
Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 MORE BENCHMARK RESULTS

Figure 3: Comparison of GFLOPs and accuracy. Left: Comparison of RTMPose and other open-
source pose estimation libraries on full COCO val set. Right: Comparison of RTMPose and other
open-source pose estimation libraries on COCO-SinglePerson val set.

COCO-SinglePerson Popular pose estimation open-source libraries like BlazePose (Bazarevsky
et al., 2020), MoveNet (Votel et al., 2023), and PaddleDetection (Authors) are designed primarily
for single-person or sparse scenarios, which are practical in mobile applications and human-machine
interactions. For a fair comparison, we construct a COCO-SinglePerson dataset that contains 1045
single-person images from the COCO val2017 set to evaluate RTMPose as well as other ap-
proaches. For MoveNet (Votel et al., 2023), we follow the official inference pipeline to apply a
cropping algorithm, namely using the coarse pose prediction of the first inference to crop the input
image and performing a second inference for better pose estimation results. The evaluation results in
Table 9 and Fig. 3 show that RTMPose archives superior performance and efficiency even compared
to previous solutions tailored for the single-person scenario.

Table 9: Body pose estimation results on COCO-SinglePerson validation set. We sum up top-down
methods’ GFLOPs of detection and pose for a fair comparison with bottom-up methods. “*” denotes
double inference. Flip test is not used.

Methods Backbone Detector Det. Input Size Pose Input Size GFLOPs AP Extra Data

MediaPipe (Bazarevsky et al., 2020) BlazePose-Lite BlazePose N/A 256× 256 N/A N/A 29.3 Internal(85K)BlazePose-Full BlazePose N/A 256× 256 N/A N/A 35.4

MoveNet (Votel et al., 2023) Lightning MobileNetv2 N/A 192× 192 N/A 0.54 53.6* Internal(23.5K)Thunder MobileNetv2 depth×1.75 N/A 256× 256 N/A 2.44 64.8*

PaddleDetection (Authors) TinyPose Wider NLiteHRNet PicoDet-s 320× 320 128× 96 0.55 58.6 AIC(220K)
TinyPose Wider NLiteHRNet PicoDet-s 320× 320 256× 192 0.80 69.4 +Internal(unknown)

MMPose (Contributors, 2020)

RTMPose-t CSPNeXt-t RTMDet-nano 320× 320 256× 192 0.67 72.1

AIC(220K)RTMPose-s CSPNeXt-s RTMDet-nano 320× 320 256× 192 0.91 77.1
RTMPose-m CSPNeXt-m RTMDet-nano 320× 320 256× 192 2.23 82.4
RTMPose-l CSPNeXt-l RTMDet-nano 320× 320 256× 192 4.47 83.5

A.2 INFERENCE SPEED

In this appendix, we extend our experimentation to assess the inference speed of RTMPose on a
mobile device using ncnn for deployment and testing. Table 10 demonstrates the comparison of
inference speed on the mobile device, specifically the Snapdragon 865 chip with RTMPose models.

Furthermore, we maintained our evaluation of TensorRT inference latency on an NVIDIA GeForce
GTX 1660 Ti GPU in the half-precision floating-point format (FP16) and ONNX latency on an
Intel I7-11700 CPU with ONNXRuntime, using a single thread. The inference batch size remained

14



Under review as a conference paper at ICLR 2024

consistent at 1. All models underwent a rigorous testing regimen on the same devices, including 50
warm-up runs and 200 inference runs to ensure a fair comparison.

For a comprehensive evaluation, we also included TinyPose (Authors) in our tests, assessing it
with both MMDeploy and FastDeploy. We observed that ONNXRuntime speed on MMDeploy
was slightly faster (10.58 ms vs. 12.84 ms). The detailed results can be found in Table 10.

Table 10: Comparison of inference speed on Snapdragon 865. RTMPose models are deployed and
tested using ncnn.

Methods Input Size GFLOPs AP(GT) FP32(ms) FP16(ms)

PaddleDetection (Authors) TinyPose 128× 96 0.08 58.4 4.57 3.27
TinyPose 256× 192 0.33 68.3 14.07 8.33

MMPose (Contributors, 2020)

RTMPose-t 256× 192 0.36 68.4 15.84 9.02
RTMPose-s 256× 192 0.68 72.8 25.01 13.89
RTMPose-m 256× 192 1.93 77.3 49.46 26.44
RTMPose-l 256× 192 4.16 78.3 85.75 45.37

Table 11 analyzes inference speeds across models and devices, revealing the balance between ac-
curacy and speed. RTMPose performs well across sizes, while RTMDet-nano prioritizes efficiency.
This data aids in selecting models for diverse real-time applications.

Table 11: Pipeline Inference speed on CPU, GPU and Mobile device.

Model Input Size GFLOPs Pipeline AP CPU(ms) GPU(ms) Mobile(ms)

RTMDet-nano 320× 320 0.31 64.4 12.403 2.467 18.780RTMPose-t 256× 192 0.36

RTMDet-nano 320× 320 0.31 68.5 16.658 2.730 21.683RTMPose-s 256× 192 0.42

RTMDet-nano 320× 320 0.31 73.2 26.613 4.312 32.122RTMPose-m 256× 192 1.93

RTMDet-nano 320× 320 0.31 74.2 36.311 4.644 47.642RTMPose-l 256× 192 4.16

15


