
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SPECTRAL SPATIAL TRAVERSING IN POINT CLOUDS:
ENHANCING DATA ANALYSIS WITH MAMBA NET-
WORKS - SUPPLEMENTARY MATERIAL

Anonymous authors
Paper under double-blind review

1 COMPUTATIONAL EFFICIENCY, RUNTIME, AND MEMORY USAGE

We have conducted a comprehensive analysis regarding the computational efficiency, runtime, and
memory usage of our SAST approach. In fact, computing the first eigenvectors of the graph Laplacian
is fast since the number of patches is much less than the original number of points (128 vs. 2048).
Additionally, when increasing the number of tokens, we do not encounter computational and memory
overhead issues due to several reasons. Because 1) the Laplacian matrix is very sparse as we only
consider the K nearest neighbors of each patch (K ≈ 20), 2) we only compute the first k eigenvectors
(k ≈ 5), and 3) this computation is done only once for each point cloud, the computational and
memory overhead of this step is minimal.

Using the sparse solve of SciPy (function eigs implementing the implicitly restarted Arnoldi
algorithm), our SAST strategy doesn’t have any issues in terms of computational and memory
overhead.

Memory Usage: As shown in Figure 1, the memory usage of our SAST strategy (black line) is
significantly lower than the memory usage of the Point-Mamba backbone (red line). When we
increase the number of patches along the x-axis, our strategy based on a sparse eigen-solver does not
require substantially more memory compared to the backbone. The star in this figure shows the used
number of tokens in downstream tasks.

27 28 29 210 211 212 213 214 215

Tokens Length

1.000

4.000

16.000

64.000

256.000

1024.000

4096.000

16384.000

M
em

or
y 

(M
B)

Memory Usage Over Tokens Length

Point-Mamba Backbone
SAST
Used Token Length

Figure 1: Memory Usage Over Tokens Length. Both axes are scaled by log2 for better visualization.

Runtime: Our SAST strategy, which can be implemented in the data loader and ran in parallel on the
CPU, is also fast. As can be seen in Figure 2, the runtime of SAST scales well when increasing the
number of patches (tokens), and only a small amount of runtime is added in training or inference for
the token length of 128 used in our main experiments (yellow star).

FLOPS: Figure 3 shows FLOPS as a function of token length for both the Point-Mamba Backbone and
our method, SAST. As the token length increases, the Point-Mamba Backbone exhibits significantly
higher computational complexity compared to SAST. Our method demonstrates a much more gradual

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

increase in FLOPS, indicating superior efficiency, particularly at longer token lengths. The yellow
stars represent the token lengths used during evaluation, further illustrating the computational
advantage of SAST over Point-Mamba.

27 28 29 210 211 212

Tokens Length

0.500

1.000

Ti
m

e 
(s

)
Runtime Over Tokens Length

SAST
Used Token Length

Figure 2: Runtime Over Tokens Length. Both axes are scaled by log2 for better visualization.

27 28 29 210 211 212

Tokens Length

0.125

1.000

8.000

64.000

512.000

4096.000

32768.000

FL
OP

S 
(M

)

FLOPS Over Tokens Length

Point-Mamba Backbone
SAST
Used Token Length

Figure 3: FLOPS Over Tokens Length. The horizontal axis is scaled by log2 for better visualization.

2 ADDITIONAL ABLATION STUDY

In this section, we investigate the effect of the HLT strategy on the classification task. The results for
HLT on the ObjectNN dataset are shown in Table 1. As observed, HLT underperforms compared
to SAST, indicating that processing high-level information from different eigenvectors in separate
traversals yields better results for this task.

3 RECONSTRUCTED POINTS.

To elucidate the capabilities of Masked Autoencoders (MAEs) in processing point cloud data, Fig. 4
provides a visual sequence involving the original input, the intermediate masking phase, and the
reconstructed output. The first column, titled “Input Point Cloud”, displays the entirety of the point
cloud data, illustrating the initial condition before any processing. The subsequent column, “Masked
Point Cloud”, reveals only the points that remain visible after a portion of the data has been masked.
The final column, “Reconstructed Point Cloud”, demonstrates the model’s ability to infer and restore
the masked parts of the point cloud.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Object classification on ScanObjectNN. Accuracy (%) is reported.

Methods Backbone Param. (M) FLOPs (G) OBJ-BG OBJ-ONLY PB-T50-RS

Training from scratch

Ours (HLT) Mamba 12.3 3.6 90.87 90.53 86.22
Ours (SAST) Mamba 12.3 3.6 92.42 91.39 87.61

Training from pretrained

Ours (HLT) Mamba 12.3 3.6 91.80 91.42 87.52
Ours (SAST) Mamba 12.3 3.6 94.32 92.08 89.10

Figure 4: Reconstruction results on the ShapeNet dataset

3


	Computational Efficiency, Runtime, and Memory Usage
	Additional Ablation Study
	Reconstructed Points.

