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AutoDrop: Training Deep Learning Models with
Automatic Learning Rate Drop

(Supplementary Material)

A PROOFS

A.1 PROOF FOR THEOREM 1

Proof for Theorem 1. First note that if the learning rate is chosen as specified, then each of the
trajectories is a contraction map. By Banach’s fixed point theorem, they each have a unique fixed
point. Clearly

E∗SGD = lim
t→∞

E[xt] = 0.

For the variance we can solve for the fixed points directly. Define V∗SGD = limt→∞V[xt],

V∗SGD = (I − γA)2V∗SGD + γA2Σ,

=⇒V∗SGD =
γ2A2Σ

I − (I − γA)2
= diag(

α2a21σ
2
1

1− (1− αa1)2
, · · · , α2a2nσ

2
n

1− (1− αan)2
),

where σ2
i is the i-th diagonal element of the variance matrix Σ of a gaussian noise ct. Because

V∗SGD = lim
t→∞

V[xt] = lim
t→∞

E
[
(xt − E[xt])(xt − E[xt])

T
]

= lim
t→∞

E[xtx
T
t ]

= diag( lim
t→∞

E[x2t,1], lim
t→∞

E[x2t,2], · · · , lim
t→∞

E[x2t,n]),

we have

lim
t→∞

E[x2t,i] =
α2a2iσ

2
i

1− (1− αai)2
i = 1, · · · , n. (14)

Since ct ∼ N(0,Σ),

lim
t→∞

E[c2t,i] = σ2
i i = 1, · · · , n. (15)

The update formula with learning rate α is

xt+1 = xt − α∇L̂(xt) = xt − αA(xt − ct), ct ∼ N(0,Σ). (16)

For the next iteration, the update formula can be written as

xt+2 = xt+1 − α∇L̂(xt+1) (17)
= xt+1 − αA(xt+1 − ct+1), ct+1 ∼ N(0,Σ)

= xt+1 − αA(xt − αA(xt − ct)), ct, ct+1 ∼ N(0,Σ)

= xt+1 − αA(xt − ct+1) + α2A2(xt − ct), ct, ct+1 ∼ N(0,Σ).

Define the step at iteration t as st = xt+1 − xt, then the inner product of two consecutive steps can
be written as

< st, st+1 >= < −αA(xt − ct),−αA(xt − ct+1) + α2A2(xt − ct) > (18)

=α2(xt − ct)TA2(xt − ct+1)− α3(xt − ct)TA3(xt − ct)
=α2

[
xTt A

2xt−xTt A2ct+1−cTt A2xt+c
T
t A

2ct+1−αxTt A3xt+2αxtA
3ct−αcTt A3ct

]
.
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Therefore, the trajectory of the expectation of the inner product converges to

I∗ = lim
t→∞

E[< st, st+1 >] = α2
[

lim
t→∞

E[xTt A
2(I − αA)]xt − α lim

t→∞
E[cTt A

3ct]
]

(19)

= α2

[
n∑
i=1

a2i (1− αai) lim
t→∞

E[x2t,i]−
n∑
i=1

αa3i lim
t→∞

E[c2t,i]

]

= α2
n∑
i=1

[
a2i (1− αai)

αaiσ
2
i

2− αai
− αa3iσ2

i

]

= α2
n∑
i=1

αa3iσ
2
i

[
1− αai
2− αai

− 1

]

= −α3
n∑
i=1

a3iσ
2
i

2− αai
.

The norm of step st at iteration t is written as

‖st‖2 = ‖αA(xt − ct)‖2 (20)

= α2(xt − ct)TA2(xt − ct)
= α2(xTt A

2xt − 2xTt A
2ct + cTt A

2ct).

Therefore the trajectory of the expectation of the norm of st converges to

N∗ = lim
t→∞

E[‖st‖2] = α2 lim
t→∞

E[xTt A
2xt] + α2 lim

t→∞
E[cTt A

2ct] (21)

= α2
n∑
i=1

a2i
(
E[x2t,i] + E[c2t,i]

)
= α2

n∑
i=1

a2iσ
2

(
αai

2− αai
+ 1

)

= 2α2
n∑
i=1

a2iσ
2

2− αai
.

Here, in order to draw meaningful conclusions we make certain simplifications and proceed by
approximating E[cos(∠(st, st+1))] ≈ E[< st, st+1 >]/E[‖st‖ ‖st+1‖].

Because cos(∠(st, st+1)) = <st,st+1>
‖st‖‖st+1‖ and ‖s‖t converges when t is large enough, then

lim
t→∞

E[cos(∠(st, st+1))] ≈ lim
t→∞

E[< st, st+1 >]

E[‖st‖2]
. (22)

Since I∗ = limt→∞ E[cos(∠(st, st+1))] and N∗ = limt→∞ E[‖st‖2] are both bounded and not
equal to 0,

lim
t→∞

E[cos(∠(st, st+1))] ≈ limt→∞ E[< st, st+1 >]

limt→∞ E[‖st‖2]
. (23)

By combining formula (23), (19) and (21), we obtain that the expectation of cosine value converges
to

C∗= lim
t→∞

E[cos(∠(st, st+1))]≈ I∗

N∗
=−α

2

∑n
i=1

a3iσ
2
i

2−αai∑n
i=1

a2iσ
2
i

2−αai

≥−α
2

max
i
ai

∑n
i=1

a2iσ
2
i

2−αai∑n
i=1

a2iσ
2
i

2−αai

=−αmaxi ai
2

(24)

Since I − αA � 0 implies αai < 1 for arbitrary i, then C∗ ∈ [− 1
2 , 0] and the angle is between 90

degree to 120 degrees.
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A.2 PROOF FOR THEOREM 2

Proof in this section in inspired by Yang et al. (2016).

Proof for Theorem 2. We denote G(xt; ξt) = G(xt) = Gt. The update formula (7) implies the
following recursions:

xt+1 + pt+1 =xt + pt −
αt

1− β
G(xt) (25)

vt+1 =βvt + ((1− β)s− 1)αtG(xt), (26)

where vt = 1−β
β pt and pt is given by

pt =


β

1− β
(xt − xt−1 + sαt−1G(xt−1)), k ≥ 1

0, k = 0

. (27)

Define δt = Gt − ∂f(xt) and let x∗ be the optimal point. From the above recursions we have

‖xt+1 + pt+1 − x∗‖2

= ‖xt + pt − x∗‖2−
2αt

1− β
(xt + pt − x∗)TGt+

(
αt

1− β

)2

‖Gt‖2

= ‖xt + pt − x∗‖2−
2αt

1− β
(xt − x∗)TGt−

2αtβ

(1− β)2
(xt − xt−1)TGt

− 2sαtαt−1β

(1− β)2
GTt−1Gt+

(
αt

1− β

)2

‖Gt‖2

= ‖xt + pt − x∗‖2 −
2αt

1− β
(xt − x∗)T (δt + ∂f(xt))−

2αtβ

(1− β)2
(xt − xt−1)T (δt + ∂f(xt))

− 2sαtαt−1β

(1− β)2
(δt−1 + ∂f(xt−1))T (δt + ∂f(xt)) +

(
αt

1− β

)2

‖δt + ∂f(xt)‖2 . (28)

Note that

E[(xt − x∗)T (δt + ∂f(xt))] = E[(xt − x∗)T∂f(xt)]

E[(xt − xt−1)T (δt + ∂f(xt))] = E[(xt − xt−1)T∂f(xt)]

E[(δt−1 + ∂f(xt−1))T (δt + ∂f(xt))] = E[(δt−1 + ∂f(xt−1))T∂f(xt)] = E[GTt−1∂f(xt)]

E[‖δt + ∂f(xt)‖2] = E[‖δt‖2] + E[‖∂f(xt)‖2].

Taking the expectation on both sides gives the following

E[‖xt+1 + pt+1 − x∗‖2]

=E[‖xt + pt − x∗‖2]− 2αt
1− β

E[(xt − x∗)T∂f(xt)]−
2αtβ

(1− β)2
E[(xt − xt−1)T∂f(xt)]

− 2sαtαt−1β

(1− β)2
E[GTt−1∂f(xt)] +

(
αt

1− β

)2

(E[‖δt‖2] + E[‖∂f(xt)‖2]). (29)

Moreover, since f is convex,E [‖G(x; ξ)− E[G(x; ξ)]‖] ≤ δ2, and ‖∇f(x)‖ ≤ G, then for any x

f(xt)− f(x∗) ≤ (xt − x∗)T∂f(xt)

f(xt)− f(xt−1) ≤ (xt − xt−1)T∂f(xt)

− E[GTt−1∂f(xt)] ≤
E[‖Gt−1‖2 + ‖∂f(xt)‖2]

2
≤ δ2/2 +G2 ≤ δ2 +G2

E[‖δt‖2] ≤ δ2, E[‖∂f(xt)‖2] ≤ G2.
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Therefore, (29) can be rewritten as

E[‖xt+1 + pt+1 − x∗‖2] ≤E[‖xt + pt − x∗‖2]− 2αt
1− β

E[f(xt)− f(x∗)] (30)

− 2αtβ

(1− β)2
E[f(xt)− f(xt−1)] +

2sβαtαt−1 + α2
t

(1− β)2
(G2 + δ2).

Since α̂i is decreasing, it implies that αt is non-increasing. Thus, (30) could be upper-bounded as

E[‖xt+1 + pt+1 − x∗‖2] ≤E[‖xt + pt − x∗‖2]− 2αt
1− β

E[f(xt)− f(x∗)] (31)

− 2αtβ

(1− β)2
E[f(xt)− f(xt−1)] +

(2sβ + 1)αtαt−1
(1− β)2

(G2 + δ2).

Taking t = 0, ..., T − 1 and x−1 = x0, and then summing all the inequalities gives
T−1∑
t=0

E[‖xt+1+pt+1−x∗‖2] ≤
T−1∑
t=0

E[‖xt + pt − x∗‖2]−
T−1∑
t=0

2αt
1− β

E[f(xt)− f(x∗)]

−
T−1∑
t=0

2αtβ

(1−β)2
E[f(xt)−f(xt−1)]+

(2sβ+1)(G2+δ2)

(1−β)2

T−1∑
t=0

αtαt−1.

Therefore,

2

1−β

T−1∑
t=0

αtE[f(xt)−f(x∗)] ≤‖x0−x∗‖2−
∥∥xT +pT−x∗

∥∥+
2β

(1−β)2

T−1∑
t=0

αtE[f(xt−1)−f(xt)]

+
(2sβ + 1)(G2 + δ2)

(1− β)2

T−1∑
t=0

αtαt−1,

since αT−1 ≤ ... ≤ α1 ≤ α0 < 1, mint=0,...,T−1{E[f(xt) − f(x∗)]} ≤ E[f(xt) − f(x∗)](∀t =
0, ..., T − 1). Then

2

1− β
min

t=0,...,T−1
{E[f(xt)− f(x∗)]}

T−1∑
t=0

αt ≤‖x0 − x∗‖2 +
2β

(1− β)2

T−1∑
t=0

αtE[f(xt−1)− f(xt)]

+
(2sβ + 1)(G2 + δ2)

∑T−1
t=0 αtαt−1

(1− β)2
.

Moreover, αt = α̂i(ti ≤ t < ti+1) implies that

2

1−β
min

t=0,...,T−1
{E[f(xt)−f(x∗)]}

T−1∑
t=0

αt ≤‖x0−x∗‖2+
2β

(1−β)2

n−1∑
i=0

α̂iE[f(xti)−f(xti+1)]

+
(2sβ + 1)(G2 + δ2)

∑T−1
t=0 αtαt−1

(1− β)2
.

Since E[f(xti)− f(xti+1
)] is always upper-bounded by f(x0)− f(x∗), we have

2

1− β
min

t=0,...,T−1
{E[f(xt)− f(x∗)]}

T−1∑
t=0

αt ≤‖x0 − x∗‖2 +
2β

(1− β)2
[f(x0)− f(x∗)]

n−1∑
i=0

α̂i

+
(2sβ + 1)(G2 + δ2)

∑T−1
t=0 αtαt−1

(1− β)2
.

After simplification, we have

min
t=0,...,T−1

{E[f(xt)− f(x∗)]} ≤ (1− β) ‖x0 − x∗‖2

2
∑T−1
t=0 αt

+
β[f(x0)− f(x∗)]

∑n−1
i=0 α̂i

(1− β)
∑T−1
t=0 αt

+
(2sβ + 1)(G2 + δ2)

∑T−1
t=0 αtαt−1

2(1− β)
∑T−1
t=0 αt

. (32)
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Because α̂i ≤ (i+2)−1, kiα̂i ≥ κ1(i+2)−
1
3 , kiα̂iα̂i−1 ≤ κ2(i+1)−

2
3 ,∀i = 0, 1, ..., n−1(n� 1),

n−1∑
i=0

α̂i ≤
n−1∑
i=0

(i+ 2)−
2
3 =

∫ n−1

0

(i+ 2)−
2
3 = 3[(n+ 1)

1
3 − 2

1
3 ] (33)

T−1∑
t=0

αt =

n−1∑
i=0

kiα̂i ≥
n−1∑
i=0

κ1(i+ 2)−
1
3 = κ1

∫ n−1

0

(i+ 2)−
1
2 =

3κ1
2

[(n+ 1)
2
3 − 2

2
3 ] (34)

T−1∑
t=0

αtαt−1 ≤
n−1∑
i=0

kiα̂iα̂i−1 ≤ κ2
n−1∑
i=0

(i+ 1)−1 = κ2

∫ n−1

0

(i+ 1)−1 = κ2 log n. (35)

Substituting (33-35) into inequality (32) gives

min
t=0,...,T−1

{E[f(xt)− f(x∗)]} ≤2β(f(x0)− f(x∗))[(n+ 1)
1
3 − 2

1
3 ]

2κ1(1− β)[(n+ 1)
2
3 − 2

2
3 ]

+
(1− β) ‖x0 − x∗‖2

3κ1[(n+ 1)
2
3 − 2

2
3 ]

+
(2sβ + 1)(G2 + δ2)κ2 log n

3(1− β)κ1[(n+ 1)
2
3 − 2

2
3 ]
.

A.3 PROOF FOR THEOREM 3

First, we introduce Lemma 1 which will be used in the proof for Theorem 3. We prove this lemma
later in this section.
Lemma 1. If sequences {α̂i}n−1i=−1 ⊂ (0, 1) and {ki}ni=0 ⊂ N satisfy:

α̂i = (i+ 2)−
2
3 ,

κ1√
α̂i
≤ ki ≤

κ2√
α̂i
,

where κ1, κ2 are constants, then

α̂i ≤ (i+ 2)−
2
3 , kiα̂i ≥ κ1(i+ 2)−

1
3 , kiα̂iα̂i−1 ≤ κ2(i+ 1)−1, ∀i = 0, 1, ..., n− 1.

(36)

Moreover, suppose T =
∑n−1
i=0 ki. If n� 1 the following holds

3κ1
5

[(n+ 1)
5
3 − 2

5
3 ] ≤ T ≤ 3κ2

5
[(n+ 1)

5
3 − 2

5
3 ]. (37)

Proof for Theorem 3. The derivative of the angular velocity model is:

v′α(t) =
π(1 + εα)

2γt2
.

Define the gaps of partition Π : 0 = t0 < t1 < ... < tn = T derived from the Algorithm 2 as

ki = ti+1 − ti, ∀i = 0, ..., n− 1.

Since we drop the learning rate every time the derivative of the angular velocity is smaller that δ, we
have

v′α̂i
(ki) = τ =⇒ ki =

√
π(1 + εα)

2γτα̂i
.

Since ε ∈ (0, 1/3α̂0), we have √
π

2γτα̂i
≤ ki ≤

√
2π

3γτα̂i
. (38)

Define κ1 =
√

π
2γτ and κ2 =

√
2π
3γτ . By Lemma 1, we have

α̂i ≤ (i+ 2)−
2
3 , kiα̂i ≥ κ1(i+ 2)−

1
3 , kiα̂iα̂i−1 ≤ κ2(i+ 1)−1, ∀i = 0, 1, ..., n− 1.

(39)
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Then, by combining (39) with Theorem 2 we could conclude that the sequence {xt}T−1t=0 generated
by the Algorithm 2 satisfies

min
t=0,...,T−1

{E[f(xt)− f(x∗)]} ≤2β(f(x0)− f(x∗))[(n+ 1)
1
3 − 2

1
3 ]

2κ1(1− β)[(n+ 1)
2
3 − 2

2
3 ]

+
(1− β) ‖x0 − x∗‖2

3κ1[(n+ 1)
2
3 − 2

2
3 ]

+
(2sβ + 1)(G2 + δ2)κ2 log n

3(1− β)κ1[(n+ 1)
2
3 − 2

2
3 ]
. (40)

By Equation (37) in Lemma 1 we have that

3κ1
5

(n− 1)
5
3 ≤ 3κ1

5
[(n+ 1)

5
3 − 2

5
3 ] ≤ T ≤ 3κ2

5
[(n+ 1)

5
3 − 2

5
3 ] ≤ 3κ2

5
(n+ 1)

5
3 .

Therefore

(
5T

3κ2
)

3
5 − 1 ≤ n ≤ (

5T

3κ1
)

3
5 + 1. (41)

Combining (41) with (40) gives

min
t=0,...,T−1

{E[f(xt)− f(x∗)]} ≤
2β(f(x0)− f(x∗))[(( 5T

3κ1
)

3
5 + 1 + 1)

1
3 − 2

1
3 ]

2κ1(1− β)[(( 5T
3κ2

)
3
5 − 1 + 1)

2
3 − 2

2
3 ]

+
(1− β) ‖x0 − x∗‖2

3κ1[(( 5T
3κ2

)
3
5 − 1 + 1)

2
3 − 2

2
3 ]

+
(2sβ + 1)(G2 + δ2)κ2 log(( 5T

3κ1
)

3
5 + 1)

3(1− β)κ1[(( 5T
3κ2

)
3
5 − 1 + 1)

2
3 − 2

2
3 ]

=
2β(f(x0)− f(x∗))[( 5T

3κ1
)

3
5 + 2)

1
3 − 2

1
3 ]

2κ1(1− β)[( 5T
3κ2

)
2
5 − 2

2
3 ]

+
(1− β) ‖x0 − x∗‖2

3κ1[( 5T
3κ2

)
2
5 − 2

2
3 ]

+
(2sβ + 1)(G2 + δ2)κ2 log(( 5T

3κ1
)

3
5 + 1)

3(1− β)κ1[( 5T
3κ2

)
2
5 − 2

2
3 ]

=O
(
T−

1
5

)
.

A.4 PROOF FOR LEMMA 1

Proof for Lemma 1. First, we show bounds from (36) one by one:

i) α̂i = (i+ 2)−
2
3 ≤ (i+ 2)−

2
3 .

ii) kiα̂i = κ1
√
α̂i = κ1(i+ 2)−

1
3 ≥ κ1(i+ 2)−

1
3 .

iii) kiα̂iα̂i=1 ≤ κ2
√
α̂iα̂i−1 = κ2(i+ 2)−

1
3 (i+ 1)−

2
3 ≤ κ2(i+ 1)−1.

Secondly, we compute T =
∑n−1
i=0 ki according to the definition of ki. Because n� 1, the sum of

the sequence could be treated as an integral:

T =

n−1∑
i=0

ki ≤ κ2
n−1∑
i=0

√
1

α̂i
= κ2

n−1∑
i=0

(i+ 2)
1
3 = κ2

∫ n−1

0

(i+ 2)
1
3 =

3κ2
5

[(n+ 1)
5
3 − 2

5
3 ],

and

T =

n−1∑
i=0

ki ≥ κ1
n−1∑
i=0

√
1

α̂i
= κ1

n−1∑
i=0

(i+ 2)
1
3 = κ1

∫ n−1

0

(i+ 2)
1
3 =

3κ1
5

[(n+ 1)
5
3 − 2

5
3 ].
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B EXPERIMENTAL DETAILS

B.1 DATA SETS AND MODELS

The CIFAR-10 and CIFAR-100 data sets (Krizhevsky et al., 2009) consist of 50 K training images,
with 10 and 100 different classes respectively. For CIFAR-10 experiments we used a ResNet-18
(He et al., 2016) and a WRN-28x10 (Zagoruyko & Komodakis, 2016) models. For CIFAR-100
experiments we used a ResNet-34 (He et al., 2016) and a WRN-40x10 (Zagoruyko & Komodakis,
2016) models. We do not use the dropout (Srivastava et al., 2014) layers for WRN models in our
experiments. The implementation involving WRN architecture and CIFAR data set relies on publicly
available codes3.

The ImageNet (ILSVRC-2012) data set (Deng et al., 2009) consists of 1.2 M images divided into
1 K categories. We train a ResNet-18 (He et al., 2016) model. We use model implementation from
PyTorch official model zoo4.

B.2 TRAINING SETUP

For CIFAR-10 and CIFAR-100 experiments we refer to (Zhang et al., 2019b) and (Zagoruyko &
Komodakis, 2016) for ResNet and WRN models respectively. For ImageNet experiments we follow
the training procedure proposed by (He et al., 2016).

In all our experiments, for the baseline we use the same setting of hyperparameters (including the
learning rate schedule) as recommended in the referenced literature.

3https://github.com/meliketoy/wide-resnet.pytorch
4https://pytorch.org/vision/stable/models.html
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B.3 ADDITIONAL RESULTS

Figure 8: Experimental curves for ResNet-18 model and CIFAR-10 data set. Top (from left to right):
learning rate and train loss. Bottom (from left to right): test error and zoomed test error.

Figure 9: Experimental curves for WRN-28x10 model and CIFAR-10 data set. Top (from left to
right): learning rate and train loss. Bottom (from left to right): test error and zoomed test error.
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Figure 10: Experimental curves for ResNet-34 model and CIFAR-100 data set. Top (from left to
right): learning rate and train loss. Bottom (from left to right): test error and zoomed test error.

Figure 11: Experimental curves for WRN-40x10 model and CIFAR-100 data set. Top (from left to
right): learning rate and train loss. Bottom (from left to right): test error and zoomed test error.
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Figure 12: Experimental curves for ResNet-18 model and ImageNet data set. Top (from left to right):
learning rate and train loss. Bottom (from left to right): test error and zoomed test error.
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