \/1/p) with
probability at least 1 — 6 — exp(—£2(n)). O

D.1 DEFERRED PROOFS OF CLAIMS

. . ~ _ideal .
Proof of Claim D.3. Let w1, ..., w, be an orthogonal basis of eigenvectors for K with eigen-
. ideal
values vy, ...,v,. Notice that these are also eigenvectors of K reea + AI. Because of the block

~_ideal
structure of K , its eigenvectors and eigenvalues have a simple form. Define
M = diag((V/ITil, ... VL) Ndiag (VT .., VT ).

. ~_1deal .
The nonzero eigenvalues of K correspond to the nonzero eigenvalues of M, because for any

. . . . ~_ideal . .
eigenvector u € R" of M there is a corresponding eigenvector of K with the same eigenvalue
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by letting each of the blocks Z; consist of copies of the entry w;/y/|Z;|. Therefore, all nonzero

A —1
eigenvalues of K'  have magnitude at least

il val 2 1/|MH| > min Z|/INTY =7 > A

~_ideal

So K -+ A is invertible, which is the first part of the claim. Write ‘111“‘ in the eigenbasis as

1z, _ ZC-’UJ‘
|Ia| i 3 Wi

for some coefficients c;. By construction,

. ~ 7.deal1
vzdeal(m) — I Zl/zczwza
SO
”(Kideal AT ) 1 zdeal ”2 _ H Z C ,wH2 — Z( Vi )202
1 (] - l/l—’—A (3
s 1 T
< [ 2 < 2_
= m?X(Vq;Jr)\) Za| — m?X(Tf/\)
Similarly,
1I ~_ideal 1 id l 2 Yi 2 Y %c
. (K M)~ Lyidea = L= yawill” =2 (1= ’
iz~ & an et ela)] \\2( oyl ;< R Oe
i 1
< m?x(l — Vi: )\)2 A < m?x(l — ﬁ)z

Claim D.5 (Bound on difference between kernel regressions). Suppose that K is p.s.d and that

~_ideal

(K + M)~ Lvideal(z) is well-defined. Then, for any X > 0,

~_ideal ~_ideal

et ) — fa) < ot @) — (a4 1 - KR A o @)

Proof of Claim D.5. By triangle inequality,

~_ideal

(@) — Fol(@)] = ly" (& + A v(e) -y (K
gl (K +AD) o) — (K + A1) o ()]

Term 1

+ /\I)flvideal(m)u

ideal

+ lyll - [(K + AN o' (@) — (K 4+ M)~ o'l (z)
Term 2

The first term can be upper-bounded because ||(K + AI)~!|| < (ML)~ = 1/A, so
[v* e (@) — v(=)||

Term 1 <
erm 1 < 3
The second term can be upper-bounded by
Term 2 = [|(K + AD " (K + MK £ A1)~ — (K" £ AD)(K'" + A1)~V yvideal ()|

ideal ~_ideal

= |(K+M\)"Y(K-K" " )(K + M)~ toideal ()|

~_ideal ~_ideal 1 ideal

< LI~ KR ) ).
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Proof of Claim D.2. Let E; be the event that |Z;| > njumpi(2;) for all j € [r]. By Hoeffding, there
is a constant ¢ > 0 such that P[E4] > 1 — exp(—cn). By Claim D.3, under event E;, there is a
constant C' > 0 such that

ideal

0SSV R

IN

sl

(18)

Next, recall the parameter p used to measure the spread of the substitution map distributions
{Hsub,z } z€supp(jumpe)» @S defined in (4.2). For each i € [n], let s; : VW — X be the substitution
map used to generate the sample x;. Let P, be the number of samples (,¢’) such that their substi-
tution maps overlap, or have range that overlaps with the regular tokens in the templates. Formally:

Pr={1<i<i <n:ssW)NsiW)#Dors;(W)NR #Dorsy(W)NR #0}.

Similarly, let P, be the number of samples that (,4") such that their substitution maps overlap with
that used to generate x, or they overlap with the regular tokens in the templates:

=H1<i<n:siW)NR#Dors;(W)N{x;}jep # 0} -

By the definition of p, we can upper-bound the expected number of “bad” pairs P, and “bad” indices
P, by:

E[Pl]ﬁ Z Z P[Sz( —57 )+HZZPt€s <07712+@§07712
Cn
p

i,i' €[n] w,w’ €W teER P P P

<> Y Ptes(Ww)<

ig€[n]te{z;}jemUR

By Hoeffding’s inequality, the event Ey that P; < CT”Q and P, < % occurs with probability
> 1 — exp(—cn). Under event Es,

ideal

IK-K""|<C+Cn/\yp and |v(x)— v (x)| < C\/n/ (19)
By Claim D.5 and (18) and (19), under events E, E, and using that ||y|| < C’\/ﬁ, we have
P ; Cy/n C C(1+n)
ideal _ < —_— )< —
et (@) - f@) < SEOVATD (€ + Cnfyp) ) < L

O

E NONSINGULARITY OF RANDOM FEATURES AFTER MLP LAYER (PROOF OF
LEMMA 4.6)

Consider a kernel K5 formed from a kernel K as follows:

Kal@,y) = Bypos, e B6W)], Sifey) = | 1008 Kil@Y)

Here ¢ : R — R is a nonlinear activation function. Such a random features kernel arises in a neural
network architecture by appending an infinite-width MLP layer with Gaussian initialization to a
neural network with random features with kernel K.

We wish to prove that a certain matrix N € R"*" given by
Nij = K2($i,yj) , (20)

is nonsingular, where 1,...,%,,¥y;,...,¥y, are inputs. The intuition is that if ¢ is a “generic”
activation function, then only a weak condition on K is required for the matrix IV to be invertible.
We provide a general lemma that allows us to guarantee the invertibility if the activation function is
a shifted cosine, although we conjecture such a result to be true for most non-polynomial activation
functions ¢. This is a generalization of Lemma 4.6, so it implies Lemma 4.6.
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Lemma E.1 (Criterion for invertibility of N). Consider the matrix N € R"*" defined in (20) where

x1,..., & and Yy, ...,y, are inputs. Suppose that for all nontrivial permutations 7 € S, \ {id}
we have
D Ki(wi,y,) # Y Ki(@i,y,a)) - Q1)
i€[r] i€r]

Suppose also that the MLP activation function is ¢(t) = cos(kt + c) for two hyperparameters k, c.
Then, N is nonsingular for all (k,c) € R? except for a Lebesgue-measure-zero subset of R,

Proof. Let f(k,c) := det(N). We wish to show that {(k,c) : f(k,c¢) = 0} is a measure-zero
set. By Claim E.2, is an analytic function of ¢ and k, and by the identity theorem for analytic
functions (Mityagin, 2020), it suffices to show that f £ 0. Fixing ¢ = /4, by Claim E.2,

Ka(a.y) = § expl- (K (@) + K (y.9) — 26 (@.9)).
Therefore
f(k,m/4) = Z sgn(7) H Ko (i, y, ;)
TES, €[]
— e*%(zie[r] Ki(zi,2:)+K1(y;,9;)) Z sgn(r) exp(k Z Ky ( why‘r @ ).

TES, i€[r]
It remains to prove that as a function of k& we have

> sen(r)exp(F* > Ki(®i, y,))) # 0,

TES, i€[r]
This holds because for any distinct ¢y, . . . , ¢; the functions exp(cyt), . . . ,exp(¢;t) are linearly inde-
pendent functions of ¢, since their Wronskian is a rescaled Vandermonde determinant
exp(cit) e exp(¢t) 1 ...
L exp(ert) L exp(ait) ! R
: : = eXp(Z ct)| .
: : Pt :
- -
;tl r exp(cit) ... ;tl T exp(¢t) At ¢ 1
l
= exp Z H c;—¢i)#0
i=1 1<i<j<l
O
Below is the technical claim used in the proof of the lemma.
ClaimE.2. Let U,V ~ N(0, [Z 'g} ). Then for any k., ¢ € R,
1
E[cos(kU + ¢) cos(kV + ¢)] = 26_%k2(a+b) (e_kz” cos(2¢) + ekzp) .
Proof. By Mathematica, we have the following Gaussian integrals
E[eikU—‘rikV] - ]E[e—z‘kU—ikV] — o 3k (atbt2p)
]E[emU—ikv] _ E[e—ikU-i-ikV] _ e—%k2(a+b—2p) .
Since cos(kt + c) = (etkttic 4 gikt=ic) /o
E[COb(kJU + C) COS(]{V + C)] _ Z]E[(eikUJrzc + e*lkU*'LC)(elkvﬂ”LC + efzkvfzc)]
_ l(efékQ(aerJer) (62ic + 6727213) + 267%k2(a+b72p))
= %e*%kQ(“H’)(e*kQﬂ cos(2¢) + ek2p) .
O
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F ANALYSIS OF ATTENTION LAYER FEATURES (PROOF OF LEMMA 4.7)

For any inputs X, Y, we write the kernel of the random features of the attention layer as
Kt (X,Y) = Epy(x),m(v) [smax(Sm(X)T(XYT + 42I)smax(fm(Y))]

XXT+~21 XYT +421
X Y)~N(O

m( )am( ) ( ) YXT+’Y?I YYT—F’YzI)’

as stated Section 4.1; see also Section H for the derivation of this kernel in the infinite-width limit of
the transformer architecture. For shorthand, we write kx v (8,7) = Katn (X, Y') to emphasize the
attention kernel’s dependence on the hyperparameters /3 and « which control the softmax’s inverse
temperature and the weight of the positional embeddings, respectively.

We prove Lemma 4.7, which is that K, satisfies the property (8) required by Lemma 4.6 for the
transformer random features kernel to succeed at the template task.

Namely, consider any disjoint templates 21, . .., 2, and two substitution maps s, s’ : W — X

* that have disjoint range: s(W) N s’ (W) = 0,
* and the substituted tokens do not overlap with any of the tokens in the templates: s(WW) N
R=s§W)NR= () where R = Uie[r],je[k‘]{zj('z)}-

Then we define X;,Y; € R¥*™ to be the strings (where we abuse notation slightly by viewing
them as matrices with one-hot rows) after substituting z; by s, s’ respectively:

X,; =sub(z;,s) Y, =sub(z;,s).
Lemma F.1 (Restatement of Lemma 4.7). Define g-(3,7) = Zie[r] KXY (B,7)- Then for all

but a Lebesgue-measure-zero set of (3,7) € R? we have giq(3,7) # g-(8,7) for all permutations
T #id.

No closed-form expression is known for xx y(,7), so our approach is to analyze its Taylor
series expansion around 5 = - = 0. Our proof proceeds in stages, where, in each stage,
we examine a higher derivative and progressively narrow the set of 7 that might possibly have
gr(B,7) = gia(B,7). In Section F.1, we list certain low-order derivatives of xkx y (8, ) that will
be sufficient for our analysis. In Section F.2, we analyze some of the terms in these expressions. In
Section F.3 we put the previous lemmas together to prove Lemma F.1.

To avoid notational overload, in this section we will not use bolded notation to refer to the matrices
X, Y, but rather use the lowercase X, Y.

F.1 LOW-ORDER DERIVATIVES OF ATTENTION KERNEL

In the following table we collect several relevant derivatives of %;Tjjﬁ x,v(0,0) for i < 6 and

7 < 4. Foreach i, j weuse cy, ¢, . . . to denote constants that depend only on k, and on the derivative
i, 7 being computed. Certain constants that are important for the proof are provided explicitly. These
derivatives were computed using a Python script available in our code. The colors are explained in
Section F.2.

Derivative Expansion
,‘Qx)y(o, O) = “+cq

2 2 m
a%za%zfﬂx,y((),o) = +a +eotr(XY'T)
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aa—;ﬁx)y(0,0> = 4alTXYT1 41" XXTXYT1 431" XYTYY T
Feg 1 "X XTXXT XV 4es (17 XYTHATXXTT)
tepl T XYY XT XY e (1T XY (1 XV
—|—c8L")”X"‘AX'Y"‘YY"‘l +eo(17 XY 1) (1TYYT)
+erp(1T X XTI ATXXTL) e (17 XY Ty Yy (AT X XTT)
(

+c12(1TXYT1)(1TXXTXYT1)+c13 1"XyTyyT1)(1" Xy 1)
+epa (T XXXV ATYYTL) e (1 XYYy ATy YT
+c16(1’ Xy 1)(1TXXT1)(1TXXT1) e (1T Xy T DATXXTXXTT)
Fes(1T XY (1T YT )(1TXXT )

Ferg(1T XY T XY (17 XY 1)

+020(l’ XY 1)(1TXXT1)(1TYYT1)

—|-021( XY T )( XY T )(1TYYT )

+eaa (17 XYV T ATY YT (ATYYTL) eas (17 XV T 1 (ATYYTYYTT)

2 Lahixy(0,0) = +erl " XV T 4eptr(XYT) el X XT XYL el (X XTXVT)
Fes 1T XYY YT 4eptr( XYY YD) +e, (17 XY T (ATXXTT)
+es(tr(XY TN AT X XTL) eg(1T XV (1T XY
+ero(1 XY I D) (tr(XY D) 4enn (1T XY 1)(ATYYT)
+erl T XY T XY T ey (tr(XYI))ATYYTL) 4eq 1TV XTY YT
+eps 1T XXTY XTI 401617 XXTY YT 4e1,(1TY YT (1T X XTT)

2 3‘9:4 kx.y(0,0) = 117 XY 11 4eotr(XYT) 431" X XTXY T 1 4egtr(XXTXYT)
Fes 1T XYY YT 4eptr(XYTY YD) 4, (17X YT (AT X XTT)
+es(tr(XY TN AT X XTL) eg(tr(XYT) (1T XYV
+epo(1P XY D) (ATY YT e (1P XY (1 Xy
+er 1T XYTXY T 4epz(tr(XYI)NATYYT1) 4 1 "X XTY XT
—|-0151TYXTYYT1 +cietr XYTXYT) +Cl7(f7(XYT))(f7(XYT)) +c18
—|—6191TXXT1 +0201TXX XXTl —|—8211TXXTYYT1 —|—0221TYYT1
Fea3(ITXXTH(ATXXT) 4ea(1TY YT (1T X XT)
+cCo5 +0261TYYTYYT1 +027(1TYYT1)(1TYYT1)

Furthermore,
* in the expression for £ x y (0,0) we have ¢; = 1/k? > 0,
* in the expression for 8‘9—;253—7225;(,1/(0, 0), we have ¢y = 8/k* > 0,
* in the expression for aa—;lix’y(o, 0), we have cog = 24/k5 > 0,
* in the expression for 38—;138—,:2/@(71/ (0,0), we have c16 = 48/k* > 0,

* and in the expression for %%mx,y(o, 0), we have co5 = 17280/k* > 0.

F.2 SIMPLIFYING TERMS

Let X € RF*™ and Y € R¥*™ be matrices with one-hot rows (i.e., all entries are zero except for
one).

For the submatrix corresponding to rows S and columns 7', we use the notation [X]gxr € R¥*T.
If v is a vector, then the subvector consisting of indices I is [v];.

Let R C [m] be a set containing the intersection of the column support of X and Y i.e., for all
i € [m] \ R, either [X])x; = 0 or [Y])x; = 0. We analyze the terms in the expressions of
Section F.1 below.

F.2.1 AsSUMING [1TX]z = [1TY]r

Suppose that [17 X]z = [17Y]. Then any of the pink terms can be written as a function of only
X oronly Y.

10T = 17 X
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. = 1T Xdiag(1TX)YT1 = 1TX)®2. (1TY) = |1T X]= |3

. = 1T Xdiag(1TY)YT1 = (17X) - 1TY)®% = ||1T X]= |3

. = 1T Xdiag(1T X)diag(1T X)YT1 = |[1T X]= |/

. = 1T Xdiag(17Y)diag(1T X)YT1 = |[1T X]= |/

. = 1TYdiag(17 X)diag(17Y)Y ™1 = ||[1T Xz ||}

. = trace(Xdiag(17"X)Y7T) = Zie[k] Zve[m] Xiw(1TX), Y =
Yich] 2ver Xiw(17X), = 17 Xdiag(1" X) 1z = [|[17 X]=|?

. = [17Y]r)? = I7 X]r?

F.2.2  ASSUMING [X]pxr = [Y]kx®r

Suppose that X[zjxr = Y[gxr (i-e., the restriction of X and Y’ to the R rows is equal). Then any
of the orange terms can be written as a function of only X or only Y.

© tr(XYT) =3 e Lie) XinYiv = Xper iew Xin =17 X1 =17V 1g

« 1TXYTXYT1 = Pabeen 1(Ta = yp) 1(xp = Ye) =
1T Xpgser (Vi xr) T X xr Vi )T 1 = 17 Xpur (Xpgxr) T Xppsr (Xipjxr) ™

¢« ITXXTYXT1 = Yane Uwa = 2p)l(yp = zc) = D2, Wz = 2)Lyy = xc €
R) =2 upel@a=ap € R)Uyp =2 €R) =3, Lza =25 € R)L(21 = 2 €
R) = 1T X xr (X r) T X xr (X =) Tl
« VY XTYYTL = 1T Xy ur (X xr) T X xr (Xgxr) ' 1
o trace(XYTXYT) =3 1(xa = yo)1(2p = Ya) = doap Hza =1y € R)L(zp = ya €
R) =344 Lza = 2 € R) = trace((Xp)xr) (Xpxr)")
F.2.3 AsSSUMING 17X XT1 =1TYYT1

Suppose that 17X X71 = 17YY7T1. Then any of the blue terms can be written as a function of
only X oronly Y.

e 1TXXT1 =1TYYT1
e 1TYyYyT1 =1TXXT1

F.2.4 AsSUMING 1TXXT =1Tyy"T

Suppose that 17 X X7 = 17YYT. Then any of the teal terms can be written as a function of only
Xoronly Y.

o ITXXTYYT]L = 1TXXT|2 = [1TYYT)?
F.3 PROOF OF LEMMA F.1
We combine the above calculations to prove Lemma F.1.

Proof. By the technical Lemma G.1, we know that g,(8,~) is an analytic function for each .
Therefore, by the identity theorem for analytic functions (Mityagin, 2020), it suffices to show that

foreach 7 € S, \ {id} we have g;4(5,7) Z 9-(8,7).
Stage 1. Matching regular token degree distributions.

Claim F.2. If‘gid(0,0) = gT(O, 0), then [1TX,']R = [ITYT(i)]RfOF allv € [T]
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Proof. From the table in Section F.1, there is a positive constant c¢; > 0 such that

9:(0,0) =c1 Y 1TX; ¥ 1 =01 > 1T X R [V 1r

i€r] i€[r]

< > I X= N Yrw]rll
z‘e[ ]

Z 117 Xi]= 2 Z 117Y7 )12
i€[r]
=> || 1TX =12

i€[r]

where (a) is by Cauchy-Schwarz and holds with equality if and only if [17X;]r o< 17Y,())]r
for all 7. Similarly (b) is by Cauchy-Schwarz and holds with equality if and only if |17 X; ] rl =

I [ITYT(Z | || for all 4. Notice that (a) and (b) hold with equality if 7 = id, since [17 X;]r = [1TY}]r
for all s. &

Stage 2. Matching regular token positions.

Claim F.3. If 2 259:(0,0) = 2z 236:a(0,0) and 17 X,)r = 17V, (;))r for all i € [r], then
we must have [X; ][k]xn = Yol xr forall i € [r].

Proof. For a constant co > 0,

82 82 v T
3752577297(0’ 0) = Z e + catrace(X;Y ;)

€[]

= cle[lTXi]RHQ + 62Ztl'z’—xce(/\/,-(Y’"m)T) ,

i€(r] i€[r]

by the calculation in Section F.2.1. The first sum does not depend on 7, so we analyze the second
sum. Here,

CQZU(\((A)&} —CQZZXY

i€[r] i€[r] a€lk]

=), ) ) KVl

i€[r] vER a€lk]

(@)

See [ D D (XKD D D (Y

i€[r] vER a€lk] i€[r) vER a€lk]

20221 Xilr,

i€[r]
where (a) is by Cauchy-Schwarz and holds with equality if and only if X(SZ) = cYa(Z @) for some

constant c. We must have ¢ = 1 because of the CLS token, so (a) holds with equality if and only if
[Xilk)xr = [Yr(5)lk)xw forall i € [r]. Specifically (a) holds with equality if 7 = id. O

Stage 3. Matching wildcard token degree histogram norm.

Claim F4. Suppose that 1" Xilr = [1TY,(]r, and that Z:g.(0,0) = 2:g:a(0,0). Then
17X, XT1 =17Y, )Y 1 foralli € [r].
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Proof. Use [17X;]r = [17Y,(;)]z and the calculations in Section F.2.1 for the terms. Every

term of 8‘9—;4 g-(0,0) can be written as depending only on one of X; or Y, (;), with the exception of

the coo term. Namely, we have
4

a%4%(0, 0) =Y a(X;) +b(Yz)

i€[r]
+ ca0( JATX XD (ATY,0)Y 1),

for some functions a, b. Since 7 is a permutation, only the term with coefficient coy depends on 7.
Here, cog > 0. This term corresponds to

ca0 Y ("X YDA XX ) (7Y ) Y1)

i€[r]
= ea0 ST X R IVl | (17 X, XT 1) (17 Y,y Y 1)
i€[r]
( )
\/ ST X 27X XT1)2) (S 17 Yo b P (AT Y VT 1)2
i€(r] i€(r]

= > I7X= P17 XX ]1)?
i€[r]

where (a) is by Cauchy-Schwarz and holds with equality if and only if ||[17X;]z[?17 X; X;1 =
cll[17 Yz (i) RI[?17 Y7 )Y, ;) 1 for all ¢ and some constant c. This constant ¢ = 1 because the former

is a permutation of the latter over i € [r]. Since ||[1TX;]z|* = ||[17Yi]=]|*> > 1 by assumption
and since we have the CLS token, we know that (a) holds with equality if and only if 17 X; X1 =
17Y.; )Yrqu)l for all 4 € [r]. This is the case for 7 = id by construction of X; and Y;. O

Stage 4. Matching wildcard degree distributions.

Claim E.5. Suppose that [X;]jx)xr = [Yr(i)ljx)xr and 17X, X711 = 1TYT(1) T(i)lfor alli € [r].
Suppose also that 8‘%8‘9—;97(0,0) = 8654 aa,yzg,d(0,0). Then 1T X, XTI = 17y, ;)Y ) for all
1€ [r].

Proof. Similarly to the proof of the previous claim, because of the calculations in Sections F.2.1,
F.2.2 and F.2.3 for the , orange, and blue terms, respectively, we can write 80;4 8622 as a sum of
terms that each depends on either X; or Y7;, plus >, ielr] c161T X; XY, (i )Yf >1 This latter sum

is the only term that depends on 7, and the constant c16 satisfies c16 > 0. Slmﬂarly to the previous
claim, by Cauchy-Schwarz

D el "X XY V1 <Y sl 1T XX Vo Y Ul

i€[r] i€[r]
with equality if and only if 17X; X! = 17Y,; )YTT(l) for all 7, since {X; X[}, is a permutation of
Y4 7(7)}1 This condition holds for 7 = id. O

Stage 5. Matching wildcard positions.
Claim F.6. Suppose that (Xl xr = [ T(z)][k]xn and 1T X, XT = 1TYT(Z)YT)for all i € [r].
Suppose also that -2 356 874 gT(() 0) = 56 874 gld(O 0). Then X; X} = T(Z)Y )for alli € [r].

Proof. Write -2 3 /36 374 gT(O 0) as a sum of terms each depending only on either X; or Y7 ;) by using

the calculations in Sections F.2.1, F.2.3, F2.2, and F.2.4 to handle the , orange, blue, and teal
terms, plus (for co5 > 0),

> s < > el XX |r Yo Yool

i€[r] €[]
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with equality if and only if X; X} = YT(i)YT:Z') for all ¢ € [r]. This equality holds if 7 = id,

concluding the claim. O

Combine the above four claims to conclude that if g,(3,7) = gia(3,7), then we have X; X! =
YT(Z)Y’TZEZ) and [Xl][k]XR = [YT(z)][k]xR for all 4, so 7 = id. O

G ANALYTICITY OF ATTENTION KERNEL (TECHNICAL RESULT)

We prove the analyticity of kx % (58,7) = KB (X, X) as function of 3 and .

Lemma G.1 (Analyticity of K,itn). Forany X, X, the function K x x5 analytic in R?.

Proof. Note that we can write
m:=m(X)=X¢+yp, m:=m(X)=X¢+p,
where ¢, ¢ ~ N(0,1,,) and p ~ N(0, I;,) are independent Gaussians. So we can rewrite # 5 % as

KJXJE(B;W) = EC&p[f(B?V? Ca &713)]7
where

f(B,7:¢.¢,p) = sT(XXT +~%1)5.
and

s = smax(BX¢ + Byp)T, &= smax(8X ¢ + Byp) .

The main obstacle is to prove the technical Lemma G.9, which states that for any k1, k2, we have
[
¢.¢.p aﬁkl a’ykz

So by smoothness of f and dominated convergence, we know that we can differentiate under the
integral sign, and

& v o ok -
|Wd,y7k2/’vx,x'(ﬁﬁ)|:|E¢,g,p[wwf(ﬁﬁ;X,X,C)C}P)H

< C(1 4 )k k! (C(I18] 4 7))k TF2) .

Because of the bound on the derivatives and its smoothness, xx x(f3,~) is real-analytic. O

FB i ¢, E D)) < CL+ )k ko (C(18] + |y])FrHE2)

The proof of the technical bound in Lemma G.9 is developed in the subsections below.

G.1 TECHNICAL LEMMAS FOR QUANTIFYING POWER SERIES CONVERGENCE

In order to show that the values of the attention kernel are real-analytic functions of in terms of
8,7, we will need to make quantitative certain facts about how real-analyticity of is preserved under
compositions, products, and sums. For this, we introduce the notion of the convergence-type of a
real-analytic function.

Definition G.2 (Quantifying power series convergence in real-analytic functions). Let U C R™
be an open set. We say that a real-analytic function f : U — R has (71, 72)-type for functions
71 : U = Rypand 75 : U — Ry if the following holds. For any ¢, consider the power series of
f around ¢,

ZGCOJ—L(C —Co)"-
“w

Then for any ¢ such that || — {ylleo < 71({() this power series converges absolutely.

> ageull = Col" < 72(C) -

uS.toju>1
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We provide rules for how convergence type is affected by compositions, products, and sums.

Lemma G.3 (Composition rule for type; quantitative version of Proposition 2.2.8 of Krantz & Parks
(2002)). Let U € R™ and let V. C R be open. Let f1,...,fn : U — V be real-analytic with
(11, T2)-type, and let g : V™ — R be real-analytic with (o1, 02)-type. Then the composition h =
go(fi,..., [n) is real-analytic with (min(r1, (01 0 f) - L), 02 o f)-type.

Proof. Fix some ¢, and lety, = [f1(y)s- - -, fn(Cp)]s and let a(g(i . be the coefficients of the power

series expansion for f; around ¢,. Define p = min(1,01(y0)/72({y)). Then, for any ¢ such that
1€ — Colloo < p11(€p) and ¢ € [n] we have

Soogad =l < YT 1l e r (¢ < pra(Co) < oulwo)-

p 8.t fu[>1 p St u[>1

So, letting > by, »(y — yo)” be the series expansion of g around y,, we have the following
absolute convergence

vi

1€ —Col"| < o2(yo)-

Z byo,” J Z |a(Cio)w

v, S.t. [v|>1 =1y S.t. |u|>1

oo n

So we may rearrange the terms of

vi
n

Sho [T X el ¢—¢o)

=1 \pu S.t. |u|>1

as we please, and we get an absolutely convergent series for g o f around (. O

Lemma G.4 (Sum and product rules for type). Let f : R™ — R and g : R™ — R be real-
analytic functions of (11, T2)-type and (o1, 02)-type respectively. Then h = f + g is real-analytic of
(min(ry,01), 72 + 72)-type, and h = fg is real-analytic of (min(my, 01), 7202 + 72|g| + | f|o2)-type

Proof. Both of these are straightforward from the definition.

O

Lemma G.5 (Derivative bound based on type). Let f : R™ — R be real-analytic with (71, T2)-type.
Then, for any multi-index p,

olul 72(¢o)
|8T:,,Lf(Co)| < #O;MN'

Proof. Let a¢, , be the coefficients of the power series of f at ;. Since f is of (1, 72)-type, we
have

Z |a40,u”71(§'0)||“| < 72(Co) -

wS.tojp|>1

Since all terms in the sum are nonnegative, for all u with || > 1,

lac,ul < 72(Co) - (1/m1(Co))M

The lemma follows by Remark 2.2.4 of Krantz & Parks (2002), which states % F(Co)l = lac, ulp!-
O
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G.2 APPLICATION OF TECHNICAL LEMMAS TO ATTENTION KERNEL
We now use the above general technical lemmas to specifically prove that the attention kernel is
analytic in terms of 8 and ~.

Lemma G.6. Forany j € [m], the function f : R™ — R given by f({) = smax((); is real-analytic
of (1/(2€), 1)-type

Proof. Write f = gohforg : Ryg — Rand h : R¥ — Ry, given by g(y) = 1/y, and
h(€) = 3oy et

The power expansion of g(y) around yy € Rxg, is given by
& (_1)k+1
9(y) = Z T(y —40)*,
Yo

so one can see that g is of (p1, p2)-type for p1(y0) = yo/2 and p2(yo) = 1/yo . Finally, write the
series expansion for h(¢) around ¢,

Nk
MO =1+e9 Y Si=1+ (Z ~6o.5 (605 = G3) Cou Z CmTCO”))

ie[m]\{s} iem]\{s} =0

Note that this expansion converges absolutely for all ¢, as the absolute series is

I (ie—Cowa‘K‘)ﬂ Z ¢o.i 16 = Co.il” COz| )

ie[m]\{j} (=0
=1+ Z e—Co,j+Co,i+\Ci—Co,i\+|Cj—Co,j\
ie[m]\{s}
< e2lle=Coll= p(¢) .

Specifically, & is of (1, e2h)-type. So by the composition rule of Lemma G.3, it must be that f is real-
analytic of (71, 72)-type for 71 = min(1, (p1oh)- =) = 1/(2¢?) and 7 = ppoh =1/h < 1. O

Lemma G.7. For any j € [m] and X,(,p, the function f : R?> — R given by f(3,v
smax(8X ¢ + Byp); is real-analytic of(mln(l 1/(2e2|| X ¢ |00 + 2€2(|8] + |’y|)||p||oo) 1)-ty

Proof. Write f = gohforg: R™ — Rand h : R? — R™ given by g(v) = smax(v); and
h(B,7) = BX¢ + Byp. We know from Lemma G.6 that g is real-analytic of (1/(2¢?), 1)-type.
And it is easy to see that h is real-analytic of (1, || X {|leo + (I8 + [7])|IPlloo)-type. Apply the
composition rule of Lemma G.3 to conclude. O
Lemma G.8. For any X, X, ¢, ¢, p, the function f : R2 — R given by f(3,7) = smax(8X ¢ +
57p)T(X)~(T + 72I)smax(ﬁ)~(& + Byp) is real-analytic and of type

1 1 1 1

2¢? | X Clloo + (18] + [7DIIPllo " 2€% | X ¢]loo + (18] + ¥ IPlloo

where C'is a constant depending on the context length k.

),C(L+9%),

(min(1,

- T
Proof. Each entry of (XX + ~I) is real-analytic in v and of (1,~)-type. So by combining with
Lemma G.7 the product rule and sum rule (Lemma G.4), and the fact that each entry of the smax is
at most one. O

As a consequence, we can bound the derivatives of f(ﬁm;X,X,C,é,p) = smax(SX¢ +
ﬁfyp)T(XXT + 42I)smax(8X ¢ + Byp), which was what we needed to prove Lemma G.1.
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Lemma G.9. Foranyky,ks > 0,

oF k2 - .
|86k1 6,yk2 f(ﬁa’y;XvX7C7Cvp)|

< C(1+7%) max(1, ((2¢*) (| X ¢lloo + [ XClloo + (18] + WD IPlloc)) 2 ) k1 o
Proof. Direct consequence of Lemma G.5 and Lemma G.8. O

H DERIVATION OF TRANSFORMER KERNEL

We informally derive the transformer random features kernel in the infinite-width limit.

H.1 TRANSFORMER ARCHITECTURE

We consider a depth-1 transformer architecture (without skip connections or layernorm, for sim-
plicity). This architecture has H heads, each with parameters W ,,, Wo n, Wyv,,, Wo,, €
Rireaaxdemy and embedding layer W € R™*demb positional embeddings P € RFXdems an
MLP layer with parameters W 4, W g € R%mirXdems and a final unembedding layer with weights
wy € Rmo, The network takes in X € R¥*™ and outputs

ftrans(X; 0) = ’U)EZQ (Unembeddlng)
where
Z9 = ! Wga(#WAzl) € Remb (MLP layer)
dmlp Vv demb
1
Z21 = — Z Afek € Rdems (Attention layer output at CLS token)
VH
€[H]
ZoWh Wonzl = wi,w
Ay = smax(ﬁ 07 Kb 77 Q70 VZ, Vih 7 Ok € Rkxdems (Attention heads)
demb \% dhead \% dheaddemb
Zo=XWg +~yP e RF*dems | (Embedding layer)

Here 5,7 > 0 are two hyperparameters that control the inverse temperature of the softmax and
the strength of the positional embeddings, respectively. Note that only the output of the attention
layer at the final kth position CLS token is used, since this is a depth-1 network. Also, in the above
definition the weights are rescaled compared to Section 2, but this is is not important since what
matters is the

H.2 RANDOM FEATURES KERNEL

We choose that initialization so that each of the entries of the intermediate representa-
tions Zg, z1,z2 is of order O(1). In order to accomplish this, we initialize W g, P,
Wrh, Won, Wyvn Won Wa, Wgwithiid. N(0,1) entries.

We also initialize wy = 0, and only train w; while maintaining the rest of parameters at initializa-
tion. The random features kernel corresponding to training wy; is

Ktrans(Xy Y) = 22 (X)TZZ(Y)/demb )

where we view z, as a function of the input (either X or Y'), and depending on the randomly-
initialized parameters of the network.

In the limit of infinitely-many heads H, infinite embedding dimension d,,; and MLP dimension

dmip and head dimension djcqq, the kernel f(trans tends to a deterministic limit Ki,,ns, Which can be
recursively computed (see, e.g., Jacot et al. (2018)). Assuming that the final token of both X and Y
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is the same token (i.e., a CLS token), the deterministic limiting kernel K,.ns is given by:

Kattn(XvX) Kattn(XvY) ) (22)

Kaon(Y, X)  Kaen(Y,Y)

where K1(X,Y) = Epn(x),m(y) [smax(8m (X)) T (XY 7T + 42I)smax(fm(Y))]
XXT++421 XYT +421 )

YXT+~21 vYT +421)°

Kirans(X,Y) = Ey y[o(u)o(v)] for u,v ~ N(O, {

m(X).m(¥) ~ N(0,(1+~?) [

Notice that the covariance matrix in the above definition of the distribution of m(X), m(Y) is
slightly rescaled compared to that in the main text in Section 4.1, but this is inessential, since we can

simply reparametrize 5 as 8 — [(/+/1 + 2 to recover the expression in the main text.

H.3 INFORMAL DERIVATION

We provide an informal derivation of (22) below. Informally, by law of large numbers we have the
following almost sure convergence
A 22(X) za(¥) _ S (GamWas (X)) WeWao (7o Wazn (V)
Ktrans(X>Y) = =

demb dembdmlp
tenpzroo O Tam Waz1 (X)) o (= Wazi (V)
dmlp
A 1p—>00 K. X’ X K, X’ Y
LN Eyvlo(u)o(v)] for u,v ~ N(O, Zz:(Y’ X)) Kzz:((Y, Y)) )

= Ktrans(Xa Y) 5
where K, is the kernel corresponding to the attention layer in the infinite-width limit, defined as:

5 21 (X)z{(Y) _ Shweir €k An(X)Ap (Y) ey

Kattn(X7Y) = d b Hd b
1 Zo( X)WL, Ws,Zo(X)T
= Z e;{smax(ﬁ o(X) Kh — Q0 olX) )ZO(X)W\I;hWO,h
Hdheaddembhh/e[H] demb dhead ’
ZoYYWL, WonZo(Y)T
.Wg7h/WV7h/ZO(Y)TSH1aX(ﬂ 0( ) K.k Qb 0( ) )Tek
demb dhead
- w 1 Zo( X)WL , W ,Zo(X)T
dhead— _7>Clemb‘> - Z e{smax(ﬁ O( ) K,h Q,h 0( ) )(XYT‘F’YQI)
demb dhead
he[H]
BZo(Y)W i 2 WonZo(Y)'
- smax ( : : )" ek
demb dhead
- Zo( X)WL WonZo(X)T
Hzy E[egsmax(ﬂ o )d I:hth’Z o(X) )(XYT—i—’yQI)
BZo(Y)Wi 2 WonZo(Y)"
- smax( . ) ex]

demb dhead
Bel Zo(X)Wi wnWonZo(X)"

demb dhead

= E[smax( WXYT +~21)

Bel Zo(Y)Wi ,WonZo(Y)T 7]
demb Vv dhead
Erm(x),m(v) [smax(Bm (X)) (XY™ +~2Ismax(Bm(Y))]

- smax(

demb—00,dhead—>00
=5

= attn(X7Y) I
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where

XXT++21 XY +4%1I
X),m(Y) ~ N(0,(1++*
because due to the randomness in W g, and W g j, we have that

Zo( X)WL Wk nZo(X) ey,

demb dhead

and
Zo(Y )W Wk nZo(Y) ey,
demb V dhead

are jointly Gaussian with covariance:

Zo( X)WL WinZo(X) e, el Zo(Y)W i )W qnZo(Y)T
demb V dhead demb V dhead

Since this is an expectation over products of jointly Gaussian variables, for any i,j € [k] we can
calculate:

E(Xv Y) = EWK,h,WQ,h,WE,P[ ] I

S (V) =By pl— 0 [Zo(X)]alZo(¥ ), trace(Zo(X) exe] Zo(Y)

emb 1 se(demp)

—Ewerlm— Y o2V 20Xkl Zo(Y k]

emb 7,8,tE[demp)

1
=Ew,ploz— Y. XWp+PL[YWp +9Pl[XWr +yPlu[Y Wp +vPl]
emb Tvsvte[demb]

a 1
@ _~ > Ew,..plXWg+vPli[YW g + 7P|

embd . se(dems]

© Y Ew,p[XWe+vPlu[YW g + YPlii] + O(1/dems)

tE[dems)
1
= d ]EWE,PHXWE + P)’P]W[YWE + P)’P]Js] . (]— + 72) + O(l/demb)
emb rvse[denlb]
a) 1
@ Y EwepXWe 9P [Y W 9] (1497) + 00 /de)
€M reldems)]

= [XYT]ij + 7251'3' (14+~%) + O(1/dems)

where in (a) we use that [ X W g +~vP],p and [Y W g+~ P)|,,; are independent of [ X W g 4+~ P].q
and [Y W g + vP].q unless b = d. So

S(X,Y) 5 (1 4+42) - (XYT +420).

I MLPS FAIL TO GENERALIZE ON UNSEEN SYMBOLS

A natural question is whether classical architectures such as the MLP architecture (a.k.a., fully-
connected network) would exhibit the same emergent reasoning properties when trained with enough
data. In this section, we prove a negative result: an SGD-trained or Adam-trained MLP will not
reach good test performance on the template task. This is in sharp contrast to the positive result for
transformers proved in the previous section.

MLP architecture The input to the MLP is a concatenation of the token one-hot encodings. The
MLP alternates linear transformations and nonlinear elementwise activations. Formally, the MLP
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has weights @ = {W,..., W, w} and outputs

fuip(x;0) = w’ zp(x;0) € R where (23)
zo(x;0) = ¢(Wyzy_1(x;0)) € RY  forl > 1
zo(z;0) = zo(x) = [ex,, ..., e,,] € RF™.

We consider training the MLP with SGD.

Definition I.1 (One-pass SGD training). The learned weights 8" after ¢ steps of SGD training are
the random weights given by initializing 8° so that each of W(l)7 cee W%, w" have i.i.d. Gausian
entries, and then updating with 8" = 0'~' — 1, Vo (fuLp(x!;0) — y*)? |g_g:—1 for (zf,y!) ~ D
and some step size n; > 0.

We show that SGD-trained MLPs fail at the template task since they do not generalize well in the
case when the templates consist only of wildcard tokens. In words, if the template labels f, are a
non-constant function, the MLP will not reach arbitrarily low error no matter how many training
steps are taken. Let X, C X be the subset of tokens not seen in the train data. We assume that
| Xuns| = k, which guarantees that for any template there is at least one string matching it where all
the wildcards are substituted by tokens in X,,,,s. Under this condition:

Theorem 1.2 (Failure of MLPs at generalizing on unseen symbols). Suppose that the label function
f« is non-constant, and that all templates in the support of iempir consist only of wildcards: z € Wk
for all z € supp(ptmpit). Then, for any SGD step t there is a string x € (Xuns)¥ that matches a
template z € supp(fumpit) such that

Egt [(fuie(z:6") — fu(2))?] > ¢> 0,

where c is constant that depends only on [iymplx and fi.

The proof is deferred to Appendix I, and relies on the key observation that SGD-training of MLPs
satisfies a permutation invariance property (Ng, 2004). This property guarantees that MLP cannot
consistently distinguish between the unseen tokens, and therefore, in expectation over the weights
6", outputs the same value for any sequence € (X,,s)*. We make four remarks.

Remark 1.3. MLPs are universal approximators (Cybenko, 1989), so there are choices of weights
60 such that fyp(+; @) has good generalization on unseen symbols. The theorem proves that these
weights are not found by SGD.

Remark I.4. The theorem does not assume that training is in the NTK regime, i.e., it holds even for
nonlinear training dynamics.

Remark 1.5. The theorem also holds for training with Adam, gradient flow, and minibatch-SGD,
since the permutation-invariance property of MLP training also holds for these. See Appendix I.

Remark 1.6. As a sanity check, we verify that MLP kernel does not meet the sufficient condition
for generalizing on unseen symbols from Lemma 4.5. The kernel for an MLP is an inner product

kernel of the form Kyp(x,z') = /@(Zle 1(x; = 7)) for a function x : R — R. Therefore, the
matrix N € R™*" has all of its entries equal to N;; = x(0), so it is singular and the condition of

Lemma 4.5 is not met.

We now prove Theorem 1.2. We first show that trained MLPs cannot differentiate between tokens
in the set Xy,s. Let X = Xseen U Xyns be the partition of tokens into those seen and not seen
in the train data. Here X, is defined as the smallest set such that x € X% _  almost surely for
(x,y) ~ D,

Lemma 1.7 (Trained MLPs cannot distinguish unseen tokens). For any number of SGD steps t,
and any learning rate schedule 11, . .. ,n:, the learned MLP estimator cannot distinguish between

sequences of unseen tokens. Formally, for any x,, x> € XF ., we have

Egt [fuLp (15 0°)] = Egt [ furp (x2;0")] .

Proof of Lemma 1.7. The proof of this result is based on a well-known permutation-invariance prop-
erty of MLPs trained by SGD. This property has previously been used to show sample complexity
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lower bounds for learning with SGD-trained MLPs (Ng, 2004; Li et al., 2020), as well as time-
complexity lower bounds (Shamir, 2018; Abbe et al., 2022; Abbe & Boix-Adsera, 2022). In this
lemma, we use the permutation invariance property to show poor out-of-distribution generalization
of SGD-trained MLPs.

First, construct a permutation IT € R¥™*k™ guch that T1zg(x1) = z(x2), but which also satisfies
that for any & € (Xseen)® we have I1zo(Z) = 2zo(z). This permutation can be easily constructed
since neither @1 nor s contains tokens in Xg.,,. Next, define the following network f,\l}LP, analo-
gously to (23) but with the first-layer inputs permuted by II
fitp(x;0) = wT 2N (x;0) e R where
2N (x;0) = p(W 2t | (2;0)) e RY forl > 1

2 (x;0) = z{l(x) = T[e,,, ..., e, ] € RF™.

Now let us couple the weights 8°, . .., 8" from SGD training of fyp on dataset D, with the weights
6"°, ..., ™" from SGD training of fiX p on dataset D. The coupling is performed inductively on
the time step, and we can maintain the property that 87 = 0™ for all ¢. For the base case 7 = 0,

we set 8° = 0™°°. For the inductive step, 7 > 1, we update the weights with the gradient from some

sample (z7,y7). Since &7 € (X*°°™)* almost surely, we know that zo(z") = 2zI'(z™) almost

surely, which means that 87 = 6™ almost surely. We conclude the equality in distribution of the
weights

o' L gt (24)

Next, let us inductively couple the weights 8°, ..., 8" with the weights 8™° ..., 8™ in a different
way, so as to guarantee that for any time 0 < 7 < ¢, we have

T=W]"Tland W] = W}"" forall 2 < ¢ < Land w™ = w'"" .

almost surely. The base case 7 = 0 follows because the distribution of W(l) and WIE"O is equal
and is also invariant to permutations since it is Gaussian. For the inductive step, couple the sample
updates so that SGD draws the same sample (7, y”) ~ D. One can see from the chain rule that the
invariant is maintained. We conclude the equality in distribution of the weights

0" = (W', Wi w} L wihimwilt | wibt T (25)
Combining (24) and (25), we get
o' = (Wi, .. W, w} L {WILW,, . .. W, w},
which,since Iz (x1) = zo(x2), immediately implies

d
Sup(1;0") = fup(@2; {WIIL W5, ... Wi w'}) = fue(z2;6),
which proves the lemma. O

Theorem 1.2 follows as a consequence. Note that the key lemma proved above only relied on a
permutation invariance property of SGD on MLPs that also holds for Adam training, gradient flow
training, and SGD with minibatch (see Li et al. (2020)). Therefore, the result holds for training with
those algorithms as well, beyond just SGD.

Proof of Theorem 1.2. Pick any two templates z, 2" € supp(fempr) such that f.(2) # f.(2).
Recall that 2,2z’ € WP by assumption. Since we assumed that |X,,s| > k, there are strings
x,x’ € XF . matching templates z and 2, respectively. Furthermore, by Lemma 1.7, if we define
a = Eet [fMLP (.’13; Gt)] = Egt [fMLP (SC/; Ot)], we have

max(Eg: [(fuip(z:0") — f«(2))°], Egt [(fure (5 ) — f.(2'))*)
> max((a — f.(2))% (a — f.(2))?)

L fu2) = () = e > 0.
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J DEFERRED DETAILS FOR SYMBOLIC-LABEL TEMPLATE TASKS

J.1 DEFINITION OF SYMBOLIC-LABEL TEMPLATE TASKS

In symbolic-label template tasks the output is a token in X. This corresponds to the next-token
prediction setting, and the appropriate loss is the cross-entropy loss for multiclass classification.
The formal definition of these tasks is:

Definition J.1 (Multi-class prediction version of template). The data distribution Dy, yiticiass =
Dinuiticlass (Hemplts { bsub,z }» [+) 1s specified by: (i) a template distribution fimpie supported on (XU
W)k; (i1) for each template z, a distribution pis,p, . Over substitution maps s : W — X; (iii) a
labelling function f, : supp(fempte) = X UW. A sample (x,y) € Xk x X drawn from D,,uiticlass
is drawn by taking & = sub(z, s) and y = sub(f.(z), s), where z ~ fiympir and s ~ gyp =

J.2  FAILURE OF TRANSFORMERS TO COPY AND MODIFICATION THAT SUCCEEDS

We provide the deferred proofs for Section 5.

Attention layer architecture For simplicity in this section we consider a transformer with the
attention layer only, since the MLP layer does not play a role in the ability to copy unseen symbols.
Our architecture has H heads with parameters Wk p, W p, Wy, Wo ), € RinecadXdems - ap
embedding/unembedding layer W i € R™*dems positional embeddings P € RF*demb an MLP
layer with parameters W 4, W € RémirXdemb 3 final unembedding layer , and an activation
function ¢. The network takes in X € R**™ and outputs

fartn(X;0) = Wz, € R™ (Unembedding layer)

where

z] = Z Agek

he[H]
Ap, =smax(BZoW e )W qnZy ) ZoW 1, Wo,j, € RFXdem (Attention heads)
Zo=XWpg +~P c RFXdemv (Embedding layer)

and we tie the embedding and unembedding weights, as often done in practice, for example in GPT-
2 Brown et al. (2020). Here 3, > 0 are two hyperparameters that control the inverse temperature
of the softmax and the strength of the positional embeddings, respectively.

Simplification in our case We consider here a next-token prediction setup, where there is no
final [CLS] token appended to the string. Namely, given a string = € X%, this is inputted to the
network as a stacked matrix of one-hot vectors for the tokens of the string X = [e,,,...,e,,]. We
study a very basic template task: template “a’” labeled by «, where « is a wildcard. An example
dataset generated from this template could be {(4, A), (B, B), (C,C)}, where A,B,C € X are
tokens. Because the template has length & = 1, X € R¥*™ is a one-hot vector encoding the input
token. Furthermore, the softmax output is always a 1 x 1 matrix with the entry 1, so the architecture
simplifies to

farn(X;0) = Wp( Y WE ,Wy,)(WEXT +4PT). (26)
he[H]

We initialize the entries of P and Wy be iid. N(0,1/densp), the entries of W ) be
N(0,1/(demp)). and the entries of Wy, be N(0,1/dpeqq), so that as dep,p, — 00 the variance
of the output vanishes as O(1/demp) as in the mean-field scaling Mei et al. (2018; 2019); Sirig-
nano & Spiliopoulos (2022); Chizat & Bach (2018); Rotskoff & Vanden-Eijnden (2018); Yang &
Hu (2021).

Derivation of kernels driving dynamics at small times Despite the simplicity of the task, the
architecture does not generalize well on unseen symbols. Our evidence for this will be by analyzing
the early times of training. For these times, the dynamics are governed by the neural tangent kernel
(NTK) of the network at initialization (Jacot et al., 2018; Chizat et al., 2019). Let us derive the
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neural tangent kernel of this architecture. This is a network with output of dimension m, so for each
i,j S [m] we will derive Kij70(X, X/), Ki_]}V(X; X/), Kij’p(X, AX/)7 Kij,E(X7 X/) which giVC
the dynamics at small times for training the {Wo 1 }ne(m), the {Wy s }ne(m), the Wp, and the
W ; weights at small times, respectively. Writing W g = [wg 1,...,wg,m] ', by the law of large
numbers,

a[fatm<x;0>]i>T (a[fann(X';e)Jj)

.. 4 o
Kz],O(X7 X ) < 8W0$h aWO,h

he[H]
= Y (XWg+P)W{, , Wy, (WEX" + 7P )wh w
he[H]

dhead—00,demb—>00
= 1)

ij (611,1'1 + 72)

he[H]

dem
o - N wh WE  Wonwe(XWg +4P)T(X'Wg + 7P)

dhead he[H)

d;mi)—mo wgyin’j (XW g + ’}/P)T(X/WE +~P)

demb >

— > 5ij (5x1,z’1 + 72)

2. ..T demb 00 2
> =Y wg,,wp; " 0ij

9| fatm<x;a>}i>T (a[fm(X’;onj

.. ! —
Kijp(X, X) ( opP oP

8fattnX0 ) <8[fattn(X/;0)]j)
GWE a‘/VE

=0 (XWg+yP)( Y Wi,Wou)( > WE,Wyn)(Wi(X)" +4PT)
he[H] he[H]

+ 6w wh (> WEWY( Y W, Wonwh
he[H] he[H]

+ 0w wh (> WEWun)( Y WE W) (wpa, +7P7)
he[H] he[H]

+ 6 wh (Y WEWuR) (D WE W) (wp . +vPT)
he[H] he[H]
2](261317:6’1 + 72) 5
since only the first two terms do not vanish as the embedding dimension and number of heads go to
infinity.

Kijp(X,X") <

dh,ead%oo,dﬂb%oo,H%oo (S

Training loss and testing loss Let (z1,41),. .., (Zn,yn) € X X X be a training set of data points
drawn from this task, where due to the structure of the template task each of the context strings is
length-1 and we have z; = y;. We will test the model on a data point (z%¢%?, 3y*¢5*), which does not
appear in the test set: i.e., 't = ytst & {2y, ... 2, }.

The training loss is given by

1 n
Etram - Z E fattn xw 7) )
=1

3
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where / is the cross-entropy loss, and the test loss is given by

Liest(0) = € Faren ("), ") .

Theorem J.2. For any learning rates no,ny,np, Mg such that |a£ta% = 0(1) as demp, dheads

and H — oo, we have |% < o(1). In other words, the error for generalization on unseen
symbols does not decrease during training for infinite-width transformers.

Proof. Consider training with gradient flow with learning rates no, nv,np, ng on the parameters
{Wontnem {AWvntheim), Wp, and W g, respectively. In the limit as d.,,, — 0o we have
fattn (Xa 00) — 07 SO

a»Ct'r‘ain 1 " 1 T 8fattn (XZ7 0)
Py E —1—e, )TN e
00 lo=6 i:l(m €x:) 00 lo=60
So at time ¢ = 0, the training loss decreases as

aﬁrain
bt | g 3 S () (Um = Gy

i,i'€[n] 7,5' €[m]
(v K v (X, Xor) + noKjj0(Xi, Xir)
+npK; ’P(X“X )+77EK i B (X, X ))-
So we must take no = O(1/H),nv = O(demp/dhead)> np = O(1), and ng = O(1) for us to have
% = O(1) be bounded by a constant that does not grow with deymp, dpead, and H.

Under these choices of learning rates, the test loss on token gtest

{z1,..., 20}, evolves as

oL es
o li=o = = Z 3 (Um = 850,) (1) by grent)

ie[”] J,j'€[m]
: (nVij/}V(Xi, XteSt) + nonj’,O(Xi, Xtest)
+ 77Pij,7P(Xi,Xt55t) + nEKj]’E(Xz, Xtest))
1
- n Z Z (1/m_(Sjvxi)(l/m_(Sj/’ztest)

i€[n] 5,3’ €[m]

which is not in the training dataset

dhead
(( demb

+ 77P’Y2(5j it 2H77E6j7j/(5m,z"“5" + 72))
d ea
Z ST (1/m = 8j0) (1) m = §jgrest) (dh “head 4+ Hno + np + 205)

[n] j€[m] emb

:,72 > (1fm = §j0,)(1/m = 6 grest)

i€[n] je[m]
=—-C/m+C/m+C/m=C/m>0.

v + Hno)dj (0, arest +97%)

O

On the other hand, now we consider the f,, architecture where in each head we replace
Wj‘%hWoyh with W@hwo,h + b, I, where by, is a trainable parameter and I € RemvXdems
is the identity matrix:

[on(X;0) =Wz, € R™ (Unembedding layer)
where
Z= Y (A) e
he[H]
A}, = smax(BZoW i ,WQnZ{) Zo(W 1, Wo +b,I) € RF*demb (Attention heads)
Zo=XWpg+~P e R>demv (Embedding layer)
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Again, for the case of k£ = 1 that we consider, the network simplifies considerably to
Soen(X:0) = Wi( Y WEWyptbnHWEXT +4PT). 27)
he[H]

We initialize b, = 0 for all h, so that the neural tangent kernels K;; o, K;; v, Ki; p, K;j g are the
same as above. Now we also have a neural tangent kernel for training the parameters {bs }re(m:

8fanX;0 iafanX/§0 j
KX, X0) = 3 Ao Fa0l Ol SO,
he[H] h h

xwp (WipX" +yP")(XWg+yP wp
dem,hﬁoo 6

. )
1,21 5]:$1

We prove that under this parametrization the test loss does decrease with training, which shows that
adding this trainable identity scaling allows transformers to succeed at this task.

Theorem J.3. There is a choice of learning rates ny, nv,no, Mg, np such that as demp, dhead, H —
oo we have |M# lt=o= O(1) and —2&te=t |,_o= Q(1).

Proof. Training just the parameters {by, } ne[] With learning rate 7, (keeping the learning rates
nv,No,np,Ne = 0, so the training loss decreases as

aﬁ rain n
# lt=0— fn—l; o> (m=8a)A/m = 65w ) K p(X i, Xir)

B,i'€[n] j,j' €[m]
so we should take 1, = ©(1/H) for the train loss have derivative on the order of ©(1). The test loss
decreases as:

oL es b es
% =0 = = SN (/m= 80 (L) m = Gjr grea) Ko (X3, X'

i€[n] 4,5’ €[m]

Hp
- ST (Um= 80 (1) m = 8 prest )5, Ojr grest
i€[n] j,j’ €[m]

_ _% S (1/m—1)(1/m - 1)

i€[n]
= —Hny(1 —1/m)?
=Q(1),

for n, = Q(H), as depmp, H — 0. O
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