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A Attack Details
Three key elements are required to implement FGA, namely an
image encoder, guiding vectors, and guiding labels. Below, we will
elaborate on the construction of these elements in four scenarios:
VE, VQA, VG, and VR.

A.1 Visual Entailment
Task Detail. We conduct the attack experiment on the VE task

[16] with ALBEF [7] which treats VE as a three-classification prob-
lem and connects a multi-layer perceptron (MLP) after the [CLS]
vector. The input layer and all hidden layers of the MLP constitute
𝑃 , obtaining the image encoder 𝐸 (𝑣 |𝑡) = 𝑃 (𝐸𝑚 (𝐸𝑣 (𝑣), 𝐸𝑡 (𝑡))). The
output layer of the MLP is a linear layer, whose weight matrix is
𝑊 = {𝜔0, 𝜔1, 𝜔2}. The three guiding vectors are associated with
three categories “contradiction, neutral and entailment”, and the
label 𝑦 ∈ {0, 1, 2} of the input image-text pair (𝑣, 𝑡) provides the
direction of the attack, that is, guiding 𝐸 (𝑣 ′ |𝑡) the embedding of
adversarial image 𝑣 ′ deviates from the guiding vector 𝜔𝑦 .

Dataset Detail. The SNLI-VE dataset [16] is a benchmark for
visual entailment, which aims to determine whether an image sup-
ports, contradicts, or is neutral to a given natural language state-
ment. This task extends the concept of natural language inference
(NLI) to the visual domain, presenting challenges in image and text
understanding. The dataset is constructed based on two existing
datasets: SNLI (Stanford Natural Language Inference) and Flick30k.
We use its test split, which contains 1000 images, 5973 entailment
texts, 5964 neutral texts, and 5964 contradiction texts.

A.2 Visual Question Answering
Task Detail. We conduct the attack experiment on the VQA

task [5] with ALBEF which performs this task in the manner of text
generation. The image-question pair is fed into ALBEF to extract
the fused embedding, which is then sent to a decoder to generate an
answer. The dictionary size of the decoder is 30522, so the end of the
decoder is a linear classification head, with weight matrix {𝜔𝑖 }30521𝑖=0 .
The VQA 2.0 dataset [5] provides 3,128 candidate answers. To align
with this task, ALBEF only considers 3,128 output possibilities. We
follow this by selecting 3,128 vectors from the weights of the linear
layer to form the guiding vectors {𝜔𝑖 }3127𝑖=0 , each corresponding to
an answer. To perform FGA, we denote the decoder excluding the
linear classification head as 𝑃 , and we still lack guiding labels. For
convenience, we directly use the network’s prediction results as
the guiding labels, which is 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 (𝑃 (𝐸𝑚 (𝐸𝑣 (𝑣 ′), 𝐸𝑡 (𝑡))) · 𝜔𝑖 ).

Dataset Detail. The VQA2.0 dataset includes images from the
MS COCO (Microsoft Common Objects in Context) dataset [8],
providing a diverse set of real-world images depicting various ob-
jects, scenes, and activities. For each image, multiple questions are
generated, covering a wide range of topics such as object recog-
nition, counting, colour identification, spatial relationships, and

more. Each question is accompanied by multiple answers, provided
by different human annotators. The answers can be in the form
of single words, phrases, or numbers. It contains 83k images for
training, 41k for validation, and 81k for test. We conduct attack
tests based on the test-dev and test-std splits.

A.3 Visual Grounding
Task Detail. We conduct the attack experiment on the VE task

with ALBEF which extends Grad-CAM [11] to acquire heatmaps
and use them to rank the detected proposals provided in advance.
During this task, after the fused encoder, ALBEF is followed by
a linear image-text matching binary classifier, the weight matrix
of which is𝑊 = {𝜔0, 𝜔1}. The larger the inner product between
the fused embedding and 𝜔1, the more the input image-text pair
(𝑣, 𝑡)matches. ALBEF backpropagates the gradient based on the loss
value Em(𝐸𝑣 (𝑣), 𝐸𝑡 (𝑡)) ·𝜔1, obtains the heatmap, and then performs
the VG task. Consequently, we use FGA to guide Em(𝐸𝑣 (𝑣 ′), 𝐸𝑡 (𝑡))
away from 𝜔1 as the attack strategy.

Dataset Detail. RefCOCO+ [17] is a dataset designed for refer-
ring expression comprehension in the context of images. It is an
extension of the original RefCOCO dataset and specifically aims at
addressing the challenge of grounding referring expressions that
require fine-grained distinctions between objects. The key compo-
nents of the RefCOCO+ dataset are: (1) Images: The dataset uses
images from the Microsoft COCO (Common Objects in Context)
dataset, which contains a wide variety of everyday scenes with
multiple objects. (2)Referring Expressions: For each image, there
are several referring expressions provided by human annotators.
These expressions describe specific objects or groups of objects in
the image. (3) Object Annotations: Each referring expression is
associated with an object annotation, a bounding box that identifies
the location of the referred object in the image.

A.4 Visual Grounding
Task Detail. We perform the VR task based on the BEiT3 model

[15]. In this task, the input example pair of the model is (𝑣0, 𝑣1, 𝑡, 𝑦),
where 𝑦 ∈ {0, 1}. 𝑦 = 1 means that the text matches at least one
of two images. BEiT3 splits an example pair into two image-text
pairs (𝑣0, 𝑡) and (𝑣1, 𝑡) as inputs, thereby extracting two fused em-
beddings. After concatenating the two embeddings and performing
operations such as nonlinear projection, the final feature vector is
obtained. This feature vector is fed into a binary classifier, whose
weight matrix is {𝜔0, 𝜔1}. At this point, we only need to guide the
feature vector away from the guiding vector 𝜔𝑦 through FGA, and
simultaneously update the input images 𝑣0, 𝑣1 along the gradient
direction to obtain the adversarial images 𝑣 ′0 and 𝑣

′
1.

Dataset Detail. NLVR2 [13] (Natural Language for Visual Rea-
soning for Real) is a natural language processing dataset designed
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Table 3: The experimental results when 𝑠𝑡𝑒𝑝 = 7. The reported
values are recall rates. Lower is better.

𝜖 (ℓ∞)
Test Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

w/o atk 96.30 99.70 100.00 86.14 97.68 98.82
0.5 22.40 36.60 44.50 19.44 36.12 44.24
1 1.80 4.50 6.10 2.62 5.88 8.58
2 0.00 0.10 0.30 0.16 0.52 0.72
4 0.00 0.00 0.00 0.00 0.00 0.02
8 0.00 0.00 0.00 0.00 0.00 0.00

Table 1: The experimental results when 𝑠𝑡𝑒𝑝 = 1. The reported
values are recall rates. Lower is better.

𝜖 (ℓ∞)
Test Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

w/o atk 96.30 99.70 100.00 86.14 97.68 98.82
0.5 60.70 81.90 88.70 50.94 76.80 84.32
1 41.30 62.60 72.70 34.24 60.32 69.86
2 27.30 45.10 55.50 22.04 45.22 56.14
4 20.00 35.50 46.10 16.88 35.74 46.46
8 16.00 32.10 41.70 14.42 32.14 41.86
16 15.20 30.50 40.00 13.54 30.08 39.40

Table 2: The experimental results when 𝑠𝑡𝑒𝑝 = 3. The reported
values are recall rates. Lower is better.

𝜖 (ℓ∞)
Test Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

w/o atk 96.30 99.70 100.00 86.14 97.68 98.82
0.5 33.50 51.10 60.50 27.98 50.72 59.06
1 8.80 16.70 21.50 8.00 17.88 23.76
2 1.10 1.80 3.40 1.72 4.14 6.08
4 0.20 0.60 1.00 0.60 1.34 1.70
8 0.10 0.20 0.20 0.14 0.52 0.82
16 0.00 0.10 0.10 0.06 0.10 0.16

for the visual reasoning task. It aims to evaluate models’ ability to
reason about visual information combined with natural language
descriptions. NLVR2 is an extended version of the NLVR dataset,
featuring more images and more complex language descriptions.
The NLVR2 dataset contains approximately 107,000 human-written
sentences describing visual relationships in a set of images. Each
sample includes a sentence and a pair of images. The content de-
scribed in the sentence may match one of the images, both, or
neither. The task for models is to determine whether the sentence
correctly describes at least one of the images. This dataset is used for
various vision-language tasks, such as visual question answering,
image-text matching, and multimodal reasoning. NLVR2 advances
the research and development of vision-language models’ reasoning

capabilities by providing more challenging samples and complex
language descriptions.

B Combine FGA with unimodal attacks
We design FGA as a universal attack strategy, which is theoretically
orthogonal to all unimodal attack schemes.

B.1 Global Perturbation
This subsection discusses how to generate global perturbations
based on FGA. We denote 𝛿 as the added adversarial perturbation,
with 𝐵(𝜖, 𝑝) = {𝛿 : ∥𝛿 ∥𝑝 ≤ 𝜖} representing the ball of perturbations
bounded by 𝜖 in 𝑝-norm. Finding 𝛿 typically can be addressed
through an iterative process [9], which can be summarized as three
phases: obtaining gradient information (Eq 1), determining the
steepest ascent direction (Eq 2), and applying projection (Eq 7) [4].

(1) Obtaining gradient information:

𝑔 = ∇𝛿 (𝑖 ) 𝐿𝑔𝑢𝑖 (𝑣 + 𝛿
(𝑖 ) ,𝑊 ,𝑌 ) (1)

where 𝛿 (𝑖 ) represents the perturbation at the 𝑖th iteration,𝑊 rep-
resents the guidance vectors, and 𝑌 represents the guidance labels.
For simplicity, hereafter it is abbreviated as 𝐿𝑔𝑢𝑖 (𝑣).

(2) Determining the steepest ascent direction:

𝑔 (𝑝 ) = 𝐷𝑖𝑟𝑝 (𝑔) (2)

where 𝑔 represents the original gradient information, and 𝑔 (𝑝 )

is a unit vector under ℓ𝑝 constraint, with



𝑔 (𝑝 )




𝑝
= 1. So that

𝑔 (𝑝 ) represents the fastest loss rising direction under the ℓ𝑝 norm
constraint. The steepest ascent directions for ℓ1 [14], ℓ2, and ℓ∞ [4]
are as follows:

𝑒𝑖 =

{
𝑠𝑖𝑔𝑛(𝑔𝑖 ) |𝑔𝑖 | ≥ |𝑔| (𝑞)

0 |𝑔𝑖 | < |𝑔| (𝑞)
(3)

𝑔 (1) = 𝑒/∥𝑒 ∥1 (4)

𝑔 (2) = 𝑔/∥𝑔∥2 (5)

𝑔 (∞) = 𝑠𝑖𝑔𝑛(𝑔) (6)
where |𝑔| (𝑞) denotes the 𝑞𝑡ℎ percentile of |𝑔|.

(3) Applying projection:

𝛿 (𝑖+1) = 𝐶𝑙𝑎𝑚𝑝 (−𝑣,1−𝑣)𝑃𝐵 (𝜖,𝑝 ) (𝛿 (𝑖 ) + 𝛼 · 𝑔 (𝑝 ) ) (7)

Table 4: The experimental results when 𝑠𝑡𝑒𝑝 = 10. The re-
ported values are recall rates. Lower is better.

𝜖 (ℓ∞)
Test Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

w/o atk 96.30 99.70 100.00 86.14 97.68 98.82
0.5 20.30 32.30 39.00 17.00 32.30 39.84
1 1.00 3.40 4.60 1.96 4.62 5.96
2 0.00 0.00 0.00 0.02 0.16 0.32
4 0.00 0.00 0.00 0.00 0.00 0.00
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Figure 1: The experimental results when 𝑠𝑡𝑒𝑝 = 1. We observe
that as the noise constraint is relaxed (with 𝜖 increasing), the
effectiveness of the attack gradually intensifies. However, the
rate of decline in model performance slows down, indicating
that the attack strength tends to converge.

where 𝑃𝐵 (𝜖,𝑝 ) ensures that



𝛿 (𝑖+1)




𝑝
≤ 𝜖 , and 𝐶𝑙𝑎𝑚𝑝 (−𝑣,1−𝑣) en-

sures that the pixel values of 𝑣 + 𝛿 (𝑖+1) remain within the legal
range [0, 1]. To elaborate further, when moving 𝛿 (𝑖 ) along the
steepest ascent direction with a step size of 𝛼 , it may lead to


𝛿 (𝑖 ) + 𝛼 · 𝑔 (𝑝 )




𝑝
> 𝜖 . In such case, the projection algorithm is

required to ensure



𝑃𝐵 (𝜖,𝑝 ) (𝛿 (𝑖 ) + 𝛼 · 𝑔 (𝑝 )




𝑝
= 𝜖 .

𝑃𝐵 (𝜖,2) (𝛿) =
{
𝜖 · 𝛿
∥𝛿 ∥2

if ∥𝛿 ∥2 > 𝜖

𝛿 if ∥𝛿 ∥2 ≤ 𝜖
(8)

𝑃𝐵 (𝜖,∞) (𝛿) = 𝐶𝑙𝑎𝑚𝑝 (−𝜖,𝜖 ) (𝛿) (9)
where 𝐶𝑙𝑎𝑚𝑝 (−𝜖,𝜖 ) represents clipping each element value in 𝛿

to be between −𝜖 and 𝜖 . Besides, 𝑃𝐵 (𝜖,1) involves a complex pro-
jection strategy for sparsity ℓ1 perturbation, discussed in detail in
APGDℓ1 [2] and MAX[14].

Based on what is mentioned above, we can execute global per-
turbation attacks FGAℓ1 , FGAℓ2 , FGAℓ∞ according to different norm
constraints. In the unimodal domain, multi-norm attacks are very
necessary. This is because a classic defence strategy in the unimodal
domain, adversarial training, often overfits adversarial examples of
a certain norm. That is, it can effectively defend against adversarial
examples of a specific norm but is ineffective against adversarial
examples of other norms [14]. Therefore, the interplay of adver-
sarial perturbations across multiple norms can better explore the
lower bounds of a network’s robustness [10, 1, 12].

B.2 Momentum Mechanism
The momentum mechanism is a commonly used strategy to en-
hance the robustness of adversarial examples. On top of the global

perturbation attack, it involves introducing momentum updates,
during obtaining gradient information (Eq 1) [3].

Obtaining gradient information with momentum mecha-
nism:

𝑔← ∇𝛿 (𝑖 ) 𝐿𝑔𝑢𝑖 (𝑣 + 𝛿
(𝑖 ) ) (10)

𝑔← 𝑔/𝑚𝑒𝑎𝑛(𝑎𝑏𝑠 (𝑔)) (11)
𝑔← 𝑔 + 𝛼 · 𝑔𝑚 (12)

𝑔𝑚 ← 𝑔 (13)
where 𝑎𝑏𝑠 represents taking the absolute value of each element
in 𝑔, while 𝑚𝑒𝑎𝑛 denotes calculating the average of all element
values.𝑔𝑚 is initialized as an all-zero matrix, incorporating gradient
information from previous iterations. Therefore, after introducing
the momentum mechanism, the gradient information comes from
the weighted sum of current gradient 𝑔 and past gradient 𝑔𝑚 , with
𝑔𝑚 weighting 𝛼 .

B.3 Patch Perturbation
Global attacks constrain the perturbation 𝛿 through 𝜖 , requiring the
perturbation to be as small as possible to avoid human detection.
Patch attacks, on the other hand, use a binary mask matrix𝑚 to
specify the patch’s location information. Patch attacks concentrate
the perturbation within a specified area of the image, typically a
square, covering about 2% of the original image’s area [6]. Within
this area, there’s no need to limit the size of the perturbation, so no
norm constraints are necessary. It’s only required to ensure that the
patch’s pixel values are within the legal range [0, 1]. Patch attack
is also typically carried out in an iterative form:

𝑔 = ∇𝛿 (𝑖 ) 𝐿𝑔𝑢𝑖 (𝑣 ⊙ (1 −𝑚) + 𝛿
(𝑖 ) ⊙𝑚) (14)

𝛿 (𝑖+1) = 𝐶𝑙𝑎𝑚𝑝 (0,1) (𝛿 (𝑖 ) + 𝑔) (15)
where ⊙ denotes the element-wise product, in the mask 𝑚, an
element value of 0 indicates that the original pixel at that position
is replaced by a patch pixel.

C More ablation experiments
We perform ablation studies focusing on the iteration count (𝑠𝑡𝑒𝑝)
and the intensity of noise (𝜖) leveraging the BEiT3 model configured
for the Image-Text Retrieval (ITR) task. The experimentation utilizes
the BEiT3 model, which has been specifically fine-tuned utilizing
the Flickr30k dataset, and evaluates its performance against the
same dataset. Our methodology involves deploying the FGA while
adhering to the ℓ∞ norm constraint, denoted as FGAℓ∞ . The exper-
imental setup varies the 𝑠𝑡𝑒𝑝 parameter across a set {1, 3, 7, 10},
with corresponding outcomes detailed in Tab 1, Tab 2, Tab 3 and
Tab 4, respectively. Concurrently, we explore a range of 𝜖 values set
at {0.5, 1, 2, 4, 8, 16}, ensuring that ∥𝛿 ∥∞ ≤ 𝜖 , where the 𝜖 values are
pre-normalization, indicating that image pixel values span a [0, 255]
range. We observe that: (1) As the noise constraint is relaxed (with
𝜖 increasing), the effectiveness of the attack gradually intensifies
(Fig 1). However, the rate of decline in model performance slows
down, indicating that the attack strength tends to converge. (2) As
the number of iterations (𝑠𝑡𝑒𝑝) increases, the attack’s effectiveness
progressively intensifies (Fig 2).
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Figure 2: The experimental results when 𝜖 = 0.5. We note that
as the number of iterations increases, the attack’s effective-
ness progressively intensifies. Nonetheless, the decrease in
model performance decelerates, suggesting a convergence in
attack potency.
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