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Appendix A. Additional Experiments Results

A.1. Additional Explanation on the experiment settings

ux is sampled from an even distribution on the interval [1,11]. The utility perturbation
€ is set follow the same Gaussian distribution N (0,02) for all arms across all settings,
with ¢ = 0.5. We modified the returned utility function in both the Orch and MP-MA-
SE algorithms to align with our problem setting and compare their performance with ours.
Simulations were conducted on both versions of our algorithm, differing only in the estimator
used for the capacity confidence interval. For each setting, we run 20 simulations and the
resulting regrets are averaged.

A.2. Impact of Total Capacity

In figure 2, we set the interval that my, is evenly sampled from [10, 15] , [10, 20] , [10, 25] , [10, 30]
respectively. We observe that as the capacities of the arms increase, the regret is larger at
the same time slot. This observation does not contradict the regret bounds presented in
Theorem 10 and Theorem 14 in our setting. The primary reason is that IEs with only one
play generate higher regret as the actual capacities increase, and such IEs are unavoidable
in all four algorithms when the capacity confidence intervals are not well-learned. How-
ever, this impact is only evident during the early time slots and does not incur a long-term
regret increase that scales with the number of time slots. In all settings, our algorithms
significantly outperform Orch and MP-SE-SA. Additionally, the improvement from using
the new estimator is substantial, leading to much faster convergence of capacity confidence
intervals.

A.3. Impact of Number of Plays

In figure 3, we fix M as Zszl my and set the ratio N/M as 1,1.1,1.2,1.4 respectively.
We find that as N varies, our algorithms outperform the Orch and the MP-SE-SA in all
four settings. The main reason is that a greater number of plays allows our algorithms to
perform more UEs simultaneously, thereby reducing the number of time slots required for
the capacity confidence intervals to converge. However, the increase in the number of plays
has little impact on the performance of Orch, as its UEs are restricted by a conservative
strategy designed for scenarios where N < M.

Additional experiments are also conducted to illustrate the impact of extremely large
N, which is set to be 2 to 64 times greater than M. Specifically, we fix my such that
> Mk = 263, and vary N from 600 to 19200. The numerical results are presented in the
table below for a detailed comparison.

Table 2: Performance comparison over different N and T values

N (x600) | 1 2 4 8 16 32

T=300 | 33424.66 | 33589.91 | 33798.40 | 34341.67 | 35239.21 | 37269.60
T=350 | 33435.15 | 33593.29 | 33809.00 | 34354.02 | 35244.12 | 37274.29
T=400 | 33442.39 | 33593.52 | 33812.25 | 34357.53 | 35244.68 | 37275.12
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Figure 2: Impact of capacities of Arms.

For a fixed N, when T increases from 300 to 400, the regret grows only slightly, indicating
that the arm capacities estimation is nearly finished.

For a fixed T, when N increases 31-fold from 600 to 19200, the regret increases by
only about 0.12 times, much slower than predicted by our theoretical upper bound. This
suggests that PC-CapUL’s dependence on N in the regret bound is sublinear rather than
linear, highlighting its strong performance even for very large V.

A.4. Impact of movement cost

In figure 4, we set the movement cost ¢ = 0.2,0.1,0.01 respectively. We find that as c
decreases, the regrets of all four algorithms decrease. It is reasonable that with a smaller
¢, the cost of UEs decreases across all four algorithms, resulting in lower regret if other
parameters remain unchanged. However, this change in movement cost has little impact on
the comparative performance of the four algorithms. The primary reason is that changing
¢ mainly influences the regret generated by UEs, and UEs are relatively rare compared to
IEs in all four algorithms. When N is not much larger than M, the regret generated by
UEs is typically smaller than that of IEs.
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Figure 3: Impact of number of plays

A.5. Compare of the old and new estimators

In figure 5, we set K =1, M = my; = 15, N = 30, and do UEs and IEs in an alternating
way to explore the capacity. We first set the estimators of LCB and UCB of the capacity as
formula (5) and (6) in the main paper, and record their values as new-LCB and new-UCB,
as shown in the figure 5. Next, we set the estimators as those used in Wang et al. (2022a),
denoting them as 0ld-LCB and 0ld-UCB. For both estimator settings, we run simulations 20
times and average the recorded LCB and UCB values. As shown in figure 5, it is clear that
the new estimator converges far more rapidly than the old one, even though both estimators
eventually converge to the correct capacity after sufficient explorations.
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Appendix B. Technical Proofs

B.1. Sample Complexity Proof
Proof (Theorem 2 )

Consider there is an arm with capacity my and unit utility value p. Assume that there
are only two possible values for my: {m,m + 1} where m is a positive integer, and the
perturbation on the arm follows A (0, 02). Let T" be number of the explorations performed
on this arm.

For any strategy m that calculates the capacity after several explorations, we consider
the probability of misjudging the capacity, i.e., the probabilities:

lpl [m =m + 1] ,
where m is the estimator given by the strategy m, and IP1,IPs are the probability measures
defined on the whole T explorations where the real capacities are m and m+ 1, respectively.

Since there are only two possible values of my, we have {fh=m + 1} = {rm =m}°,
meaning that these two events are complementary to each other. This satisfies the condition
of Theorem 14.2 in Lattimore and Szepesvéri (2020), and we have:

Py [m =m+ 1] + Py [ = m]
1
25 exp (=KL (Py,P9)).
As for the KL divergence, we use the result obtained in equation (7), which will be

derived in the proof of Theorem 9. Let N (T') be the number of actions assigned by 7
satisfying that a; > m + 1, and then we have:

KL(P1,P2) =Eq [N (T)]
If m works well for probability at least §, then we have:
Py [ =m+ 1] + Py [rh = m] < 20.
Consequently we get:

26
>Py [m=m+ 1] + Pa [1h = m]

1
25 exp (—KL (IPl, IPQ))

1 u?

By rearranging the terms we get:

202 1
T>>2"1 = .
G 0g<45>
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Proof (Lemma 4)

The learning process of the confidence intervals of /iy ¢ Ur ¢ and my, resembles a ”chicken-
and-egg” problem, where the estimators of fi;; and 0y, depend on mﬁc 1 and m{, ;, and
the confidence intervals of my, are updated based on fi;, ¢ and 0y, ;. We first assume that for
all t € [T], my € [mfﬁt_l,m}i’t_l].

Consider the IEs on the arm £ as actions in an one-arm linear bandit. Denote € ; as
the sub-Gaussian noise on arm k in round ¢. Let

t
S 2 I
Vit == Zak,i Mag; <my;q),
i=1
¢
_ !
Skt = Y apieri - Lag; <mi ),
i=1

2
Mi(x) = exp <x Skt — (;V;me) .

According to lemma 20.2 Lattimore and Szepesvari (2020), it is straightforward to verify
that M;(x) is an F-adapted non-negative supermartingale with My(x) = 1.
We then set z to follow the distribution of N (0, U%) According to lemma 20.3 Lattimore

and Szepesvari (2020), My = [ M; () - \/% exp (—%zx2> dz is an F-adapted nonnegative

supermartingale with My = 1.
According to Theorem 3.9 Lattimore and Szepesvari (2020), we have:

P <sup]\_4t > 1> < 4.
teN d

_ S2
It is straightforward to derive that M; = exp < Bl ) . ! By rearranging

202 (Vi1 +1) Vi1’

the terms and setting ¢ as 0/2, we get:

Skt

Vit

Wi +2. 2 (Vig+Dlog(Viy+1 .
> o |Vt t2, 02 Vet Dlog(Vi + ):a¢<Vk7t,6).
Vi 0 Vi

holds with probability less than §/2 for all t. Since fig; — pi = ?/,k’t, we finally reach the
k,t

confidence interval of the estimator fiz :

/lk,t € |:uk - U¢(Vk,t7 5)a pE + U¢(Vk,t7 6) )

and this confidence interval holds with probability greater than 1 — §/2.
We then consider the UEs on the arm k as actions in an one-arm linear bandit. Similarly
we get the confidence interval for myu; as :

Okt € [mppr — 0@ (Tt 0) , mppie + 00 (Lit, 0)]
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and this confidence interval holds with probability greater than 1 — §/2.
Using the endpoints of the confidence interval of my and myuy, we get my’s confidence

interval [m! ., m¥ ] as:
. Opy — 0@ (L bt J)
my,; = max - 1
firt + 0P(Viy, 6)

mj, , = min ?kt+a¢f t:9) , N
7 firy — 0DV, 0)

This confidence interval [mkt,mk ] is correct for all ¢ € [T'] with probability at least
1-4.

As for the assumption that my € [ml, | ,m¥, ] for all t € [T}, it follows naturally
as a corollary from the confidence interval of iy, ;,0 ¢, provided that the initializations of

mt , and mY, are correct. Given that [I,N — K + 1] is clearly a valid initialization for

[mkytfl, mj.,_4], all three confidence intervals hold for all ¢ € [T] with probability at least
1-24. [ |

Proof (Theorem 5)

We then consider the scenario where there is only one arm k, with its my and puy
unknown. Our objective is to determine the correct my by reducing mj, — mi,t . A
sufficient condition for the confidence interval to converge is: 7 7

gt + 00 (iky,6) B gt — 0@ (Iky, ) <1

fikg = 00(Vit, 8) ik + 0d(Viy, 0)
with the assumption that fi; — J(;S(f/kﬂt7 0) > 0.
Replacing the empirical values 03 ; and fi; with the endpoints of their confidence in-
terval, we derive another sufficient condition:

mipt + 200 (ikt,0)  mukpis — 200 ([l 0) _
i — 200 (Viy, 9) ik + 209(Vit, )

with the assumption that py — 20(]5(%,15, 9) > 0. We further assume that py > 4a¢(f/}c7t, J),
and the left-hand side of the inequality above can be bounded as follows:

9

M + 200 (igt,0) — mype — 20¢ (ikyt, 6)
e — 200(Vig, 9) i + 200(Viet, 6)
[ My + 206 (i, 6) Myt — 200 (I, 0)
= ~ —mg | + | mg — =
M — QU(b(Vk’t, 5) 125 + QU(b(Vk,t, 5)
406 (ik1,0) + 4mp0d(Vis,8) | 206 (ins,6) + 2mp0é(Vis, 9)
- ok ek
O-gb (Zk,ta 6) + mk0¢(Vk,t7 5)
23
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A sufficient condition for mfﬁ , = mj, is then given as:

1
12!%7

1
12my,

o} (igt,0) <

0¢(Vir, 0) < s

Note that ﬁ < %, so the assumption pg > 40¢(Vk,t, 0) holds if the sufficient condition
above is satisfied.

Solving the inequalities, we obtain:

14402 2
ikt > 720-8-10g <>,

Hy d
~ 1440%m? 2
Vit > 70277% -8 - log (> .
My 0

We then bound the number of UEs and IEs required for mgct > my/2. A sufficient
condition for satisfying the above inequalities is:

S 6402 . 2
L —_— . O —
kit = 2M2 g 5/

M
Vk,t > 1622 -8 - log <2) .
1, 0
Since my > 1 and sz,t > t/2, after at most %log (%) time slots, we have m?t >
my/2. For subsequent IEs, ap: > my/2. To ensure Vk,t > 144;2’”% -8 -log (%), at most

74622‘72 log (%) additional IEs are required. Therefore, after at most %7(}'2 log (%) additional
k k

time slots, the capacito my, is determined. Consequently, the maximum number of time
slots required is wi# log (%), aligning with the lower bound of the sample complexity.
k

Noting that in the first two explorations, we assign 1 and IV plays to the arm respectively,
a constant 2 should be added to the upper bound. This proof is then complete. |

B.2. Regret Lower Bound Proof

Proof (Theorem 7)

To avoid unnecessary mathematical complexities and simplify the proof, we focus on
the case where M /K and K/4 are both integers. We first construct two instances of the
problem as follows:

e Instance E7: each arm whose index is an odd number has (% — 1) units of capacity

and each of the remaining arms has (% + 1) units of capacity. The per unit reward
mean is fixed to u, i.e., uyy = ... = pg = u, and variance is fixed to o, i.e., 01 = ... =
ok = o. Formally,

arm 1 arm 2 arm K —1 arm K
Instance £y: M/K -1 M/K+1 --- M/K—-1 M/K+1
u,o u,o u, o u, o
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e Instance Fs: each arm whose index is an even number has (% — 1) units of capacity

and each of the remaining arms has (% + 1) units of capacity. The per unit reward
mean is fixed to u, i.e., u1 = ... = ux = u, and variance is fixed to o, i.e., 01 = ... =
ok = o. Formally,

arm 1 arm 2 arm K —1 arm K
Instance Ep: M/K+1 M/K—-1 --- M/K+1 M/K-1
un,o un,o w, o w,o

For an arbitrary learning algorithm or strategy =, let Reg! (T, 7) and Reg? (T, ) repre-
sent 7’s regrets in instance E; and FEs respectively. Let T denote the number of time slots
during which at least % arms with odd indices are assigned exactly (% — 1) plays. Define
B as the event where T7 > %T:

1
B = {T1 > 2T} .

We use event B to bound the expectation of the regret in F as follows:
Eg, [Reg" (T, )]
=Eg, [Reg" (T,7) 1{B}] + Eg, [Reg" (T, 7)1 {B"}]
TK
>0+ ?min (u—c,c)Pg, (BC) .

Similarly we have
TK
?'2(M_C)IPE2 (B).

Note that Theorem 14.2 in Lattimore and Szepesvari (2020) indicates:

Eg, [Regf (T, m)] >

Pg, (BY) +Pg, (B) > %exp(—KL (Pg,,Pg,)).
Then, the sum of the regrets of 7 in the two instances can be lower-bounded as:
Eg, [Reg' (T, 7)] + Eg, [Reg® (T, )]
Z% min (1 — ¢, ¢) (P, (BC) + Pg, (B))
2% min (p — ¢,c)exp (KL (Pg,,Pg,)).

Note that the probability measure IPg, is defined over the entire learning process span-
ning T time slots,i.e.

T
Pg, [@1,21,...,ar, x7] = Hm (atlar, z1,...,a1-1,%1-1) P, a, (1) .
t=1

Here, a; is the action chosen at the time slot ¢ and the vector x; is the resulting reward on
the K arms after playing a;. 7 is the probability measure of the action a; based on the
observation of the past ¢ — 1 pairs of actions and rewards. Pg, 4, is the probability measure
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of the reward vector a; for the fixed action a; in instance F;. Regarding the calculation of
the KL-divergence, it can be decomposed into 1" parts:

KL (Pg,,Pg,)

T
= Z Eg, [KL (PELat: PE27at)] )
t=1

where in the last equality we use the fact that under Pg, (-|a;), the distribution of x; is
PEI ,at*

Since the measure Pg, 4, is a product of K independent probability measures, we can
decompose the KL divergence as follows:

=

KL (PELat? PEmaz) = ZKL (PEl,ak,w PEQvak,t) .
k=1

Here, Pg, o, , and Pg, 4, , follow normal distributions:
. 1 2
PE, 4y, ~ N <m1n (am,m,(C )) [ — QftC, O ) ,

: (2) 2
Pgyap, ~ N (mm (akyt,mk p—apic, o),

and ml(j) and m,(f) denote the capacities of arm k in the F; and FEs, respectively. The

KL-divergence of two Gaussian distributions is given by the following formula:

Lemma 18 For each i € {1,2}, let p; € R,02 >0 and P; = N (,u,z-,(f?). Then we have:

1 a3\  oi (1 — p2)?

Applying lemma 18, we have:

(min (aLt, m,(:)) /4 — min (alyt, mg)) M)Q

KL (PE17‘11,t7 PEQ@IJ) = 20'2
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We aim to find the action a;; that maximizes KL (PEWM, PEQ,GM) at time slot ¢ on the

first arm. It is straightforward to observe that aj; should be no less than mgz) = % +1

to achieve the maximum KL (PEl,a1, vs PEyay, t). The same principle applies to other arms
k with odd indices. Similarly, to maximize KL (PEhaQ’t,PE%aQ’t), the action as; for the

second arm should satisfy as; > mgl) = % + 1. The same is true for other arms k with
even indices. Therefore, we conclude that:
212
KL (PE1,al,t7 PEz,al,t) < o2
2u

KL(PE1a2t?PE2(12t) < —

It is worth noting that aq¢,a2y,...,ax s may not all be simultaneously feasible in the real
world. However, this poses no issue since our focus is solely on the upper bound of the
KL-divergence.

Note that E [X] < max [X]. We obtain that:

KL(Pg,,Pg,)

T
= Z Eg, [KL (Pg, a;s PEQ,at)]
t=1
<T- max [KL (PE1,aa PEQ, )]
acA .
=T . g]eax ZKL PEl,ak,PEg,ak)
K
T3 g (€L (P P
& M
<T- ;:: pol
—TK

Furthermore, by letting ¢ = 5 1, we obtain that:
Eg, [Reg' (T, )] + Eg, [Reg” (T, )]

TK
Zﬁ min (g — ¢,c)exp (—KL (Pg,,Pg,))

K
32 uexp( KL (IPEIJIPE2))

TK w2
23—2u exp (—QTK02> .

Let = 0/v2TK. Then we obtain that:

max (Eg, [Reg1 (T, )] ,Eg, [R692 (T, m)]) > 640 VTK.
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This proof is then complete. |

Proof (Theorem 9)

Here we only consider the set of algorithms which are consistent over the class of MP-
MAB £ described in section 3. Additionally, for simplicity, we assume that the perturbation
of the returned utility follows a Gaussian distribution A/ (O, 02), where 02 < 1/2 .

Definition 19 A policy 7 is defined as consistent over a class of bandits E' if, for all E € &'
and p > 0, it holds that :
lim feg (T) (T)
T—oo 1P

=0.

First, we choose a consistent policy m. Let F; € £ be an instance, where the arm k
has my units of capacity, each with utility up. Next, we consider the number of time slots
T By, (T') during which arm k is assigned more than my, plays by 7 in T time slots, i.e.,

T
TBy (T) = 1{agy > mi+1}.
t=1

For a fixed k € [K], let E5 € £ be another instance, where for j # k, there are m; units
of capacity with unit utility p; on the arm j. On the arm k in Es, there are my, + 1 units
of capacity with unit utility pg. Let B be the event that TB < %:

T
B:= {TBk§2}.

Let Reg' (T, 7),Reg® (T, ) denote the regret of policy 7 in instances E; and Fs, respec-
tively. By a similar analysis as in the previous subsection, we obtain that:

Eg, [Reg1 (T, 7'[')]
=Eg, [Reg" (T,7) 1{B}] + Eg, [Reg" (T, 7)1 {B“}]

T C
20+ 5P, (BY).
Similarly, we obtain that:

(b — )P, (B).

| N

Eg, [R692 (T,m)] >

Then, the sum of the expected regrets of 7 in the two instances can be lower-bounded
as:

Eg, [Reg' (T,7)] + Ep, [Reg® (T, )]

min (Nk - ¢ C) (IPEI (BC) +Pg, (B))

Y

%
=N

min (g — ¢, c)exp (—KL(Pg,,Pg,)).
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As for the KL-divergence, we can decompose it across time slots and arms, as shown in
the previous subsection:

KL (Pg,,Pg,)

T
= Z Eg, [KL (PE1a,s PEzﬂt)]
t=1
T K
=Y Epg, |Y_KL(Pg ., PEQ,aiyt)] .
t=1 i=1

Note that E1 and Es only differ in arm k. Therefore, the above summation can be simplified
to:
T

>_En
t=1

K
Z KL (PEl,ai7t7 PE2,ai,t)]
=1

T
= Z Eg, [KL (PEl,akytv PE2,ak,t)]
t=1

T
= Eg, [KL (Pgyap,> Pesay,) 1ok = mg + 1}]
t=1

T
+ Z ]EE1 [KL (PElvak,N PEQvak,t) 1 {ak,t < mk}]
t=1

T
:ZEEl [KL (PEhak,t, PE%%,t) 1 {am > my + 1}] + 0.
t=1

According to lemma 18, when aj; > my, + 1, we obtain that:

2
I
KL (PElyak,ﬂ PE%%,t) = T‘kQ‘
Therefore, we obtain that :
T
Z EEl [KL (PEl’ak,ﬂ PE27ak,t) 1 {ak,t > mg + 1}]
t=1
T M2
:ZEEl []]. {akﬂg Z my + 1}] 27'162
o
=1
T H2
_ k
_]EEl ; ]l {a;m Z mi + 1} T"Q
1
=Eg, [TBy (T)] 252"
Consequently, we calculate the KL-divergence as :
12
KL(Pp,,Pp,) = Ep, [TB (T)] 5% (7)
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Combining (7) with the lower bound of the sum of the expected regrets, we obtain that:

T | 2
IE3E1 [Regl (T> ﬂ—)] + EE2 [Regz (Ta ﬂ—)] Z Z min (Mk —C, C) €xp <_EE1 [TBk (T)] 2@{2) .

Rearranging and taking the limit inferior on T leads to:

log T min(pg—c,c)
.. Eg [TB,(T)] _20° A(Eg, [Reg" (T,m) |+ Ep, [Reg®(T'm)])
liminf —————"=—= >—lim inf
T—00 log (T") pi T—oo log (T)
202 ) log (Eg, [Reg" (T, m)] + Eg, [Reg? (T, 7)])
=—5 | 1 — limsup .
My T—00 log (T)

Since the policy 7 is consistent, for any p > 0 , there is a constant C}, such that for
sufficiently large T: Ep, [Reg' (T, 7)] + Eg, [Reg? (T,w)| < C,T?, which implies that:

log (]EE1 [Reg1 (T, 77)] +Eg, [Reg2 (T, 77)])

lim sup

T—o00 log (T)
log (T') + 1
i s P15 (T) + 108 (C))
T—oo 10g (T)

Noting that p can be arbitrarily small, we obtain that:

lim sup log (IE)E1 [Regl (T, 7r)] + Epg, [Reg2 (T, 7'(')]) _o
T—o0 IOg (T)

Consequently,
Ep [TB (T)] 20°

lim inf 5
My

T—00 log (T")

It is noteworthy that:

Eg, [_ }

&
&
MH

[(mppur, — emy) — (min {ag ¢, mp} - pg — ¢ ak,t)]]

Il
—

1T

E

>Eg, [(mppr — cmy) — (min {age, M}t - pe — ¢ - agy)] 1{ags > my + 1}

t

—

>Epg, | Y ¢ 1{ags > my + 1}
Lt=1

=c-Ep, [TBy (T)].

S
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Taking the limit inferior on T leads to:

thilOI;f log (T")
>c - liminf =L k2 T'By (T)
T—00 log (T')
>c- Lf;.
H,
The proof is complete. |

B.3. Regret Upper Bound Proof

Proof (Theorem 12)
The expectation of Regy (T') can be separated by the event Ay:

[E [Regy (T)]
=IE [Regy, (T) 1{ Ax }] + E [Regy, (T) 1{ A{ }]
<IE [Regy (T) 1{ Ay} + P (AF) max (E [Regy (T)]) .

max (E [Regy (T')]) can be bounded by 7" multiplied by the maximum per-time-slot regret
on the arm k, which is generated either by an IE with only one play or a UE with all
N plays. Let Regmaxj, represent the maximal per-time-slot regret on arm k, so we have
Regmazy, < max (mypy, Nc). Therefore, the second term can be bounded by §7- Regmaxy.

The first term can be split into two parts: the regret caused by IEs and the regret caused
by UEs. When event Ay occurs, according to Lemma 4, the confidence intervals of my, are
correct. We will then examine the convergence of mfm and my; , to bound the regret caused
by IEs and UEs, respectively.

As for the regret caused by IEs, it is known that the mfct increases until mfct = my,
and this process will terminate within a finite number of time élots, as shown in the sample
complexity results. So we then consider the number of time slots required for méﬁt >A+1,

conditioned on mﬁc , > Afor A <my, — 1. A sufficient condition for m%ct > A+1is mfm > A\

mrglk — 20¢ (Zk,m 5)
g + 20¢6(Vi 1, 6)

By rearranging the terms, we obtain that:

(mi — ) pig > 2000(Vier, 8) + 206 (ik1,6) -

A sufficient condition for this is :

6 (ike,8) < 5 (mi = 2),
%mk—)\

¢(Vk,t7 6) <

40 A
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By solving the inequalities, we obtain that:

. 40)? 2
Lk,t>2())\)2’8'10g<5>,

p, (my, —
X 40)? 2
Vk’t > QL)Q - 8- log <5) AQ.
g (my — A)
Let g1 (A) == U2 .8 . log (2)A2. If mi, > A, there should b dditional
et g1 (\) = Py -log (3) A2. my,, > A, there should be an additiona

2RO 1Es. Note that 2055071 < 128 1og (3) - 2525 oy =y s Simi-

s . ~ (40)2 2 s
larly we can calculate the additional UEs required for iy ; > m -8-log (3), and it is

clear that more IEs are required than UEs in this case. Note that if mfk’t > ), each IE will
generate a regret of at most (my — A) (ur — ¢). By summing the regret caused by IEs from
A =1to A =my — 1, we can upper-bound the regret caused by IEs in the entire learning
process as follows:

2 o mi—1
1287 (”’; ) 1og (2) . 2y
lu’k 5 A=1 )\ (mk - )\)
2 _ 2 mk—l
1o W0y <> . Mg
i ) o1 A(mg — N) A% (my — A)
2 . 9\ Mkl 2
P G S <> oM
lu‘k 5 A=1 )\2 (mk - )\)
mE
2 . 9 L 2 J 2 mg—1 2
1o W0y <5> : D e =
M A=1 A (mk_)‘) )\:L%J 1>\ (mk_)‘)
m
2 LTJ my—1
— 4 4
<1087 =)o, <§> . i 5
o? (i — ¢) 2 m
<128 1 -8 —
o <5> 6
2 20, _
_ 512770 (2,uk ¢) log 2> 7
3y 1)

where in the last inequality we use Zivzl x—g < %2 for all N € N,.

As for the regret cause by UEs, we first consider the number of time slots required for
mggt > my/2, with a more detailed analysis than in the proof of sample complexity.

Based on the analysis of the regret caused by IEs, the number of IEs required for

mgﬁt > my,/2 can be bounded by:
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o? 2 =) 2my.
128— log <> 3
i 0) = X(mp—N)"(mp—A+1)
5]
o? 2 2 L% 2
<1287 log () Sy T
,Uk d me A(mg — N)
2 mkfl
<1287 log (2) 2 2
lu’k 0 M A=1 A (mk - >‘)
10247 lo 2
- 3;&% & )

To ensure that Vk > @ -8 log( ), at most 256" -8 - log ( ) # additional IEs are
k k
2)isa sufﬁment condition for ¢(Vi¢,d) < £&.

Next, we consider the t1me slots required for mj, < 2my. A sufficient condition for
mi, < 2my is :

-8 - log

Mk + 200 (L, 0)
Hi — 20¢(Vk,t) 5)

By rearranging the terms, we get another sufficient condition:

(Z) (Zk t 6) < mkluk?
’ 4o
9 Hi
¢(Vk7t’ 6) 80_

Solving the above inequality, we obtain that:

. 1602 g1 <2>
Ikt > —5—58-log| <,
A )

. 6402 2
Vier > ~8-log<>.
t /,L% (5

Note that the number of required IEs exceeds the number of required UEs for mj, <
ka

1024 1 25602 2) 1

Consequently, we find that after at most #log( ) Cmn T ﬂia -8 - log (3) mZ

alternating IEs and UEs, my, < 2m;, and mkﬂf > mk/Q. The regret of these UEs can be
bounded by (N — myg)c. Although these UEs may incur significant costs, their number is
limited, as it is inversely related to the capacity my.

Next, we consider the number of time slots required for mj, < mj, + A — 1, conditioned
onm}j’tgmk—i—)\for)\gmk—l: 7

mpfpk + 200 (L, 0)

= < mp + A
pe — 200(Vit,0)
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By rearranging the terms, we obtain that:

206 (ig.4,0) + 2 (Mg + A) 06 (Vir, 8) < Apay..

A sufficient condition for the inequality above is that:

(b([jk,tvd) < & : /\7

40
> Pk A
Vie, 0 —=. )
OV, 0) < 40 mp + A

By solving the inequalities above, we obtain that:

. (40)? 2
Lk’t>W'8'log g y

’ (40)2 2 2

Let g2 (\) == % -8 -log (%) (mu + A2 If mj., < my + A, noting that mﬁw > my/2,
we can upper-bound the number of additional IEs as (g2 (A) — g2 (A +1)) - %, which can
k

be further bounded by:

(BN -gO+1)

2
k
(40)? 2 11 1
< .81 Z)s( 24 — ) ——
T e\5s )\+mk AA+1)
(40)? 2> 1
< -8 log| =) 16—5———.
=2 8\5) "N
Compared to the number of additional UEs required for iy ; > (3;%)22 -8 - log (%), the
k
number of additional IEs is greater. Noting that the regret caused by a UE is at most Ac

given that my , < my + A, we can upper-bound the regret caused by UEs when my, < 2my,
as:
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Setting 0 = 2/T and summing up the regret together, we can upper-bound the regret
of exploring one arm as:

2 512 2 2 -
E[Regi (T)] <2048°7 log (T) + =2 (2“ £~ Jog ()
Hi 3pg;
10247202 1 25602
I Yog (T) - — 8- log (T) — ) (N
(S B () o+ B s o (1) 5 ) (Vo)

+2max (Ne, my )
(Nca2 + (u, — ¢) 0
=0 5
F

log (T)) .
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Proof (Theorem 14)
We can recalculate Reg (T') as the sum of the regrets on each arm individually:

K K
(Z (mppr — ka:)> - <Z (minf{ay, mp} - pp — ¢ ak,t)))

k=1

T
Z (M, — emy, — min {ag ¢, me} - pr + ¢ - ak,t))

K
(Z (mppr, — cmy, — min {agg, my} - o + ¢ - ak,t))
R

where Regy (T') := Zthl (M — cmy, —min{ag s, mg} - pg + ¢ agy) -

Unlike Regy in the sample regret, the regret on the arm k in real MP-MAB setting
involves compulsory IEs due to the limited number of plays. As a result, summing the
sample regret upper bounds over all K arms may not provide a reasonable upper bound for
the regret in the real MP-MAB setting.

However, a similar approach can be applied to the partition of the regret Regy based
on the event A. The expectation of Regy (1) can be separated by the event A:

IE [Regy (T)]
—F [Regy, (T) 1{ A}] + E [Regy, (T) 1{ A® }]
<E [Regy, (T) 1{ A}] + P (A°) max (E [Reg; (T)])

where the second term can be upper-bounded by (Kd)T - Regmazy. We will bound the
first term by analyzing the convergence of the confidence intervals of my.

It is shown in the proof of sample regret that the number of IEs and UEs should be
balanced when studying the capacity. Applying too many UEs in the early time slots on an
arm can be costly and hinder the progress of learning the capacities of other arms. Similarly,
too many IEs in the first few time slots can result in significant regret.

Consider the alternating IE and UE strategy in which the optimal sample regret is
achieved. If extra IEs are inserted in the the learning process on the arm k, the convergence
of the confidence upper bound of mj, will actually be accelerated at the time slots when
UEs are applied on the arm k. In other words, when focusing solely on the regret caused
by the UEs, the additional IEs do not lead to an increase in this portion of the regret.
Therefore, the regret caused by the UEs on arm k£ can be bounded in the same way as
shown in the sample regret. The main challenge lies in limiting the number of costly IEs
on the arms, which can be frequent in our setting, as arms are often required to be played
with TEs due to a lack of plays.
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Since we expect that the number of UEs should be fewer than the number of IEs on
the same arm, and balancing the two is crucial for achieving the optimal sample regret,
the number of UEs becomes more decisive when learning the capacity. Consequently, it is
natural to apply UEs to arms whose capacities are not well learned. Given that the regret
caused by UEs can be bounded similarly to the sample regret, we now aim to use the regret
caused by a single IE on a arm as a criterion for evaluating the learning progress of that
arm.

The regret caused by a single IE on the arm k& can be upper-bounded as :

- s + J¢(V > (ﬂk,t + J¢(Vk,ta5)>
¢

=mpfirs + omrd(Vi s, ) — Ot + 0 (i1, 0)
<mypir, + 20mpd(Viep, 8) — mypur, + 206 (g4, 0)
=20md(Vis, 6) + 200 (i1, 0) -

This regret upper bound further demonstrates that when the numbers of UEs and IEs are
balanced, the regret caused by a single IE will decrease rapidly. Since we have no knowledge
of the true capacity my, we can use ¢(Vk7t, 0) + ¢ (i, 0) as an alternative criterion. Both
criteria serve the same purpose of balancing the numbers of UEs and IEs on a particular
arm. Additionally, ¢(Vk7t, 9) and ¢ (i, 9) measure the width of the confidence intervals of
fir¢’s and Oy ¢, reflecting the extent of capacity learning on the arm k. Therefore, besides
requiring that an arm is not played with UEs in two consecutive time slots, we also require
that UEs be applied first to arms with greater ¢(Vk7t, d) + ¢ (iy,0), provided these arms
are not forced to be played with an IE based on the first condition.

Note that ¢(Vis,0) < ¢ (igy,d) for t > K + 1. It can be observed that for any two
arms 4, §, a sufficient condition for ¢(Vi s, 8) 4 ¢(iit,0) > ¢(Vig, 8) + d(ijs, 0) is ¢ (i, 0) >
2¢ (i4,0). Solving the inequality above, we get a sufficient condition as 87;; < ij;. This
implies that during the learning process of the algorithm, no arm is assigned with more
than eight times as many UEs as any other arm at any time slot t. From this, we directly
obtain the following lemma.

Lemma 20 For arbitrary arm k and arbitrary positive integer X, a sufficient condition for
having at least X UEs on arm k is that

t > 8AK.

my,
(mp—A)? (mp=A+1)A
UEs are required for mi, ; = A+ 1, conditioned on mé ; = A. Let x; denote the number of

According to the result in sample regret, at most additional 128/‘1—3 log (%) -2
k

IEs applied on arm k& when méﬁt =1
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For any integer A € [1,my — 1], the number of UEs required for mggt > A+ 1 is at most
Z;‘:l 128;—; log (%) . 2( A . Then, according to Lemma 20, the number of IEs
k

my,—i)% (my—i+1)i

on arm k is at most:

A 0’2 2 mp
> 128—log (< ) -2 — _ - 8K.
: M, 0 (mg — )" (mp —i+ 1)1

So we have the following conditions on x;: for all integer A € [1, my — 1]:

mk—z’) (mk—i—i—l)i

A A o? 2 m
D a; <> 128 log <> -2 S - 8K. (8)
i=1 = M 0/ |

The regret caused by these IEs can be expressed as:

mg—1

S i (i — ) g — ). (9)

=1

It is evident that the maximum value of the expression (9) is achieved when the inequal-
ities (8) hold with equalities for all integer A € [1,my — 1]. Consequently, the summation
of the expression (9) can be bounded using the same method demonstrated in the sample
regret analysis, as follows:

127202 — 2
2 =) (2) 5
3y 0

Setting § = 2/T and noting that the regrets caused by UEs can be bound in the same
way as the sample regret, we derive the final form of the regret upper bound on the arm k
as:

2 5121202 (i —
E[Regi (T)] <2048 log (T) + =2 (2“ E= ) Yoo (T) - 8K
2 3,
10247202 1 25602 1
I og (T) - — 8- log (T) — ) (N
(S B (1) o+ B s o (1) 5 ) (V)

+2K max (Nc, mypy)

N2+ K —¢)o?
=0 (mk 2(/% ) log (T')
My
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Summing up the inequalities above for all k, we can upper-bound the regret of the
Algorithm 2 as:

K
5127202 (g, —
Reg (T Z (2048 og (T) + =1 "3 g“k ) log (T) - 81
M
1024720 1 25602 1
+ 7log(T)'—+ -8-10g(T)> (Ne¢)
3,ui my ,ui mi

+ 2K max (Ne, mypu))

=0 (EKZ (wjjc + K (pk — c)> Zzlog (T))

k=1 k k
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Proof (Theorem 16)
According to Theorem 14, for arbitrary A > 0, we have:

5127202 (g, — )

Reg (T) < Z (20481 (T) + 32 log (T) - 8K
k
10247252 1 25602 1
<07T20 log (T") - — + 5620 -8 -log (T') 2> (Nc¢)
3u; Mg i, mj,

+ 2max (Ne, mguy))

K 2 2 2
512 -
<y (2048”10g(T)+ o ik =) g (7). 8K
K 314y,

10247252 1 25602 1
<77201 (T) - — + -8 -log (T) 2) (N¢)
3ug, My i, mj,
+ 2K max (Ne, mypur))
+ Z T (pg — c)my)
My g <6
K K 2
<o® ) 2048 A log(T) + Ko > 5 A loa(T)
k=1 k=1
K K
102472 1 2048 1
2 2
k=1 k=1
K K
Z Z 2K max (ugmy, Nc)
= k=
4096 102472
<o ( 048 M + i KM+ —2" NK+2048NK>
+TKA + Z 2K max (pugmy, Nc)
k=1
409672 102472 K
<o <2048M +—g KM+ ———NK+ 2048NK> (Tlog (T)) + Y 2K max (puxmy, Nc)
k=1

2048 M+ 409672 f¢ vy | 102472 N g 90ASN I
The final step is letting A = a\/( 2 . ) log(T). |




