
Supplementary Materials: Learning Robust Statistics for1

Simulation-based Inference under Model Misspecification2

The appendix is organized as follows:3

• In Appendix A, we present the results on detecting model misspecification.4

• In Appendix B, we provide further implementation details and results for the numerical5

experiment in Section 4.6

– Appendix B.1: Implementation details7

– Appendix B.2: Additional posterior plots8

– Appendix B.3: Results for D being the Euclidean distance9

– Appendix B.4: Computational cost analysis10

• In Appendix C, we provide details of the radio propagation experiment of Section 5.11

A Detecting misspecification of simulators12

Considering that existing SBI methods can yield unreliable results under misspecification and that13

real-world simulators are probably not able to fully replicate observed data in most cases, detecting14

whether the simulator is misspecified becomes necessary for generating confidence in the results given15

by these methods. As misspecification can lead to observed statistics or features falling outside the16

distribution of training statistics, detecting for it essentially boils down to a class of out-of-distribution17

detection problems known as novelty detection, where the aim is to detect if the test sample sobs18

come from the training distribution induced by {si}mi=1. This two-label classification problem can19

potentially be solved by adapting any of the numerous novelty detection methods from the literature.20

We propose the following two simple novelty detection techniques for detecting misspecification:21

Distance-based approach. We assign a score to the observed statistic based on the value of the22

margin upper bound, as introduced in the main text. We use the MMD as the choice of distance D,23

and estimate the MMD between the set of simulated statistics {si}mi=1 and the observed statistic sobs.24

This MMD-based score can be used in a classification method to detect misspecification.25

Density-based approach. In this method, the training samples {si}mi=1 are used to fit a generative26

model q, and the log-likelihood of the observed statistics under q are used as the classification score.27

We use a Gaussian mixture model (GMM) with k components as q, having the distribution28

q(s) =
∑k

i=1 νiφ(s|µi,Σi), (1)

where νi, µi, and Σi are the weight, the mean and the covariance matrix associated with the ith29

component, and φ denotes the Gaussian pdf. The score ln q(sobs) can then be used to classify it as30

either being from in or out of the training distribution.31

Experimental set-up. We test the performance of the proposed detection methods on the Ricker32

model and the OUP with the same contamination model as given in the main text. For each of these33

simulators, we first train the NPE method on m = 1000 training data points, and fit a GMM with34

k = 2 components to them. We then generate 1000 test data-sets or points, half of them from the35

well-specified model and the other half from the misspecified model, and compute their score. The36

area under the receiver operating characteristic (AUROC) is used as the performance metric.37

Baseline. We construct a baseline for comparing performance of the proposed detection methods.38

The baseline is based on the insight that under model misspecification, the NPE posterior moves away39

from the true parameter value (even going outside the prior range). Therefore, we take the root mean40

squared error (RMSE), defined as (1/N
∑N

i=1(θi − θtrue)
2)

1
2 where {θi}Ni=1 are posterior samples,41

as the classification score.42
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Figure 1: Misspecification detection experiment. AUROC of the proposed detection methods
(GMM and MMD) versus misspecification level for the Ricker model and the OUP. The RMSE-based
baseline is shown in blue.

Results. The AUROC of the classifiers for different levels of misspecification (ϵ in the main text)43

is shown in Fig. 1 for both the models. The proposed GMM-based detection method performs the44

best, followed by the MMD-based method. The RMSE-based baseline performs the worst at the45

classification task. We conclude that it is possible to detect model misspecification in the space of46

summary statistics using simple to use novelty detection methods.47

B Additional details and results of the numerical experiments48

B.1 Implementation details49

We implement our NPE-RS models based on publicly available implementations from https:50

//github.com/mackelab/sbi. We use the NPE-C model [1] with Masked Autoregressive Flow51

(MAF) [3] as the backbone inference network, and adopt the default configuration with 50 hidden52

units and 5 transforms for MAF. The batch size is set to 50, and we maintain a fixed learning rate53

of 5 × 10−4. The implementation for RNPE is sourced directly from the original repository at54

https://github.com/danielward27/rnpe.55

Regarding the summary network in NPE tasks, for the Ricker model, we employ three 1D convolu-56

tional layers with 4 hidden channels, and we set the kernel size to 3. For the OUP model, we combine57

three 1D convolutional layers with one bidirectional LSTM layer. The convolutional layers have 858

hidden channels and a kernel size equal to 3, while the LSTM layer has 2 hidden dimensions. We59

pass the data separately through the convolutional layers and the LSTM layer and then concatenate60

the resulting representations to obtain our summary statistics. For the Turin model in Section 5, we61

utilize five 1D convolutional layers with hidden units set to [8, 16, 32, 64, 8], and the kernel size is62

set to 3. Across all three summary networks, we employ the mean operation as our aggregator to63

ensure permutation invariance among realizations.64

In ABC tasks, we incorporate autoencoders as our summary network. For the Ricker model, the65

encoder consists of three 1D convolutional layers with 4 hidden channels, where the kernel size is set66

to 3. The decoder comprises of three 1D transposed convolutional layers with the same settings as67

the encoder’s convolutional layers, allowing for data reconstruction. For the OUP model, we adopt a68

similar summary network as the one used for the Ricker model but with a smaller stride.69

In NPE tasks, we use 1000 samples for the training data, along with 100 realizations of both observed70

and simulated data for each value of θ. We also use 1000 samples for training the autoencoders. For71

ABC, we use 4000 samples from the prior and accept nδ = 200 samples giving a tolerance rate of 5%.72

We take ρ to be Euclidean distance in the rejection ABC and normalize the statistics by the median73

absolute deviation before computing the distance to account for the difference in their magnitude.74

B.2 Additional posterior plots75

We now present examples of the remaining posterior plots, apart from the one shown in the main text.76

The posterior plots for OUP using the NPE-based methods is shown in Figure 2. The observations77
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Figure 2: Ornstein-Uhlenbeck process. Posteriors obtained from our method (NPE-RS), RNPE,
and NPE for different degrees of model misspecification.
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Figure 3: Ricker model. Posteriors obtained from our method (ABC-RS) and ABC for different
degrees of model misspecification.

are similar to the Ricker model example in the main text: we see that our NPE-RS method yields78

similar posterior as NPE in the well-specified case, whereas RNPE posteriors are underconfident.79

When the model is misspecified, NPE posterior goes far from the true parameter value. The NPE-Rs80

posteriors, however, are still around θtrue, demonstrating robustness to misspecification.81

Similar behavior is observed in the ABC case for both the Ricker model and OUP in Figure 3 and82

Figure 4, respectively. The ABC posteriors go outside the prior range under misspecification, while83

ABC with our robust statistics yields posteriors closer to θtrue. In Table 1, we report the sample mean84

and standard deviations for the results shown in Figure 2 of the main text.85

B.3 Results for D being the Euclidean distance86

We present results for D being the Euclidean distance in the well-specified case of the Ricker model87

in Figure 5(a). As mentioned in Section 3 of the main text, this choice leads to very underconfident88

posteriors. This is because the Euclidean distance is not a robust distance: it becomes large even89

if a few points are far from the observed statistic. As a result, using this as the regularization term90

penalises most choices of summarizer η, and we learn statistics that are very concentrated around the91

observed statistic (orange dot). Although a good choice for being robust, Euclidean distance leads to92

statistics that are not informative about the model parameters, yielding posterior that is similar to the93

uniform prior. Hence, we used the MMD as the distance in the margin upper bound, which provides94

better a trade-off between robustness and efficiency (in terms of learning about model parameters).95
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Figure 4: Ornstein-Uhlenbeck process. Posteriors obtained from our method (ABC-RS) and ABC
for different degrees of model misspecification.

Table 1: Performance of the SBI methods in terms of RMSE and MMD for both Ricker and OUP. We
report the average (±1 std. deviation) values across 100 runs for varying levels of misspecification.

RMSE (↓) MMD (↓)

ϵ = 0% ϵ = 10% ϵ = 20% ϵ = 0% ϵ = 10% ϵ = 20%

R
ic

ke
r

NPE 2.16 (3.07) 7.86 (1.57) 11.2 (1.70) 0.04 (0.07) 0.74 (0.09) 1.06 (0.17)
RNPE 3.27 (0.35) 5.51 (0.58) 7.14 (1.15) 0.06 (0.05) 0.51 (0.19) 0.79 (0.25)

NPE-RS (ours) 2.18 (2.66) 2.19 (1.01) 4.66 (4.15) 0.09 (0.14) 0.21 (0.16) 0.42 (0.37)

ABC 1.46 (0.44) 6.95 (0.25) 9.79 (0.96) 0.01 (0.01) 0.85 (0.02) 1.18 (0.04)
ABC-RS (ours) 1.20 (0.51) 3.16 (1.08) 2.99 (1.28) 0.01 (0.02) 0.17 (0.15) 0.18 (0.16)

O
U

P

NPE 0.79 (0.62) 1.26 (1.18) 2.59 (2.75) 0.01 (0.01) 0.34 (0.15) 0.63 (0.29)
RNPE 0.78 (0.09) 0.87 (0.10) 0.98 (0.15) 0.01 (0.01) 0.22 (0.13) 0.49 (0.26)

NPE-RS (ours) 0.74 (0.70) 0.62 (0.33) 0.63 (0.36) 0.02 (0.05) 0.09 (0.09) 0.21 (0.17)

ABC 0.50 (0.07) 1.20 (0.40) 5.16 (2.39) 0.05 (0.03) 0.88 (0.21) 0.92 (0.23)
ABC-RS (ours) 0.44 (0.06) 0.62 (0.23) 0.88 (0.48) 0.02 (0.02) 0.26 (0.17) 0.50 (0.38)

B.4 Computational cost analysis96

We now present a quantitative analysis of the computational cost of training with and without our97

MMD regularization term. The results, presented in Table 2, are calculated on an Apple M1 Pro98

CPU. As expected, we observe a higher runtime for our method due to the computational cost of99

estimating the MMD from 200 samples of simulated data. The total runtime also depends on the100

number of batchsize Nbatch, hence, as Nbatch increases, the proportion of runtime used for estimating101

MMD reduces. As a result, we see that for large Nbatch, the increase in the computational cost of our102

method with robust statistics is not significant.103

C Details of the radio propagation experiment104

In this section, we describe the data and the Turin model used in Section 5 of the main text.105

Data and model description. Let B be the frequency bandwidth used to measure radio channel106

data at K equidistant points, leading to a frequency separation of ∆f = B/(K − 1). The measured107

transfer function at kth point, Yk, is modelled as108

Yk = Hk +Wk, k = 0, 1, . . . ,K − 1,

where Hk is the transfer function at the kth frequency, and Wk is additive zero-mean complex circular109

symmetric Gaussian noise with variance σ2
W . Taking the inverse Fourier transform, the time-domain110

signal y(t) can be obtained as111

y(t) =
1

K

K−1∑
k=0

Yi exp(j2πk∆ft).
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Figure 5: Ricker model. Posteriors and summary statistics for D being the Euclidean distance.

Table 2: Comparison of computational costs across different models on Ricker model. We report
the mean value (standard deviation) derived from 20 updates. We use different batch size Nbatch and
generate 100 realizations for each θ.

Runtime (seconds)

Nbatch = 50 Nbatch = 100 Nbatch = 200

NPE 0.22 (0.03) 0.46 (0.04) 0.87 (0.03)
NPE-RS (ours) 1.26 (0.05) 1.53 (0.14) 1.92 (0.10)

ABC 0.68 (0.04) 1.41 (0.04) 3.29 (0.27)
ABC-RS (ours) 1.79 (0.04) 2.71 (0.25) 4.25 (0.46)

The Turin model defines the transfer function as Hk =
∑

l αl exp(−j2π∆fkτl), where τl is the112

time-delay and αl is the complex gain of the lth component. The arrival time of the delays is modelled113

as one-dimensional homogeneous Poisson point processes, i.e., τl ∼ PPP(R+,Λ), with Λ > 0.114

The gains conditioned on the delays are modelled as iid zero-mean complex Gaussian random115

variables with conditional variance E[|αl|2|τl] = G0 exp(−τl/T )/Λ. The parameters of the model116

are θ = [G0, T, ν, σ
2
W ]⊤. The prior ranges used for the parameters are given in Table 3.

Table 3: Prior distributions for the parameters of the Turin model.

G0 T Λ σ2
W

Prior U(10−9, 10−8) U(10−9, 10−8) U(107, 5× 109) U(10−10, 10−9)

117

The radio channel data from [2] is collected in a small conference room of dimensions 3× 4× 3 m3,118

using a vector network analyzer. The measurement was performed with a bandwidth of B = 4119

GHz, and K = 801. Denote each complex-valued time-series by ỹ ∈ RK , and the whole data-set120

by ỹ1:n, where n = 100 realizations. We take the input to the summary network to be y1:n =121

10 log10(|ỹ1:n|2).122

Scatter-plot of learned statistics. In Figure 6 and Figure 7, we show the scatter-plots of the learned123

statistics using the NPE and our NPE-RS method, respectively. We observe that the observed statistics124

(shown in orange) is often outside the set of simulated statistics (shown in blue) for the NPE method.125

Hence, the inference network is forced to generalize outside its training distribution, which leads to126

poor fit of the model, as shown in Section 5 of the main text. On the other hand, the observed statistic127

is always inside the set of simulated statistics (or the training distribution) for our method in Figure 7,128

which leads to robustness against model misspecification.129
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Figure 6: Pairwise scatter-plots of summary statistics learned using NPE method for the Turin model.
Each blue dot corresponds to simulated statistic obtained from a parameter value sampled from the
prior. The orange dot represents the observed statistic.
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Figure 7: Pairwise scatter-plots of summary statistics learned using our NPE-RS method for the Turin
model. Each blue dot corresponds to simulated statistic obtained from a parameter value sampled
from the prior. The orange dot represents the observed statistic.

7


	Detecting misspecification of simulators
	Additional details and results of the numerical experiments
	Implementation details
	Additional posterior plots
	Results for D being the Euclidean distance
	Computational cost analysis

	Details of the radio propagation experiment

