Under review as a conference paper at ICLR 2025

SPECTRAL SPATIAL TRAVERSING IN POINT CLOUDS:
ENHANCING DATA ANALYSIS WITH MAMBA NET-
WORKS - SUPPLEMENTARY MATERIAL

Anonymous authors
Paper under double-blind review

1 COMPUTATIONAL EFFICIENCY, RUNTIME, AND MEMORY USAGE

We have conducted a comprehensive analysis regarding the computational efficiency, runtime, and
memory usage of our SAST approach. In fact, computing the first eigenvectors of the graph Laplacian
is fast since the number of patches is much less than the original number of points (128 vs. 2048).
Additionally, when increasing the number of tokens, we do not encounter computational and memory
overhead issues due to several reasons. Because 1) the Laplacian matrix is very sparse as we only
consider the K nearest neighbors of each patch (K =~ 20), 2) we only compute the first k£ eigenvectors
(k = 5), and 3) this computation is done only once for each point cloud, the computational and
memory overhead of this step is minimal.

Using the sparse solve of SciPy (function eigs implementing the implicitly restarted Arnoldi
algorithm), our SAST strategy doesn’t have any issues in terms of computational and memory
overhead.

Memory Usage: As shown in Figure 1, the memory usage of our SAST strategy (black line) is
significantly lower than the memory usage of the Point-Mamba backbone (red line). When we
increase the number of patches along the x-axis, our strategy based on a sparse eigen-solver does not
require substantially more memory compared to the backbone. The star in this figure shows the used
number of tokens in downstream tasks.

Memory Usage Over Tokens Length

16384.000
4096.000 ,_/_/////
1024.000
o
= 256.000
Iy
5] 64.000
€
(9]
= 16.000
4.000 —— Point-Mamba Backbone
—— SAST
1.000
Used Token Length
27 28 29 210 211 212 213 214 215

Tokens Length

Figure 1: Memory Usage Over Tokens Length. Both axes are scaled by log, for better visualization.

Runtime: Our SAST strategy, which can be implemented in the data loader and ran in parallel on the
CPU, is also fast. As can be seen in Figure 2, the runtime of SAST scales well when increasing the
number of patches (tokens), and only a small amount of runtime is added in training or inference for
the token length of 128 used in our main experiments (yellow star).

FLOPS: Figure 3 shows FLOPS as a function of token length for both the Point-Mamba Backbone and
our method, SAST. As the token length increases, the Point-Mamba Backbone exhibits significantly
higher computational complexity compared to SAST. Our method demonstrates a much more gradual



Under review as a conference paper at ICLR 2025

increase in FLOPS, indicating superior efficiency, particularly at longer token lengths. The yellow
stars represent the token lengths used during evaluation, further illustrating the computational
advantage of SAST over Point-Mamba.

Runtime Over Tokens Length

—— SAST
Used Token Length

1.000

Time (s)

0.500

27 28 29 210 211 212
Tokens Length

Figure 2: Runtime Over Tokens Length. Both axes are scaled by log, for better visualization.

FLOPS Over Tokens Length

32768.000 /////
4096.000

512.000
£
w0 64.000
S
™ 8.000
1.000 —— Point-Mamba Backbone
0.125 —— SAST

Used Token Length

27 28 29 210 211 212
Tokens Length

Figure 3: FLOPS Over Tokens Length. The horizontal axis is scaled by log, for better visualization.

2 ADDITIONAL ABLATION STUDY

In this section, we investigate the effect of the HLT strategy on the classification task. The results for
HLT on the ObjectNN dataset are shown in Table 1. As observed, HLT underperforms compared
to SAST, indicating that processing high-level information from different eigenvectors in separate
traversals yields better results for this task.

3 RECONSTRUCTED POINTS.

To elucidate the capabilities of Masked Autoencoders (MAESs) in processing point cloud data, Fig. 4
provides a visual sequence involving the original input, the intermediate masking phase, and the
reconstructed output. The first column, titled “Input Point Cloud”, displays the entirety of the point
cloud data, illustrating the initial condition before any processing. The subsequent column, “Masked
Point Cloud”, reveals only the points that remain visible after a portion of the data has been masked.
The final column, “Reconstructed Point Cloud”, demonstrates the model’s ability to infer and restore
the masked parts of the point cloud.



Under review as a conference paper at ICLR 2025

Table 1: Object classification on ScanObjectNN. Accuracy (%) is reported.

Methods Backbone Param. (M) FLOPs (G) OBJ-BG OBJ-ONLY PB-T50-RS

Training from scratch

Ours (HLT) Mamba 12.3 3.6 90.87 90.53 86.22
Ours (SAST) Mamba 12.3 3.6 92.42 91.39 87.61
Training from pretrained
Ours (HLT) Mamba 12.3 3.6 91.80 91.42 87.52
Ours (SAST) Mamba 12.3 3.6 94.32 92.08 89.10
Input Masked Reconstructed Input Masked Reconstructed
Point Cloud Point Cloud Point Cloud Point Cloud Point Cloud Point Cloud

"R e,
e & .

N e e
L2

Figure 4: Reconstruction results on the ShapeNet dataset




	Computational Efficiency, Runtime, and Memory Usage
	Additional Ablation Study
	Reconstructed Points.

