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Appendix A. Additional Experiments Results

A.1. Additional Explanation on the experiment settings

µk is sampled from an even distribution on the interval [1, 11]. The utility perturbation
ϵ is set follow the same Gaussian distribution N

(
0, σ2

)
for all arms across all settings,

with σ = 0.5. We modified the returned utility function in both the Orch and MP-MA-
SE algorithms to align with our problem setting and compare their performance with ours.
Simulations were conducted on both versions of our algorithm, differing only in the estimator
used for the capacity confidence interval. For each setting, we run 20 simulations and the
resulting regrets are averaged.

A.2. Impact of Total Capacity

In figure 2, we set the interval thatmk is evenly sampled from [10, 15] , [10, 20] , [10, 25] , [10, 30]
respectively. We observe that as the capacities of the arms increase, the regret is larger at
the same time slot. This observation does not contradict the regret bounds presented in
Theorem 10 and Theorem 14 in our setting. The primary reason is that IEs with only one
play generate higher regret as the actual capacities increase, and such IEs are unavoidable
in all four algorithms when the capacity confidence intervals are not well-learned. How-
ever, this impact is only evident during the early time slots and does not incur a long-term
regret increase that scales with the number of time slots. In all settings, our algorithms
significantly outperform Orch and MP-SE-SA. Additionally, the improvement from using
the new estimator is substantial, leading to much faster convergence of capacity confidence
intervals.

A.3. Impact of Number of Plays

In figure 3, we fix M as
∑K

k=1mk and set the ratio N/M as 1, 1.1, 1.2, 1.4 respectively.
We find that as N varies, our algorithms outperform the Orch and the MP-SE-SA in all
four settings. The main reason is that a greater number of plays allows our algorithms to
perform more UEs simultaneously, thereby reducing the number of time slots required for
the capacity confidence intervals to converge. However, the increase in the number of plays
has little impact on the performance of Orch, as its UEs are restricted by a conservative
strategy designed for scenarios where N < M .

Additional experiments are also conducted to illustrate the impact of extremely large
N , which is set to be 2 to 64 times greater than M . Specifically, we fix mk such that∑

k mk = 263, and vary N from 600 to 19200. The numerical results are presented in the
table below for a detailed comparison.

Table 2: Performance comparison over different N and T values

N (×600) 1 2 4 8 16 32

T=300 33424.66 33589.91 33798.40 34341.67 35239.21 37269.60

T=350 33435.15 33593.29 33809.00 34354.02 35244.12 37274.29

T=400 33442.39 33593.52 33812.25 34357.53 35244.68 37275.12
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Figure 2: Impact of capacities of Arms.

For a fixedN , when T increases from 300 to 400, the regret grows only slightly, indicating
that the arm capacities estimation is nearly finished.

For a fixed T , when N increases 31-fold from 600 to 19200, the regret increases by
only about 0.12 times, much slower than predicted by our theoretical upper bound. This
suggests that PC-CapUL’s dependence on N in the regret bound is sublinear rather than
linear, highlighting its strong performance even for very large N .

A.4. Impact of movement cost

In figure 4, we set the movement cost c = 0.2, 0.1, 0.01 respectively. We find that as c
decreases, the regrets of all four algorithms decrease. It is reasonable that with a smaller
c, the cost of UEs decreases across all four algorithms, resulting in lower regret if other
parameters remain unchanged. However, this change in movement cost has little impact on
the comparative performance of the four algorithms. The primary reason is that changing
c mainly influences the regret generated by UEs, and UEs are relatively rare compared to
IEs in all four algorithms. When N is not much larger than M , the regret generated by
UEs is typically smaller than that of IEs.
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Figure 3: Impact of number of plays

A.5. Compare of the old and new estimators

In figure 5, we set K = 1, M = m1 = 15, N = 30 , and do UEs and IEs in an alternating
way to explore the capacity. We first set the estimators of LCB and UCB of the capacity as
formula (5) and (6) in the main paper, and record their values as new-LCB and new-UCB,
as shown in the figure 5. Next, we set the estimators as those used in Wang et al. (2022a),
denoting them as old-LCB and old-UCB. For both estimator settings, we run simulations 20
times and average the recorded LCB and UCB values. As shown in figure 5, it is clear that
the new estimator converges far more rapidly than the old one, even though both estimators
eventually converge to the correct capacity after sufficient explorations.
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Figure 4: Impact of movement cost
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Figure 5: Compare of the old and new estimators
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Appendix B. Technical Proofs

B.1. Sample Complexity Proof

Proof (Theorem 2 )
Consider there is an arm with capacity mk and unit utility value µ. Assume that there

are only two possible values for mk: {m,m + 1} where m is a positive integer, and the
perturbation on the arm follows N

(
0, σ2

)
. Let T be number of the explorations performed

on this arm.
For any strategy π that calculates the capacity after several explorations, we consider

the probability of misjudging the capacity, i.e., the probabilities:

P1 [m̂ = m+ 1] ,

P2 [m̂ = m] .

where m̂ is the estimator given by the strategy π, and P1,P2 are the probability measures
defined on the whole T explorations where the real capacities are m and m+1, respectively.

Since there are only two possible values of mk, we have {m̂ = m+ 1} = {m̂ = m}C ,
meaning that these two events are complementary to each other. This satisfies the condition
of Theorem 14.2 in Lattimore and Szepesvári (2020), and we have:

P1 [m̂ = m+ 1] +P2 [m̂ = m]

≥1

2
exp (−KL (P1,P2)) .

As for the KL divergence, we use the result obtained in equation (7), which will be
derived in the proof of Theorem 9. Let N (T ) be the number of actions assigned by π
satisfying that at ≥ m+ 1, and then we have:

KL (P1,P2) = E1 [N (T )]
µ2

2σ2
≤ T

µ2

2σ2
.

If π works well for probability at least δ, then we have:

P1 [m̂ = m+ 1] +P2 [m̂ = m] ≤ 2δ.

Consequently we get:

2δ

≥P1 [m̂ = m+ 1] +P2 [m̂ = m]

≥1

2
exp (−KL (P1,P2))

≥1

2
exp

(
−T µ2

2σ2

)
.

By rearranging the terms we get:

T ≥ 2σ2

µ2
log

(
1

4δ

)
.
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Proof (Lemma 4)
The learning process of the confidence intervals of µ̂k,t υ̂k,t and mk resembles a ”chicken-

and-egg” problem, where the estimators of µ̂k,t and υ̂k,t depend on ml
k,t−1 and mu

k,t−1, and
the confidence intervals of mk are updated based on µ̂k,t and υ̂k,t. We first assume that for
all t ∈ [T ], mk ∈ [ml

k,t−1,m
u
k,t−1].

Consider the IEs on the arm k as actions in an one-arm linear bandit. Denote ϵk,i as
the sub-Gaussian noise on arm k in round i. Let

V̂k,t :=
t∑

i=1

a2k,i · 1(ak,i ≤ ml
k,i−1),

Sk,t :=
t∑

i=1

ak,iϵk,i · 1(ak,i ≤ ml
k,i−1),

Mt(x) = exp

(
x · Sk,t −

σ2

2
V̂k,tx

2

)
.

According to lemma 20.2 Lattimore and Szepesvári (2020), it is straightforward to verify
that Mt(x) is an F-adapted non-negative supermartingale with M0(x) = 1.

We then set x to follow the distribution ofN
(
0, 1

σ2

)
. According to lemma 20.3 Lattimore

and Szepesvári (2020), M̄t =
∫
R
Mt (x) · σ√

2π
exp

(
−σ2

2 x2
)
dx is an F-adapted nonnegative

supermartingale with M̄0 = 1.
According to Theorem 3.9 Lattimore and Szepesvári (2020), we have:

P

(
sup
t∈N

M̄t ≥
1

δ

)
≤ δ.

It is straightforward to derive that M̄t = exp

(
S2
k,t

2σ2(Vk,t+1)

)
· 1√

Vk,t+1
. By rearranging

the terms and setting δ as δ/2, we get:∣∣∣∣∣Sk,t

V̂k,t

∣∣∣∣∣ ≥ σ

√√√√2V̂k,t + 2

V̂ 2
k,t

log
2

δ
+

(V̂k,t + 1) log(V̂k,t + 1)

V̂ 2
k,t

= σϕ
(
V̂k,t, δ

)
.

holds with probability less than δ/2 for all t. Since µ̂k,t − µk =
Sk,t

V̂k,t
, we finally reach the

confidence interval of the estimator µ̂k,t:

µ̂k,t ∈
[
µk − σϕ(V̂k,t, δ), µk + σϕ(V̂k,t, δ)

]
,

and this confidence interval holds with probability greater than 1− δ/2.
We then consider the UEs on the arm k as actions in an one-arm linear bandit. Similarly

we get the confidence interval for mkµk as :

υ̂k,t ∈ [mkµk − σϕ (ι̂k,t, δ) ,mkµk + σϕ (ι̂k,t, δ)] ,
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and this confidence interval holds with probability greater than 1− δ/2.
Using the endpoints of the confidence interval of mk and mkµk, we get mk’s confidence

interval [ml
k,t,m

u
k,t] as:

ml
k,t = max

(⌈
υ̂k,t − σϕ (ι̂k,t, δ)

µ̂k,t + σϕ(V̂k,t, δ)

⌉
, 1

)
,

mu
k,t = min

(⌊
υ̂k,t + σϕ (ι̂k,t, δ)

µ̂k,t − σϕ(V̂k,t, δ)

⌋
, N

)
.

This confidence interval [ml
k,t,m

u
k,t] is correct for all t ∈ [T ] with probability at least

1− δ.
As for the assumption that mk ∈ [ml

k,t−1,m
u
k,t−1] for all t ∈ [T ], it follows naturally

as a corollary from the confidence interval of µ̂k,t,υ̂k,t, provided that the initializations of
ml

k,t and mu
k,t are correct. Given that [1, N − K + 1] is clearly a valid initialization for

[ml
k,t−1,m

u
k,t−1], all three confidence intervals hold for all t ∈ [T ] with probability at least

1− δ.

Proof (Theorem 5)
We then consider the scenario where there is only one arm k, with its mk and µk

unknown. Our objective is to determine the correct mk by reducing mu
k,t − ml

k,t . A
sufficient condition for the confidence interval to converge is:

υ̂k,t + σϕ (ι̂k,t, δ)

µ̂k,t − σϕ(V̂k,t, δ)
−

υ̂k,t − σϕ (ι̂k,t, δ)

µ̂k,t + σϕ(V̂k,t, δ)
< 1,

with the assumption that µ̂k,t − σϕ(V̂k,t, δ) > 0.
Replacing the empirical values υ̂k,t and µ̂k,t with the endpoints of their confidence in-

terval, we derive another sufficient condition:

mkµk + 2σϕ (ι̂k,t, δ)

µk − 2σϕ(V̂k,t, δ)
−

mkµk − 2σϕ (ι̂k,t, δ)

µk + 2σϕ(V̂k,t, δ)
< 1,

with the assumption that µk − 2σϕ(V̂k,t, δ) > 0. We further assume that µk > 4σϕ(V̂k,t, δ),
and the left-hand side of the inequality above can be bounded as follows:

mkµk + 2σϕ (ι̂k,t, δ)

µk − 2σϕ(V̂k,t, δ)
−

mkµk − 2σϕ (ι̂k,t, δ)

µk + 2σϕ(V̂k,t, δ)

=

(
mkµk + 2σϕ (ι̂k,t, δ)

µk − 2σϕ(V̂k,t, δ)
−mk

)
+

(
mk −

mkµk − 2σϕ (ι̂k,t, δ)

µk + 2σϕ(V̂k,t, δ)

)

≤
4σϕ (ι̂k,t, δ) + 4mkσϕ(V̂k,t, δ)

µk
+

2σϕ (ι̂k,t, δ) + 2mkσϕ(V̂k,t, δ)

µk

=6
σϕ (ι̂k,t, δ) +mkσϕ(V̂k,t, δ)

µk
.
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A sufficient condition for ml
k,t = mu

k,t is then given as:

σϕ (ι̂k,t, δ) ≤
1

12
µk,

σϕ(V̂k,t, δ) ≤
1

12mk
µk.

Note that 1
12mk

≤ 1
4 , so the assumption µk > 4σϕ(V̂k,t, δ) holds if the sufficient condition

above is satisfied.
Solving the inequalities, we obtain:

ι̂k,t ≥
144σ2

µ2
k

· 8 · log
(
2

δ

)
,

V̂k,t ≥
144σ2m2

k

µ2
k

· 8 · log
(
2

δ

)
.

We then bound the number of UEs and IEs required for ml
k,t ≥ mk/2. A sufficient

condition for satisfying the above inequalities is:

ι̂k,t ≥
64σ2

m2
kµ

2
k

· 8 · log
(
2

δ

)
,

V̂k,t ≥
16σ2

µ2
k

· 8 · log
(
2

δ

)
.

Since mk ≥ 1 and V̂k,t ≥ t/2, after at most 1024σ2

µ2
k

log
(
2
δ

)
time slots, we have ml

k,t ≥

mk/2. For subsequent IEs, ak,t ≥ mk/2. To ensure V̂k,t ≥
144σ2m2

k

µ2
k
· 8 · log

(
2
δ

)
, at most

4608σ2

µ2
k

log
(
2
δ

)
additional IEs are required. Therefore, after at most 9216σ2

µ2
k

log
(
2
δ

)
additional

time slots, the capacity mk is determined. Consequently, the maximum number of time
slots required is 10240σ2

µ2
k

log
(
2
δ

)
, aligning with the lower bound of the sample complexity.

Noting that in the first two explorations, we assign 1 andN plays to the arm respectively,
a constant 2 should be added to the upper bound. This proof is then complete.

B.2. Regret Lower Bound Proof

Proof (Theorem 7)
To avoid unnecessary mathematical complexities and simplify the proof, we focus on

the case where M/K and K/4 are both integers. We first construct two instances of the
problem as follows:

• Instance E1: each arm whose index is an odd number has
(
M
K − 1

)
units of capacity

and each of the remaining arms has
(
M
K + 1

)
units of capacity. The per unit reward

mean is fixed to µ, i.e., µ1 = . . . = µK = µ, and variance is fixed to σ, i.e., σ1 = . . . =
σK = σ. Formally,

Instance E1:
arm 1

M/K − 1
µ, σ

arm 2
M/K + 1

µ, σ
· · ·

arm K − 1
M/K − 1

µ, σ

arm K
M/K + 1

µ, σ
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• Instance E2: each arm whose index is an even number has
(
M
K − 1

)
units of capacity

and each of the remaining arms has
(
M
K + 1

)
units of capacity. The per unit reward

mean is fixed to µ, i.e., µ1 = . . . = µK = µ, and variance is fixed to σ, i.e., σ1 = . . . =
σK = σ. Formally,

Instance E2:
arm 1

M/K + 1
µ, σ

arm 2
M/K − 1

µ, σ
· · ·

arm K − 1
M/K + 1

µ, σ

arm K
M/K − 1

µ, σ

For an arbitrary learning algorithm or strategy π, let Reg1 (T, π) and Reg2 (T, π) repre-
sent π’s regrets in instance E1 and E2 respectively. Let T1 denote the number of time slots
during which at least K

4 arms with odd indices are assigned exactly
(
M
K − 1

)
plays. Define

B as the event where T1 ≥ 1
2T :

B =

{
T1 ≥

1

2
T

}
.

We use event B to bound the expectation of the regret in E1 as follows:

EE1

[
Reg1 (T, π)

]
=EE1

[
Reg1 (T, π)1 {B}

]
+EE1

[
Reg1 (T, π)1

{
BC
}]

≥0 + TK

8
min (µ− c, c)PE1

(
BC
)
.

Similarly we have

EE2

[
Reg2 (T, π)

]
≥ TK

8
· 2 (µ− c)PE2 (B) .

Note that Theorem 14.2 in Lattimore and Szepesvári (2020) indicates:

PE1

(
BC
)
+PE2 (B) ≥ 1

2
exp (−KL (PE1 ,PE2)) .

Then, the sum of the regrets of π in the two instances can be lower-bounded as:

EE1

[
Reg1 (T, π)

]
+EE2

[
Reg2 (T, π)

]
≥TK

8
min (µ− c, c)

(
PE1

(
BC
)
+PE2 (B)

)
≥TK

16
min (µ− c, c) exp (−KL (PE1 ,PE2)) .

Note that the probability measure PE1 is defined over the entire learning process span-
ning T time slots,i.e.

PE1 [a1,x1, ...,aT ,xT ] =
T∏
t=1

πt (at|a1,x1, ...,at−1,xt−1)PE1,at (xt) .

Here, at is the action chosen at the time slot t and the vector xt is the resulting reward on
the K arms after playing at. πt is the probability measure of the action at based on the
observation of the past t− 1 pairs of actions and rewards. PE1,at is the probability measure
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of the reward vector xt for the fixed action at in instance E1. Regarding the calculation of
the KL-divergence, it can be decomposed into T parts:

KL (PE1 ,PE2)

=EE1

[
log

(
dPE1

dPE2

)]
=EE1

[
T∑
t=1

log
PE1,at (xt)

PE2,at (xt)

]

=

T∑
t=1

EE1

[
log

PE1,at (xt)

PE2,at (xt)

]

=

T∑
t=1

EE1

[
EE1

[
log

PE1,at (xt)

PE2,at (xt)

∣∣∣∣at

]]

=

T∑
t=1

EE1 [KL (PE1,at , PE2,at)] ,

where in the last equality we use the fact that under PE1 (·|at), the distribution of xt is
PE1,at .

Since the measure PE1,at is a product of K independent probability measures, we can
decompose the KL divergence as follows:

KL (PE1,at , PE2,at) =

K∑
k=1

KL
(
PE1,ak,t , PE2,ak,t

)
.

Here, PE1,ak,t and PE2,ak,t follow normal distributions:

PE1,ak,t ∼ N
(
min

(
ak,t,m

(1)
k

)
µ− ak,tc, σ

2
)
,

PE2,ak,t ∼ N
(
min

(
ak,t,m

(2)
k

)
µ− ak,tc, σ

2
)
,

and m
(1)
k and m

(2)
k denote the capacities of arm k in the E1 and E2, respectively. The

KL-divergence of two Gaussian distributions is given by the following formula:

Lemma 18 For each i ∈ {1, 2}, let µi ∈ R, σ2
i > 0 and Pi = N

(
µi, σ

2
i

)
. Then we have:

KL (P1, P2) =
1

2

(
log

(
σ2
2

σ2
1

)
+

σ2
1

σ2
2

− 1

)
+

(µ1 − µ2)
2

2σ2
2

.

Applying lemma 18, we have:

KL
(
PE1,a1,t , PE2,a1,t

)
=

(
min

(
a1,t,m

(1)
k

)
µ−min

(
a1,t,m

(2)
k

)
µ
)2

2σ2
.
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We aim to find the action a1,t that maximizes KL
(
PE1,a1,t , PE2,a1,t

)
at time slot t on the

first arm. It is straightforward to observe that a1,t should be no less than m
(2)
1 = M

K + 1
to achieve the maximum KL

(
PE1,a1,t , PE2,a1,t

)
. The same principle applies to other arms

k with odd indices. Similarly, to maximize KL
(
PE1,a2,t , PE2,a2,t

)
, the action a2,t for the

second arm should satisfy a2,t ≥ m
(1)
2 = M

K + 1. The same is true for other arms k with
even indices. Therefore, we conclude that:

KL
(
PE1,a1,t , PE2,a1,t

)
≤ 2µ2

σ2
,

KL
(
PE1,a2,t , PE2,a2,t

)
≤ 2µ2

σ2
.

It is worth noting that a1,t, a2,t, ..., aK,t may not all be simultaneously feasible in the real
world. However, this poses no issue since our focus is solely on the upper bound of the
KL-divergence.

Note that E [X] ≤ max [X]. We obtain that:

KL (PE1 ,PE2)

=

T∑
t=1

EE1 [KL (PE1,at , PE2,at)]

≤T ·max
a∈A

[KL (PE1,a, PE2,a)]

=T ·max
a∈A

[
K∑
k=1

KL (PE1,ak , PE2,ak)

]

≤T ·
K∑
k=1

max
ak∈[N ]

[KL (PE1,ak , PE2,ak)]

≤T ·
K∑
k=1

2µ2

σ2

=TK
2µ2

σ2
.

Furthermore, by letting c = 1
2µ, we obtain that:

EE1

[
Reg1 (T, π)

]
+EE2

[
Reg2 (T, π)

]
≥TK

16
min (µ− c, c) exp (−KL (PE1 ,PE2))

=
TK

32
µ exp (−KL (PE1 ,PE2))

≥TK

32
µ exp

(
−2TKµ2

σ2

)
.

Let µ = σ/
√
2TK. Then we obtain that:

max
(
EE1

[
Reg1 (T, π)

]
,EE2

[
Reg2 (T, π)

])
≥ σ

64e
√
2

√
TK.
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This proof is then complete.

Proof (Theorem 9)

Here we only consider the set of algorithms which are consistent over the class of MP-
MAB E described in section 3. Additionally, for simplicity, we assume that the perturbation
of the returned utility follows a Gaussian distribution N

(
0, σ2

)
, where σ2 ≤ 1/2 .

Definition 19 A policy π is defined as consistent over a class of bandits E ′ if, for all E ∈ E ′
and p > 0, it holds that :

lim
T→∞

Reg (T )

T p
= 0.

First, we choose a consistent policy π. Let E1 ∈ E be an instance, where the arm k
has mk units of capacity, each with utility µk. Next, we consider the number of time slots
TBk (T ) during which arm k is assigned more than mk plays by π in T time slots, i.e.,

TBk (T ) :=
T∑
t=1

1 {ak,t ≥ mk + 1} .

For a fixed k ∈ [K], let E2 ∈ E be another instance, where for j ̸= k, there are mj units
of capacity with unit utility µj on the arm j. On the arm k in E2, there are mk + 1 units
of capacity with unit utility µk. Let B be the event that TBk ≤ T

2 :

B :=

{
TBk ≤

T

2

}
.

Let Reg1 (T, π),Reg2 (T, π) denote the regret of policy π in instances E1 and E2, respec-
tively. By a similar analysis as in the previous subsection, we obtain that:

EE1

[
Reg1 (T, π)

]
=EE1

[
Reg1 (T, π)1 {B}

]
+EE1

[
Reg1 (T, π)1

{
BC
}]

≥0 + T

2
cPE1

(
BC
)
.

Similarly, we obtain that:

EE2

[
Reg2 (T, π)

]
≥ T

2
(µk − c)PE2 (B) .

Then, the sum of the expected regrets of π in the two instances can be lower-bounded
as:

EE1

[
Reg1 (T, π)

]
+EE2

[
Reg2 (T, π)

]
≥T

2
min (µk − c, c)

(
PE1

(
BC
)
+PE2 (B)

)
≥T

4
min (µk − c, c) exp (−KL (PE1 ,PE2)) .
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As for the KL-divergence, we can decompose it across time slots and arms, as shown in
the previous subsection:

KL (PE1 ,PE2)

=
T∑
t=1

EE1 [KL (PE1,at , PE2,at)]

=
T∑
t=1

EE1

[
K∑
i=1

KL
(
PE1,ai,t , PE2,ai,t

)]
.

Note that E1 and E2 only differ in arm k. Therefore, the above summation can be simplified
to:

T∑
t=1

EE1

[
K∑
i=1

KL
(
PE1,ai,t , PE2,ai,t

)]

=
T∑
t=1

EE1

[
KL

(
PE1,ak,t , PE2,ak,t

)]
=

T∑
t=1

EE1

[
KL

(
PE1,ak,t , PE2,ak,t

)
1 {ak,t ≥ mk + 1}

]
+

T∑
t=1

EE1

[
KL

(
PE1,ak,t , PE2,ak,t

)
1 {ak,t ≤ mk}

]
=

T∑
t=1

EE1

[
KL

(
PE1,ak,t , PE2,ak,t

)
1 {ak,t ≥ mk + 1}

]
+ 0.

According to lemma 18, when ak,t ≥ mk + 1, we obtain that:

KL
(
PE1,ak,t , PE2,ak,t

)
=

µ2
k

2σ2
.

Therefore, we obtain that :

T∑
t=1

EE1

[
KL

(
PE1,ak,t , PE2,ak,t

)
1 {ak,t ≥ mk + 1}

]
=

T∑
t=1

EE1 [1 {ak,t ≥ mk + 1}]
µ2
k

2σ2

=EE1

[
T∑
t=1

1 {ak,t ≥ mk + 1}

]
µ2
k

2σ2

=EE1 [TBk (T )]
µ2
k

2σ2
.

Consequently, we calculate the KL-divergence as :

KL (PE1 ,PE2) = EE1 [TBk (T )]
µ2
k

2σ2
. (7)



Li Xie Lian

Combining (7) with the lower bound of the sum of the expected regrets, we obtain that:

EE1

[
Reg1 (T, π)

]
+EE2

[
Reg2 (T, π)

]
≥ T

4
min (µk − c, c) exp

(
−EE1 [TBk (T )]

µ2
k

2σ2

)
.

Rearranging and taking the limit inferior on T leads to:

lim inf
T→∞

EE1 [TBk (T )]

log (T )
≥2σ2

µ2
k

lim inf
T→∞

log

(
T min(µk−c,c)

4(EE1
[Reg1(T,π)]+EE2

[Reg2(T,π)])

)
log (T )

=
2σ2

µ2
k

(
1− lim sup

T→∞

log
(
EE1

[
Reg1 (T, π)

]
+EE2

[
Reg2 (T, π)

])
log (T )

)
.

Since the policy π is consistent, for any p > 0 , there is a constant Cp such that for
sufficiently large T : EE1

[
Reg1 (T, π)

]
+EE2

[
Reg2 (T, π)

]
≤ CpT

p, which implies that:

lim sup
T→∞

log
(
EE1

[
Reg1 (T, π)

]
+EE2

[
Reg2 (T, π)

])
log (T )

≤ lim sup
T→∞

p log (T ) + log (Cp)

log (T )

=p.

Noting that p can be arbitrarily small, we obtain that:

lim sup
T→∞

log
(
EE1

[
Reg1 (T, π)

]
+EE2

[
Reg2 (T, π)

])
log (T )

= 0.

Consequently,

lim inf
T→∞

EE1 [TBk (T )]

log (T )
≥ 2σ2

µ2
k

.

It is noteworthy that:

EE1

[
Reg1k (T, π)

]
=EE1

[
T∑
t=1

[(mkµk − cmk)− (min {ak,t,mk} · µk − c · ak,t)]

]

≥EE1

[
T∑
t=1

[(mkµk − cmk)− (min {ak,t,mk} · µk − c · ak,t)]1 {ak,t ≥ mk + 1}

]

≥EE1

[
T∑
t=1

c · 1 {ak,t ≥ mk + 1}

]
=c ·EE1 [TBk (T )] .
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Taking the limit inferior on T leads to:

lim inf
T→∞

EE1

[
Reg1k (T, π)

]
log (T )

≥c · lim inf
T→∞

EE1 [TBk (T )]

log (T )

≥c · 2σ
2

µ2
k

.

The proof is complete.

B.3. Regret Upper Bound Proof

Proof (Theorem 12)
The expectation of Regk (T ) can be separated by the event Ak:

E [Regk (T )]

=E [Regk (T )1{Ak }] +E [Regk (T )1{AC
k }]

≤E [Regk (T )1{Ak }] +P
(
AC

k

)
max (E [Regk (T )]) .

max (E [Regk (T )]) can be bounded by T multiplied by the maximum per-time-slot regret
on the arm k, which is generated either by an IE with only one play or a UE with all
N plays. Let Regmaxk represent the maximal per-time-slot regret on arm k, so we have
Regmaxk ≤ max (mkµk, Nc). Therefore, the second term can be bounded by δT ·Regmaxk.

The first term can be split into two parts: the regret caused by IEs and the regret caused
by UEs. When event Ak occurs, according to Lemma 4, the confidence intervals of mk are
correct. We will then examine the convergence of ml

k,t and mu
k,t to bound the regret caused

by IEs and UEs, respectively.
As for the regret caused by IEs, it is known that the ml

k,t increases until ml
k,t = mk,

and this process will terminate within a finite number of time slots, as shown in the sample
complexity results. So we then consider the number of time slots required for ml

k,t ≥ λ+1,

conditioned on ml
k,t ≥ λ for λ ≤ mk− 1. A sufficient condition for ml

k,t ≥ λ+1 is ml
k,t > λ:

mkµk − 2σϕ (ι̂k,t, δ)

µk + 2σϕ(V̂k,t, δ)
> λ.

By rearranging the terms, we obtain that:

(mk − λ)µk > 2λσϕ(V̂k,t, δ) + 2σϕ (ι̂k,t, δ) .

A sufficient condition for this is :

ϕ (ι̂k,t, δ) <
µk

4σ
(mk − λ) ,

ϕ(V̂k,t, δ) <
µk

4σ

mk − λ

λ
.
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By solving the inequalities, we obtain that:

ι̂k,t >
(4σ)2

µ2
k (mk − λ)2

· 8 · log
(
2

δ

)
,

V̂k,t >
(4σ)2

µ2
k (mk − λ)2

· 8 · log
(
2

δ

)
λ2.

Let g1 (λ) := (4σ)2

µ2
k(mk−λ)2

· 8 · log
(
2
δ

)
λ2. If ml

k,t ≥ λ, there should be an additional

g1(λ)−g1(λ−1)
λ2 IEs. Note that g1(λ)−g1(λ−1)

λ2 ≤ 128σ2

µ2
k
log
(
2
δ

)
· 2 λ

mk−λ
mk

(mk−λ)(mk−λ+1)
1
λ2 . Simi-

larly we can calculate the additional UEs required for ι̂k,t >
(4σ)2

µ2
k(mk−λ)2

· 8 · log
(
2
δ

)
, and it is

clear that more IEs are required than UEs in this case. Note that if ml
k,t ≥ λ, each IE will

generate a regret of at most (mk − λ) (µk − c). By summing the regret caused by IEs from
λ = 1 to λ = mk − 1, we can upper-bound the regret caused by IEs in the entire learning
process as follows:

128
σ2 (µk − c)

µ2
k

log

(
2

δ

)
·
mk−1∑
λ=1

2mk

λ (mk − λ)2

=128
σ2 (µk − c)

µ2
k

log

(
2

δ

)
·

(
mk−1∑
λ=1

mk

λ (mk − λ)2
+

mk

λ2 (mk − λ)

)

=128
σ2 (µk − c)

µ2
k

log

(
2

δ

)
·
mk−1∑
λ=1

m2
k

λ2 (mk − λ)2

=128
σ2 (µk − c)

µ2
k

log

(
2

δ

)
·

⌊
mk
2 ⌋∑

λ=1

m2
k

λ2 (mk − λ)2
+

mk−1∑
λ=⌊mk

2 ⌋+1

m2
k

λ2 (mk − λ)2


≤128σ

2 (µk − c)

µ2
k

log

(
2

δ

)
·

⌊
mk
2 ⌋∑

λ=1

4

λ2
+

mk−1∑
λ=⌊mk

2 ⌋+1

4

(mk − λ)2


≤128σ

2 (µk − c)

µ2
k

log

(
2

δ

)
· 8 · π

2

6

=
512π2σ2 (µk − c)

3µ2
k

log

(
2

δ

)
,

where in the last inequality we use
∑N

x=1
1
x2 ≤ π2

6 for all N ∈ N+.

As for the regret cause by UEs, we first consider the number of time slots required for
ml

k,t > mk/2, with a more detailed analysis than in the proof of sample complexity.

Based on the analysis of the regret caused by IEs, the number of IEs required for
ml

k,t > mk/2 can be bounded by:
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128
σ2

µ2
k

log

(
2

δ

)
·
⌊mk

2 ⌋∑
λ=1

2mk

λ (mk − λ)2 (mk − λ+ 1)

≤128σ
2

µ2
k

log

(
2

δ

)
· 2

mk
·
⌊mk

2 ⌋∑
λ=1

2mk

λ (mk − λ)2

≤128σ
2

µ2
k

log

(
2

δ

)
· 2

mk
·
mk−1∑
λ=1

2mk

λ (mk − λ)2

≤1024π2σ2

3µ2
k

log

(
2

δ

)
· 1

mk
.

To ensure that V̂k,t >
64σ2

µ2
k
· 8 · log

(
2
δ

)
, at most 256σ2

µ2
k
· 8 · log

(
2
δ

)
1
m2

k
additional IEs are

required. Note that V̂k,t >
64σ2

µ2
k
· 8 · log

(
2
δ

)
is a sufficient condition for ϕ(V̂k,t, δ) <

µk
8σ .

Next, we consider the time slots required for mu
k,t < 2mk. A sufficient condition for

mu
k,t < 2mk is :

mkµk + 2σϕ (ι̂k,t, δ)

µk − 2σϕ(V̂k,t, δ)
< 2mk.

By rearranging the terms, we get another sufficient condition:

ϕ (ι̂k,t, δ) <
mkµk

4σ
,

ϕ(V̂k,t, δ) <
µk

8σ
.

Solving the above inequality, we obtain that:

ι̂k,t >
16σ2

m2
kµ

2
k

· 8 · log
(
2

δ

)
,

V̂k,t >
64σ2

µ2
k

· 8 · log
(
2

δ

)
.

Note that the number of required IEs exceeds the number of required UEs for mu
k,t <

2mk.
Consequently, we find that after at most 1024π2σ2

3µ2
k

log
(
2
δ

)
· 1
mk

+ 256σ2

µ2
k
· 8 · log

(
2
δ

)
1
m2

k

alternating IEs and UEs, mu
k,t < 2mk and ml

k,t > mk/2. The regret of these UEs can be
bounded by (N −mk) c. Although these UEs may incur significant costs, their number is
limited, as it is inversely related to the capacity mk.

Next, we consider the number of time slots required for mu
k,t ≤ mk + λ− 1, conditioned

on mu
k,t ≤ mk + λ for λ ≤ mk − 1:

mkµk + 2σϕ (ι̂k,t, δ)

µk − 2σϕ(V̂k,t, δ)
< mk + λ.
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By rearranging the terms, we obtain that:

2σϕ (ι̂k,t, δ) + 2 (mk + λ)σϕ(V̂k,t, δ) < λµk.

A sufficient condition for the inequality above is that:

ϕ (ι̂k,t, δ) <
µk

4σ
· λ,

ϕ(V̂k,t, δ) <
µk

4σ
· λ

mk + λ
.

By solving the inequalities above, we obtain that:

ι̂k,t >
(4σ)2

µ2
kλ

2
· 8 · log

(
2

δ

)
,

V̂k,t >
(4σ)2

µ2
kλ

2
· 8 · log

(
2

δ

)
(mk + λ)2 .

Let g2 (λ) :=
(4σ)2

µ2
kλ

2 · 8 · log
(
2
δ

)
(mk + λ)2. If mu

k,t ≤ mk + λ, noting that ml
k,t > mk/2,

we can upper-bound the number of additional IEs as (g2 (λ)− g2 (λ+ 1)) · 4
m2

k
, which can

be further bounded by:

(g2 (λ)− g2 (λ+ 1)) · 4

m2
k

≤(4σ)2

µ2
k

· 8 · log
(
2

δ

)
· 8
(
1

λ
+

1

mk

)
1

λ (λ+ 1)

≤(4σ)2

µ2
k

· 8 · log
(
2

δ

)
· 16 1

λ2 (λ+ 1)
.

Compared to the number of additional UEs required for ι̂k,t > (4σ)2

µ2
kλ

2 · 8 · log
(
2
δ

)
, the

number of additional IEs is greater. Noting that the regret caused by a UE is at most λc
given that mu

k,t ≤ mk +λ, we can upper-bound the regret caused by UEs when mu
k,t < 2mk

as:

2048
cσ2

µ2
k

log

(
2

δ

)mk−1∑
λ=1

1

λ (λ+ 1)

=2048
cσ2

µ2
k

log

(
2

δ

)(mk−1∑
λ=1

1

λ
− 1

λ+ 1

)

≤2048cσ
2

µ2
k

log

(
2

δ

)
.
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Setting δ = 2/T and summing up the regret together, we can upper-bound the regret
of exploring one arm as:

E[Regk (T )] ≤2048
cσ2

µ2
k

log (T ) +
512π2σ2 (µk − c)

3µ2
k

log (T )

+

(
1024π2σ2

3µ2
k

log (T ) · 1

mk
+

256σ2

µ2
k

· 8 · log (T ) 1

m2
k

)
(Nc)

+2max (Nc,mkµk)

=O

(
Ncσ2 + (µk − c)σ2

µ2
k

log (T )

)
.
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Proof (Theorem 14)
We can recalculate Reg (T ) as the sum of the regrets on each arm individually:

Reg (T )

=
T∑
t=1

(f (a∗)− f (at))

=
T∑
t=1

((
K∑
k=1

(mkµk − cmk)

)
−

(
K∑
k=1

(min{ak,t,mk} · µk − c · ak,t)

))

=

T∑
t=1

(
K∑
k=1

(mkµk − cmk −min {ak,t,mk} · µk + c · ak,t)

)

=

K∑
k=1

(
T∑
t=1

(mkµk − cmk −min {ak,t,mk} · µk + c · ak,t)

)

=
K∑
k=1

Regk (T ) ,

where Regk (T ) :=
∑T

t=1 (mkµk − cmk −min {ak,t,mk} · µk + c · ak,t) .
Unlike Regk in the sample regret, the regret on the arm k in real MP-MAB setting

involves compulsory IEs due to the limited number of plays. As a result, summing the
sample regret upper bounds over all K arms may not provide a reasonable upper bound for
the regret in the real MP-MAB setting.

However, a similar approach can be applied to the partition of the regret Regk based
on the event A. The expectation of Regk (T ) can be separated by the event A:

E [Regk (T )]

=E [Regk (T )1{A }] +E [Regk (T )1{AC }]
≤E [Regk (T )1{A }] +P

(
AC
)
max (E [Regk (T )]) ,

where the second term can be upper-bounded by (Kδ)T · Regmaxk. We will bound the
first term by analyzing the convergence of the confidence intervals of mk.

It is shown in the proof of sample regret that the number of IEs and UEs should be
balanced when studying the capacity. Applying too many UEs in the early time slots on an
arm can be costly and hinder the progress of learning the capacities of other arms. Similarly,
too many IEs in the first few time slots can result in significant regret.

Consider the alternating IE and UE strategy in which the optimal sample regret is
achieved. If extra IEs are inserted in the the learning process on the arm k, the convergence
of the confidence upper bound of mu

k,t will actually be accelerated at the time slots when
UEs are applied on the arm k. In other words, when focusing solely on the regret caused
by the UEs, the additional IEs do not lead to an increase in this portion of the regret.
Therefore, the regret caused by the UEs on arm k can be bounded in the same way as
shown in the sample regret. The main challenge lies in limiting the number of costly IEs
on the arms, which can be frequent in our setting, as arms are often required to be played
with IEs due to a lack of plays.
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Since we expect that the number of UEs should be fewer than the number of IEs on
the same arm, and balancing the two is crucial for achieving the optimal sample regret,
the number of UEs becomes more decisive when learning the capacity. Consequently, it is
natural to apply UEs to arms whose capacities are not well learned. Given that the regret
caused by UEs can be bounded similarly to the sample regret, we now aim to use the regret
caused by a single IE on a arm as a criterion for evaluating the learning progress of that
arm.

The regret caused by a single IE on the arm k can be upper-bounded as :

(
mk −

υ̂k,t − σϕ (ι̂k,t, δ)

µ̂k,t + σϕ(V̂k,t, δ)

)
µk

≤

(
mk −

υ̂k,t − σϕ (ι̂k,t, δ)

µ̂k,t + σϕ(V̂k,t, δ)

)(
µ̂k,t + σϕ(V̂k,t, δ)

)
=mkµ̂k,t + σmkϕ(V̂k,t, δ)− υ̂k,t + σϕ (ι̂k,t, δ)

≤mkµk + 2σmkϕ(V̂k,t, δ)−mkµk + 2σϕ (ι̂k,t, δ)

=2σmkϕ(V̂k,t, δ) + 2σϕ (ι̂k,t, δ) .

This regret upper bound further demonstrates that when the numbers of UEs and IEs are
balanced, the regret caused by a single IE will decrease rapidly. Since we have no knowledge
of the true capacity mk, we can use ϕ(V̂k,t, δ) + ϕ (ι̂k,t, δ) as an alternative criterion. Both
criteria serve the same purpose of balancing the numbers of UEs and IEs on a particular
arm. Additionally, ϕ(V̂k,t, δ) and ϕ (ι̂k,t, δ) measure the width of the confidence intervals of
µ̂k,t’s and υ̂k,t, reflecting the extent of capacity learning on the arm k. Therefore, besides
requiring that an arm is not played with UEs in two consecutive time slots, we also require
that UEs be applied first to arms with greater ϕ(V̂k,t, δ) + ϕ (ι̂k,t, δ), provided these arms
are not forced to be played with an IE based on the first condition.

Note that ϕ(V̂k,t, δ) ≤ ϕ (ι̂k,t, δ) for t ≥ K + 1. It can be observed that for any two

arms i, j, a sufficient condition for ϕ(V̂i,t, δ) + ϕ(ι̂i,t, δ) ≥ ϕ(V̂j,t, δ) + ϕ(ι̂j,t, δ) is ϕ (ι̂i,t, δ) ≥
2ϕ (ι̂j,t, δ). Solving the inequality above, we get a sufficient condition as 8ι̂i,t ≤ ι̂j,t. This
implies that during the learning process of the algorithm, no arm is assigned with more
than eight times as many UEs as any other arm at any time slot t. From this, we directly
obtain the following lemma.

Lemma 20 For arbitrary arm k and arbitrary positive integer λ, a sufficient condition for
having at least λ UEs on arm k is that

t ≥ 8λK.

According to the result in sample regret, at most additional 128σ2

µ2
k
log
(
2
δ

)
·2 mk

(mk−λ)2(mk−λ+1)λ

UEs are required for ml
k,t ≥ λ + 1, conditioned on ml

k,t ≥ λ. Let xi denote the number of

IEs applied on arm k when ml
k,t = i:
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xi :=
T∑
t=1

1 (ak,t = i) .

For any integer λ ∈ [1,mk − 1], the number of UEs required for ml
k,t ≥ λ+ 1 is at most∑λ

i=1 128
σ2

µ2
k
log
(
2
δ

)
· 2 mk

(mk−i)2(mk−i+1)i
. Then, according to Lemma 20, the number of IEs

on arm k is at most:

λ∑
i=1

128
σ2

µ2
k

log

(
2

δ

)
· 2 mk

(mk − i)2 (mk − i+ 1) i
· 8K.

So we have the following conditions on xi: for all integer λ ∈ [1,mk − 1]:

λ∑
i=1

xi ≤
λ∑

i=1

128
σ2

µ2
k

log

(
2

δ

)
· 2 mk

(mk − i)2 (mk − i+ 1) i
· 8K. (8)

The regret caused by these IEs can be expressed as:

mk−1∑
i=1

xi (mk − i) (µk − c) . (9)

It is evident that the maximum value of the expression (9) is achieved when the inequal-
ities (8) hold with equalities for all integer λ ∈ [1,mk − 1]. Consequently, the summation
of the expression (9) can be bounded using the same method demonstrated in the sample
regret analysis, as follows:

512π2σ2 (µk − c)

3µ2
k

log

(
2

δ

)
· 8K.

Setting δ = 2/T and noting that the regrets caused by UEs can be bound in the same
way as the sample regret, we derive the final form of the regret upper bound on the arm k
as:

E[Regk (T )] ≤2048
cσ2

µ2
k

log (T ) +
512π2σ2 (µk − c)

3µ2
k

log (T ) · 8K

+

(
1024π2σ2

3µ2
k

log (T ) · 1

mk
+

256σ2

µ2
k

· 8 · log (T ) 1

m2
k

)
(Nc)

+2Kmax (Nc,mkµk)

=O

(
N
mk

cσ2 +K (µk − c)σ2

µ2
k

log (T )

)
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Summing up the inequalities above for all k, we can upper-bound the regret of the
Algorithm 2 as:

Reg (T ) ≤
K∑
k=1

(
2048

cσ2

µ2
k

log (T ) +
512π2σ2 (µk − c)

3µ2
k

log (T ) · 8K

+

(
1024π2σ2

3µ2
k

log (T ) · 1

mk
+

256σ2

µ2
k

· 8 · log (T ) 1

m2
k

)
(Nc)

+ 2Kmax (Nc,mkµk))

=O

(
K∑
k=1

(
N

mk
c+K (µk − c)

)
σ2

µ2
k

log (T )

)
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Proof (Theorem 16)
According to Theorem 14, for arbitrary ∆ > 0, we have:

Reg (T ) ≤
K∑
k=1

(
2048

cσ2

µ2
k

log (T ) +
512π2σ2 (µk − c)

3µ2
k

log (T ) · 8K

+
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∆
log(T )

+Nσ2
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1024π2
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· 1
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log(T ) +Nσ2
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2048
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· 1
∆
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+
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≤σ2 log(T )

∆

(
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3
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The final step is letting ∆ = σ

√(
2048M+ 4096π2

3
KM+ 1024π2

3
NK+2048NK

)
TK log(T ).


