
Monte Carlo Tree Search based Variable Selection
for High Dimensional Bayesian Optimization

Lei Song∗, Ke Xue∗, Xiaobin Huang, Chao Qian†

State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210023, China

{songl, xuek, huangxb, qianc}@lamda.nju.edu.cn

Abstract

Bayesian optimization (BO) is a class of popular methods for expensive black-box
optimization, and has been widely applied to many scenarios. However, BO suffers
from the curse of dimensionality, and scaling it to high-dimensional problems is still
a challenge. In this paper, we propose a variable selection method MCTS-VS based
on Monte Carlo tree search (MCTS), to iteratively select and optimize a subset of
variables. That is, MCTS-VS constructs a low-dimensional subspace via MCTS and
optimizes in the subspace with any BO algorithm. We give a theoretical analysis of
the general variable selection method to reveal how it can work. Experiments on
high-dimensional synthetic functions and real-world problems (i.e., NAS-bench
problems and MuJoCo locomotion tasks) show that MCTS-VS equipped with a
proper BO optimizer can achieve state-of-the-art performance.

1 Introduction

In many real-world tasks such as neural architecture search (NAS) [41] and policy search in rein-
forcement learning (RL) [6], one often needs to solve the expensive black-box optimization problems.
Bayesian optimization (BO) [2, 11, 23, 32] is a sample-efficient algorithm for solving such problems.
It iteratively fits a surrogate model, typically Gaussian process (GP), and maximizes an acquisition
function to obtain the next point to evaluate. While BO has been employed in a wide variety of
settings, successful applications are often limited to low-dimensional problems.

Recently, scaling BO to high-dimensional problems has received a lot of interest. Decomposition-
based methods [13, 15, 17, 26, 31] assume that the high-dimensional function to be optimized has
a certain structure, typically the additive structure. By decomposing the original high-dimensional
function into the sum of several low-dimensional functions, they optimize each low-dimensional
function to obtain the point in the high-dimensional space. However, it is not easy to decide whether
a decomposition exists as well as to learn the decomposition.

Other methods often assume that the original high-dimensional function with dimension D has
a low-dimensional subspace with dimension d ≪ D, and then perform the optimization in the
low-dimensional subspace and project the low-dimensional point back for evaluation. For example,
embedding-based methods [20, 27, 42] use a random matrix to embed the original space into the low-
dimensional subspace. Another way is to select a subset of variables directly, which can even avoid
the time-consuming matrix operations of embedding-based methods. For example, Dropout [21]
selects d variables randomly in each iteration. Note that for both embedding and variable selection
methods, the parameter d can have a large influence on the performance, which is, however, difficult
to set in real-world problems.

∗Equal Contribution
†Corresponding Author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

In this paper, we propose a new Variable Selection method using Monte Carlo Tree Search (MCTS),
called MCTS-VS. MCTS is employed to partition the variables into important and unimportant ones,
and only those selected important variables are optimized via any black-box optimization algorithm,
e.g., vanilla BO [32] or TuRBO [10]. The values of unimportant variables are sampled using historical
information. Compared with Dropout-BO, MCTS-VS can select important variables automatically.

We also provide regret and computational complexity analyses of general variable selection methods,
showing that variable selection can reduce the computational complexity while increasing the
cumulative regret. Our regret bound generalizes that of GP-UCB [38] which always selects all
variables, as well as that of Dropout [21] which selects d variables randomly in each iteration. The
results suggest that a good variable selection method should select as important variables as possible.

Experiments on high-dimensional synthetic functions and real-world problems (i.e., NAS and RL
problems) show that MCTS-VS is better than the previous variable selection method Dropout [21],
and can also achieve the competitive performance to state-of-the-art BO algorithms. Furthermore, its
running time is small due to the advantage of variable selection. We also observe that MCTS-VS can
select important variables, explaining its good performance based on our theoretical analysis.

2 Background

2.1 Bayesian Optimization

We consider the problem maxx∈X f(x), where f is a black-box function and X ⊆ RD is the domain.
The basic framework of BO contains two critical components: a surrogate model and an acquisition
function. GP is the most popular surrogate model. Given the sampled data points {(xi, yi)}t−1

i=1 ,
where yi = f(xi) + ϵi and ϵi ∼ N (0, η2) is the observation noise, GP at iteration t seeks to infer
f ∼ GP(µ(·), k(·, ·) + η2I), specified by the mean µ(·) and covariance kernel k(·, ·), where I is
the identity matrix of size D. After that, an acquisition function, e.g., Probability of Improvement
(PI) [19], Expected Improvement (EI) [16] or Upper Confidence Bound (UCB) [38], is used to
determine the next query point xt while balancing exploitation and exploration.

2.2 High-dimensional Bayesian Optimization

Scaling BO to high-dimensional problems is a challenge due to the curse of dimensionality and the
computation cost. As the dimension increases, the search space increases exponentially, requiring
more samples, and thus more expensive evaluations, to find a good solution. Furthermore, the
computation cost of updating the GP model and optimizing the acquisition function will be very
time-consuming [30]. There have been a few common approaches to tackle high-dimensional BO
with different assumptions.

Decomposition. Assuming that the function can be decomposed into the sum of low-dimensional
functions with disjoint subspaces, Kandasamy et al. [17] proposed the Add-GP-UCB algorithm to
optimize those low-dimensional functions separately, which was further generalized to overlapping
subspaces [26, 31]. Wang et al. [43] proposed ensemble BO that uses an ensemble of additive GP
models for scalability. Han et al. [13] constrained the dependency graphs of decomposition to tree
structures to facilitate the decomposition learning and optimization. For most problems, however, the
decomposition is unknown, and also difficult to learn.

Embedding. Assuming that only a few dimensions affect the high-dimensional function significantly,
embedding-based methods embed the high-dimensional space into a low-dimensional subspace, and
optimize in the subspace while projecting the point back for evaluation. REMBO and its variants use
a random matrix to embed the search space into a low-dimensional subspace [3, 4, 42]. Nayebi et al.
[27] used a hash-based method for embedding. Letham et al. [20] proposed ALEBO, focusing on
several misconceptions in REMBO to improve the performance. The VAE-based approaches were
also employed to project a structured input space (e.g., graphs and images) to a low-dimensional
subspace [12, 22].

Variable Selection. Based on the same assumption as embedding, variable selection methods
iteratively select a subset of variables to build a low-dimensional subspace and optimize through
BO. The selected variables can be viewed as important variables that are valuable for exploitation,
or having high uncertainty that are valuable for exploration. A classical method is Dropout [21],

2

which randomly chooses d variables in each iteration. Spagnol et al. [37] uses Hilbert Schmidt
Independence criterion to guide variable selection. When evaluating the sampled point, the values
of those unselected variables are obtained by random sampling or using historical information.
VS-BO [33] selects variables with larger estimated gradients and uses CMA-ES [14] to obtain the
values of unselected variables. Note that variable selection can be faster than embedding, because the
embedding cost (e.g., matrix inversion) is time-consuming for high-dimensional optimization.

Both embedding and variable selection methods need to specify the parameter d, i.e., the dimension
of low-dimensional subspace, which will affect the performance significantly, but is not easy to set.
There are also some methods to improve the basic components of BO directly for high-dimensional
problems. For example, DNGO [36] uses the neural network as an alternative of GP to speed up
inference; BO-PP [29] generates pseudo-points (i.e., data points whose objective values are not
evaluated) to improve the GP model; SAASBO [9] uses sparsity-inducing prior to perform variable
selection implicitly, making the coefficients of unimportant variables near to zero and thus restraining
over-exploration on these variables. Note that different from Dropout and our proposed MCTS-VS,
SAASBO still optimizes all variables, and also due to its high computational cost of inference, it is
very time-consuming as reported in [9]. These methods can be combined with the above-mentioned
dimensionality reduction methods, which may bring further improvement.

2.3 Monte Carlo Tree Search

MCTS [5] is a tree search algorithm based on random sampling, and has shown great success in
high-dimensional tasks, such as Go [34, 35]. A tree node represents a state, describing the current
situation, e.g., the position in path planning. Each tree node X stores a value vX representing its
goodness, and the number nX that it has been visited. They are used to calculate UCB [1], i.e.,

vX + 2Cp

√
2(log np)/nX , (1)

where Cp is a hyper-parameter, and np is the number of visits of the parent of X . UCB considers
both exploitation and exploration, and will be used for node selection.

MCTS iteratively selects a leaf node of the tree for expansion. Each iteration can be divided into four
steps: selection, expansion, simulation and back-propagation. Starting from the root node, selection
is to recursively select a node with larger UCB until a leaf node, denoted as X . Expansion is to
execute a certain action in the state represented by X and transfer to the next state, e.g., move forward
and arrive at a new position in path planning. We use the child node Y of X to represent the next
state. Simulation is to obtain the value vY via random sampling. Back-propagation is to update the
value and the number of visits of Y ’s ancestors.

To tackle high-dimensional optimization, Wang et al. [40] proposed LA-MCTS, which applies MCTS
to iteratively partition the search space into small sub-regions, and optimizes only in the good sub-
regions. That is, the root of the tree represents the entire search space Ω, and each tree node X
represents a sub-region ΩX . The value vX is measured by the average objective value of the sampled
points in the sub-region ΩX . In each iteration, after selecting a leaf node X , LA-MCTS performs
the optimization in ΩX by vanilla BO [32] or TuRBO [10], and the sampled points are used for
clustering and classification to bifurcate ΩX into two disjoint sub-regions, which are “good” and
“bad”, respectively. Note that the sub-regions are generated by dividing the range of variables, and
their dimensionality does not decrease, which is still the number of all variables. Wang et al. [40]
have empirically shown the good performance of LA-MCTS. However, as the dimension increases,
the search space increases exponentially, and more partitions and evaluations are required to find a
good solution, making the application of LA-MCTS to high-dimensional optimization still limited.

3 MCTS-VS Method

In this section, we propose a Variable Selection method based on MCTS for high-dimensional
BO, briefly called MCTS-VS. The main idea is to apply MCTS to iteratively partition all variables
into important and unimportant ones, and perform BO only for those important variables. Let
[D] = {1, 2, . . . , D} denote the indexes of all variables x, and xM denote the subset of variables
indexed by M ⊆ [D].

We first introduce a D-dimensional vector named variable score, which is a key component of
MCTS-VS. Its i-th element represents the importance of the i-th variable xi. During the running

3

process of MCTS-VS, after optimizing a subset xM of variables where M ⊆ [D] denotes the indexes
of the variables, a set D of sampled points will be generated, and the pair (M,D) will be recorded
into a set D, called information set. The variable score vector is based on D, and calculated as

s =

 ∑
(M,D)∈D

∑
(xi,yi)∈D

yi · g(M)

/ ∑
(M,D)∈D

|D| · g(M)

 , (2)

where the function g : 2[D] → {0, 1}D gives the Boolean vector representation of a variable index
subset M ⊆ [D] (i.e., the i-th element of g(M) is 1 if i ∈M, and 0 otherwise), and / is the element-
wise division. Each dimension of

∑
(M,D)∈D

∑
(xi,yi)∈D yi · g(M) is the sum of query evaluations

using each variable, and each dimension of
∑

(M,D)∈D |D| · g(M) is the number of queries using
each variable. Thus, the i-th element of variable score s, representing the importance of the i-th
variable xi, is actually measured by the average goodness of all the sampled points that are generated
by optimizing a subset of variables containing xi. The variable score s will be used to define the
value of each tree node of MCTS as well as for node expansion.

In MCTS-VS, the root of the tree represents all variables. A tree node X represents a subset of
variables, whose index set is denoted by AX ⊆ [D], and it stores the value vX and the number nX

of visits, which are used to calculate the value of UCB as in Eq. (1). The value vX is defined as
the average score (i.e., importance) of the variables contained by X , which can be calculated by
s · g(AX)/|AX |, where g(AX) is the Boolean vector representation of AX and |AX | is the size of
AX , i.e., the number of variables in node X .

At each iteration, MCTS-VS first recursively selects a node with larger UCB until a leaf node (denoted
as X), which is regarded as containing important variables. Note that if we optimize the subset xAX

of variables represented by the leaf X directly, the variables in xAX
will have the same score (because

they are optimized together), and their relative importance cannot be further distinguished. Thus,
MCTS-VS uniformly selects a variable index subset M from AX at random, and employs BO to
optimize xM as well as xAX\M; this process is repeated for several times. After that, the information
set D will be augmented by the pairs of the selected variable index subset M (or AX \M) and the
corresponding sampled points generated by BO. The variable score vector s will be updated using
this new D. Based on s, the variable index set AX represented by the leaf X will be divided into two
disjoint subsets, containing variables with larger and smaller scores (i.e., important and unimportant
variables), respectively, and the leaf X will be bifurcated into two child nodes accordingly. Finally,
the v values of these two children will be calculated using the variable score vector s, and back-
propagation will be performed to update the v value and the number of visits of the nodes along the
current path of the tree.

MCTS-VS can be equipped with any specific BO optimizer, resulting in the concrete algorithm
MCTS-VS-BO, where BO is used to optimize the selected subsets of variables during the running
of MCTS-VS. Compared with LA-MCTS [40], MCTS-VS applies MCTS to partition the variables
instead of the search space, and thus can be more scalable. Compared with the previous variable
selection method Dropout [21], MCTS-VS can select important variables automatically instead of
randomly selecting a fixed number of variables in each iteration. Next we introduce it in detail.

3.1 Details of MCTS-VS

The procedure of MCTS-VS is described in Algorithm 1. In line 1, it first initializes the information
set D. In particular, a variable index subset Mi is randomly sampled from [D], and the Latin
hypercube sampling [24] is used to generate two sets (denoted as Di and Dī) of Ns points to form
the two pairs of (Mi,Di) and (M̄i,Dī), where M̄i = [D] \Mi. This process will be repeated for Nv

times, resulting in the initial D = {(Mi,Di), (M̄i,Dī)}Nv
i=1. The variable score vector s is calculated

using this initial D in line 3, and the Monte Carlo tree is initialized in line 4 by adding only a root
node, whose v value is calculated according to s and number of visits is 0. MCTS-VS uses the
variable t to record the number of evaluations it has performed, and thus t is set to 2×Nv ×Ns in
line 5 as the initial D contains 2×Nv ×Ns sampled points in total.

In each iteration (i.e., lines 7–28) of MCTS-VS, it selects a leaf node X by UCB in line 10, and
optimizes the variables (i.e., xAX

) represented by X in lines 13–23. Note that to measure the
relative importance of variables in xAX

, MCTS-VS optimizes different subsets of variables of xAX

4

Algorithm 1 MCTS-VS
Parameters: batch size Nv of variable index subset, sample batch size Ns, total number Ne of
evaluations, threshold Nbad for re-initializing a tree and Nsplit for splitting a node, hyper-parameter
k for the best-k strategy
Process:

1: Initialize the information set D = {(Mi,Di), (M̄i,Dī)}Nv
i=1;

2: Store the best k sampled points in D;
3: Calculate the variable score s using D as in Eq. (2);
4: Initialize the Monte Carlo tree;
5: Set t = 2×Nv ×Ns and nbad = 0;
6: while t < Ne do
7: if nbad > Nbad then
8: Initialize the Monte Carlo tree and set nbad = 0
9: end if

10: X ← the leaf node selected by UCB;
11: Let AX denote the indexes of the subset of variables represented by X;
12: Increase nbad by 1 once visiting a right child node on the path from the root node to X;
13: for j = 1 : Nv do
14: Sample a variable index subset M from AX uniformly at random;
15: Fit a GP model using the points {(xi

M, y
i)}ti=1 sampled-so-far, where only the variables

indexed by M are used;
16: Generate {xt+i

M }
Ns
i=1 by maximizing an acquisition function;

17: Determine {xt+i
[D]\M}

Ns
i=1 by the “fill-in” strategy;

18: Evaluate xt+i = [xt+i
M ,xt+i

[D]\M] to obtain yt+i for i = 1, 2, . . . , Ns;

19: D = D ∪ {(M, {(xt+i, yt+i)}Ns
i=1)};

20: Store the best k points sampled-so-far;
21: t = t+Ns;
22: Repeat lines 15–21 for M̄ = AX \M
23: end for
24: Calculate the variable score s using D as in Eq. (2);
25: if |AX | > Nsplit then
26: Bifurcate the leaf node X into two child nodes, whose v value and number of visits are

calculated by s and set to 0, respectively
27: end if
28: Back-propagate to update the v value and number of visits of the nodes on the path from the

root to X
29: end while

instead of xAX
directly. That is, a variable index subset M is randomly sampled from AX in line 14,

and the corresponding subset xM of variables is optimized by BO in lines 15–16. The data points
{(xi

M, y
i)}ti=1 sampled-so-far is used to fit a GP model, and Ns (called sample batch size) new points

{xt+i
M }

Ns
i=1 are generated by maximizing an acquisition function. Note that this is a standard BO

procedure, which can be replaced by any other variant. To evaluate xt+i
M , we need to fill in the values

of the other variables xt+i
[D]\M, which will be explained later. After evaluating xt+i = [xt+i

M ,xt+i
[D]\M]

in line 18, the information set D is augmented with the new pair of (M, {(xt+i, yt+i)}Ns
i=1) in line 19,

and t is increased by Ns accordingly in line 21. For fairness, the complement subset xM̄ of variables,
where M̄ = AX \M, is also optimized by the same way, i.e., lines 15–21 of Algorithm 1 is repeated
for M̄. The whole process of optimizing xM and xM̄ in lines 14–22 will be repeated for Nv times,
which is called batch size of variable index subset.

To fill in the values of the un-optimized variables in line 17, we employ the best-k strategy, which
utilizes the best k data points sampled-so-far, denoted as {(x∗j , y∗j)}kj=1. That is, {y∗j}kj=1 are
the k largest objective values observed-so-far. If the i-th variable is un-optimized, its value will be
uniformly selected from {x∗j

i }kj=1 at random. Thus, MCTS-VS needs to store the best k data points
in line 2 after initializing the information set D, and update them in line 20 after augmenting D.
Other direct “fill-in” strategies include sampling the value randomly, or using the average variable

5

value of the best k data points. The superiority of the employed best-k strategy will be shown in the
experiments in Appendix D.

After optimizing the variables xAX
represented by the selected leaf X , the variable score vector s

measuring the importance of each variable will be updated using the augmented D in line 24. If the
number |AX | of variables in the leaf X is larger than a threshold Nsplit (i.e., line 25), AX will be
divided into two subsets. One contains those “important” variable indexes with score larger than
the average score of xAX

, and the other contains the remaining “unimportant” ones. The leaf X
will be bifurcated into a left child Y and a right child Z in line 26, containing those important and
unimportant variables, respectively. Meanwhile, vY and vZ will be calculated according to s, and the
number of visits is 0, i.e., nY = nZ = 0. Finally, MCTS-VS performs back-propagation in line 28 to
re-calculate the v value and increase the number of visits by 1 for each ancestor of Y and Z.

MCTS-VS will run until the number t of performed evaluations reaches the budget Ne. Note that
as the Monte Carlo tree may be built improperly, we use a variable nbad to record the number of
visiting a right child node (regarded as containing unimportant variables), measuring the goodness
of the tree. In line 5 of Algorithm 1, nbad is initialized as 0. During the procedure of selecting a
leaf node by UCB in line 10, nbad will be increased by 1 once visiting a right child node, which is
updated in line 12. If nbad is larger than a threshold Nbad (i.e., line 7), the current tree is regarded as
bad, and will be re-initialized in line 8. Furthermore, the frequency of re-initialization can be used to
indicate whether MCTS-VS can do a good variable selection for the current problem. For ease of
understanding, we also provide an example illustration of MCTS-VS in Appendix A.

4 Theoretical Analysis

Although it is difficult to analyze the regret of MCTS-VS directly, we can theoretically analyze the
influence of general variable selection by adopting the acquisition function GP-UCB. The considered
general variable selection framework is as follows: after selecting a subset of variables at each
iteration, the corresponding observation data (i.e., the data points sampled-so-far where only the
selected variables are used) is used to build a GP model, and the next data point is sampled by
maximizing GP-UCB. We use Mt to denote the sampled variable index subset at iteration t, and let
|Mt| = dt.

Regret Analysis. Let x∗ denote an optimal solution. We analyze the cumulative regret RT =∑T
t=1(f(x

∗) − f(xt)), i.e., the sum of the gap between the optimum and the function values of
the selected points by iteration T . To derive an upper bound on RT , we pessimistically assume
that the worst function value, i.e., minx[D]\Mt

f([xMt
,x[D]\Mt

]), given xMt
is returned in evaluation.

As in [21, 38], we assume that X ⊂ [0, r]D is convex and compact, and f satisfies the following
Lipschitz assumption.
Assumption 4.1. The function f is a GP sample path. For some a, b > 0, given L > 0, the partial
derivatives of f satisfy that ∀i ∈ [D], ∃αi ≥ 0,

P (supx∈X |∂f/∂xi| < αiL) ≥ 1− ae−(L/b)2 . (3)

Based on Assumption 4.1, we define α∗
i to be the minimum value of αi such that Eq. (3) holds, which

characterizes the importance of the i-th variable xi. The larger α∗
i , the greater influence of xi on the

function f . Let αmax = maxi∈[D] α
∗
i .

Theorem 4.2 gives an upper bound on the cumulative regret RT with high probability for general
variable selection methods. The proof is inspired by that of GP-UCB without variable selection [38]
and provided in Appendix B.1. If we select all variables each time (i.e., ∀t : Mt = [D]) and assume
∀i : α∗

i ≤ 1, the regret bound Eq. (4) becomes RT ≤
√

C1Tβ∗
T γT +2, which is consistent with [38].

Note that ∀t : |Mt| = dt = D in this case, which implies that βt increases with t, leading to
β∗
T = βT . We can see that using variable selection will increase RT by 2

∑T
t=1

∑
i∈[D]\Mt

α∗
iLr,

related to the importance (i.e., α∗
i) of unselected variables at each iteration. The more important

variables unselected, the larger RT . Meanwhile, the term
√
C1Tβ∗

T γT will decrease as β∗
T relies on

the number dt of selected variables positively. Ideally, if the unselected variables at each iteration are
always unrelated (i.e., α∗

i =0), the regret bound will be better than that of using all variables [38].

Theorem 4.2. ∀δ ∈ (0, 1), let βt = 2 log(4πt/δ) + 2dt log(dtt
2br
√
log(4Da/δ)) and L =

b
√
log(4Da/δ), where r is the upper bound on each variable, and {πt}t≥1 satisfies

∑
t≥1 π

−1
t = 1

6

and πt > 0. Let β∗
T = max1≤i≤T βt. At iteration T , the cumulative regret

RT ≤
√

C1Tβ∗
T γT + 2αmax + 2

∑T

t=1

∑
i∈[D]\Mt

α∗
iLr (4)

holds with probability at least 1−δ, where C1 is a constant, γT =max|D|=T I(yD,fD), I(·, ·) is the
information gain, and yD and fD are the noisy and true observations of a setD of points, respectively.

By selecting d variables randomly at each iteration and assuming that r = 1 and ∀i : α∗
i ≤ 1, it has

been proved [21] that the cumulative regret of Dropout satisfies

RT ≤
√
C1TβT γT + 2 + 2TL(D − d). (5)

In this case, we have dt = |Mt| = d, r = 1 and ∀i : α∗
i ≤ 1. Thus, Eq. (4) becomes

RT ≤
√
C1Tβ∗

T γT + 2 + 2TL(D − d). (6)
Note that β∗

T = βT here, as βt increases with t given dt = d. This implies that our bound Eq. (4)
for general variable selection is a generalization of Eq. (5) for Dropout [21]. In [33], a regret bound
analysis has also been performed for variable selection, by optimizing over d fixed important variables
and using a common parameter α to characterize the importance of all the other D − d variables.

Computational Complexity Analysis. The computational complexity of one iteration of BO depends
on three critical components: fitting a GP surrogate model, maximizing an acquisition function and
evaluating a sampled point. If using the squared exponential kernel, the computational complexity of
fitting a GP model at iteration t is O(t3 + t2dt). Maximizing an acquisition function is related to the
optimization algorithm. If we use the Quasi-Newton method to optimize GP-UCB, the computational
complexity is O(m(t2 + tdt + d2t)) [28], where m denotes the Quasi-Newton’s running rounds. The
cost of evaluating a sampled point is fixed. Thus, by selecting only a subset of variables, instead of
all variables, to optimize, the computational complexity can be decreased significantly. The detailed
analysis is provided in Appendix B.2.

Insight. The above regret and computational complexity analyses have shown that variable selection
can reduce the computational complexity while increasing the regret. Given the number dt of
variables to be selected, a good variable selection method should select as important variables as
possible, i.e., variables with as large α∗

i as possible, which may help to design and evaluate variable
selection methods. The experiments in Section 5.1 will show that MCTS-VS can select a good subset
of variables while maintaining a small computational complexity.

5 Experiment

To examine the performance of MCTS-VS, we conduct experiments on different tasks, including
synthetic functions, NAS-bench problems and MuJoCo locomotion tasks, to compare MCTS-VS
with other black-box optimization methods. For MCTS-VS, we use the same hyper-parameters
except Cp, which is used for calculating UCB in Eq. (1). For Dropout and embedding-based
methods, we set the parameter d to the number of valid dimensions for synthetic functions, and a
reasonable value for real-world problems. The hyper-parameters of the same components of different
methods are set to the same. We use five identical random seeds (2021–2025) for all problems and
methods. More details about the settings can be found in Appendix C. Our code is available at
https://github.com/lamda-bbo/MCTS-VS.

5.1 Synthetic Functions

We use Hartmann (d = 6) and Levy (d = 10) as the synthetic benchmark functions, and extend them
to high dimensions by adding unrelated variables as [20, 27, 42]. For example, Hartmann6_300 has
the dimension D = 300, and is generated by appending 294 unrelated dimensions to Hartmann. The
variables affecting the value of f are called valid variables.

Effectiveness of Variable Selection. Dropout [21] is the previous variable selection method which
randomly selects d variables in each iteration, while our proposed MCTS-VS applies MCTS to
automatically select important variables. We compare them against vanilla BO [32] without variable
selection. The first two subfigures in Figure 1 show that Dropout-BO and MCTS-VS-BO are better
than vanilla BO, implying the effectiveness of variable selection. We can also see that MCTS-VS-BO
performs the best, implying the superiority of MCTS-based variable selection over random selection.

7

https://github.com/lamda-bbo/MCTS-VS

We also equip MCTS-VS and Dropout with the advanced BO algorithm TuRBO [10], resulting in
MCTS-VS-TuRBO and Dropout-TuRBO. The last two subfigures in Figure 1 show the similar results
except that MCTS-VS-TuRBO needs more evaluations to be better than Dropout-TuRBO. This is
because TuRBO costs more evaluations than BO on the same selected variables, and thus needs more
evaluations to generate sufficient samples for an accurate estimation of the variable score in Eq. (2).

0.050 0.025 0.000 0.025 0.050

0.04

0.02

0.00

0.02

0.04

Vanilla BO Dropout-BO MCTS-VS-BO

0.050 0.025 0.000 0.025 0.050

0.04

0.02

0.00

0.02

0.04

TuRBO Dropout-TuRBO MCTS-VS-TuRBO

0 100 200 300 400 500
Number of evaluations

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_300

0 100 200 300 400 500
Number of evaluations

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_500

0 100 200 300 400 500
Number of evaluations

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_300

0 100 200 300 400 500
Number of evaluations

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_500

Figure 1: Performance comparison among the two variable selection methods (i.e., MCTS-VS and
Dropout) and the BO methods (i.e., Vanilla BO and TuRBO) on two synthetic functions.

Comparison with State-of-The-Art Methods. We compare MCTS-VS with the state-of-the-art
methods, including TuRBO [10], LA-MCTS-TuRBO [40], SAASBO [9], HeSBO [27], ALEBO [20]
and CMA-ES [14]. TuRBO fits a collection of local models to optimize in the trust regions for
overcoming the homogeneity of the global model and over-exploration. LA-MCTS-TuRBO applies
MCTS to partition the search space and uses TuRBO to optimize in a small sub-region. SAASBO
uses sparsity-inducing prior to select variables implicitly. HeSBO and ALEBO are state-of-the-art
embedding methods. CMA-ES is a popular evolutionary algorithm. We also implement VAE-BO
by combining VAE [18] with vanilla BO directly, as a baseline of learning-based embedding. For
MCTS-VS, we implement the two versions of MCTS-VS-BO and MCTS-VS-TuRBO, i.e., MCTS-VS
equipped with vanilla BO and TuRBO.

As shown in Figure 2, MCTS-VS can achieve the best performance except on Levy10_100, where it is
a little worse than TuRBO. For low-dimensional functions (e.g., D = 100 for Levy10_100), TuRBO
can adjust the trust region quickly while MCTS-VS needs samples to estimate the variable score.
But as the dimension increases, the search space increases exponentially and it becomes difficult
for TuRBO to adjust the trust region; while the number of variables only increases linearly, making
MCTS-VS more scalable. SAASBO has similar performance to MCTS-VS due to the advantage
of sparsity-inducing prior. HeSBO is not stable, which has a moderate performance on Hartmann
but a relatively good performance on Levy. Note that we only run SAASBO and ALEBO for 200
evaluations on Hartmann functions because it has already taken more than hours to finish one iteration
when the number of samples is large. More details about runtime are shown in Table 1. VAE-BO has
the worst performance, suggesting that the learning algorithm in high-dimensional BO needs to be
designed carefully. We also conduct experiments on extremely low and high dimensional variants of
Hartmann (i.e., Hartmann6_100 and Hartmann6_1000), showing that MCTS-VS still performs well,
and perform the significance test by running each method more times. Please see Appendix E.

0.050 0.025 0.000 0.025 0.050

0.04

0.02

0.00

0.02

0.04

MCTS-VS-BO MCTS-VS-TuRBO TuRBO LA-MCTS-TuRBO

0.050 0.025 0.000 0.025 0.050

0.04

0.02

0.00

0.02

0.04

SAASBO HeSBO ALEBO CMA-ES VAE-BO

0 100 200 300 400 500
Number of evaluations

50

40

30

20

10

0

Va
lu

e

Levy10_100

0 100 200 300 400 500
Number of evaluations

40

30

20

10

0

Va
lu

e

Levy10_300

0 100 200 300 400 500
Number of evaluations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_300

0 100 200 300 400 500
Number of evaluations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_500

Figure 2: Comparison among MCTS-VS and state-of-the-art methods on synthetic functions.

Next, we compare the practical running overheads of these methods. We run each method for 100
evaluations independently using 30 different random seeds, and calculate the average wall clock
time. The results are shown in Table 1. As expected, when using variable selection (i.e., Dropout and
MCTS-VS), the time is less than that of Vanilla BO or TuRBO, because we only optimize a subset of
variables. MCTS-VS is a little slower than Dropout, which is because MCTS-VS needs to build the
search tree and calculate the variable score, while Dropout only randomly selects variables. MCTS-
VS is much faster than LA-MCTS-TuRBO, showing the advantage of partitioning the variables to
partitioning the search space. SAASBO optimizes all variables instead of only a subset of variables
and uses No-U-Turn sampler (NUTS) to inference, consuming ×500 – × 1000 time. HeSBO and

8

Table 1: Wall clock time (in seconds) comparison among different methods.

METHOD LEVY10_100 LEVY10_300 HARTMANN6_300 HARTMANN6_500

VANILLA BO 3.190 4.140 4.844 5.540
DROPOUT-BO 2.707 3.225 3.237 3.685
MCTS-VS-BO 2.683 3.753 3.711 4.590

TURBO 8.621 9.206 9.201 9.754
LA-MCTS-TURBO 14.431 22.165 25.853 34.381
MCTS-VS-TURBO 4.912 5.616 5.613 5.893

SAASBO / / 2185.678 4163.121
HESBO 220.459 185.092 51.678 55.699
ALEBO / / 470.714 512.641
CMA-ES 0.030 0.043 0.043 0.045

Table 2: Recall comparison between MCTS-VS and Dropout.

METHOD LEVY10_100 LEVY10_300 HARTMANN6_300 HARTMANN6_500

DROPOUT 0.100 0.030 0.020 0.012
MCTS-VS 0.429 0.433 0.352 0.350

ALEBO consume ×10 – × 500 time compared with the variable selection methods. CMA-ES is
very fast because it does not need to fit a GP model or optimize an acquisition function. The reasons
for the small running overhead of MCTS-VS can be summarized as follows: 1) it only optimizes a
selected subset of variables; 2) the depth of the search tree is shallow, i.e., O(logD) in expectation
and less than D in the worse case; 3) the variable score vector in Eq. (2) is easy to calculate for
bifurcating a tree node.

Why MCTS-VS Can Perform Well. The theoretical results have suggested that a good variable
selection method should select as important variables as possible. Thus, we compare the quality of
the variables selected by MCTS-VS and Dropout (i.e., random selection), measured by the recall
d∗t /d, where d is the number of valid variables, and d∗t is the number of valid variables selected at
iteration t. Dropout randomly selects d variables at each iteration, and thus, the recall is d/D in
expectation. For MCTS-VS, we run MCTS-VS-BO for 600 evaluations on five different random
seeds, and calculate the average recall. As shown in Table 2, the average recall of MCTS-VS is
much larger than that of Dropout, implying that MCTS-VS can select better variables than random
selection, and thus achieve a good performance as shown before. Meanwhile, the recall between 0.35
and 0.433 of MCTS-VS also implies that the variable selection method could be further improved.

5.2 Real-World Problems

We further compare MCTS-VS with the baselines on real-world problems, including NAS-Bench-
101 [45], NAS-Bench-201 [7], Hopper and Walker2d. NAS-Bench problems are popular benchmarks
in high-dimensional BO. Hopper and Walker2d are robot locomotion tasks in MuJoCo [39], which is
a popular black-box optimization benchmark and much more difficult than NAS-Bench problems.
The experimental results on more real-world problems can refer to Appendix E.

NAS-Bench Problems. NAS-Bench-101 is a tabular data set that maps convolutional neural network
architectures to their trained and evaluated performance on CIFAR-10, and we create a constrained
problem with D = 36 in the same way as [20]. NAS-Bench-201 is an extension to NAS-Bench-101,
leading to a problem with D = 30 but without constraints. Figure 3 shows the results with the
wall clock time as the x-axis, where the gray dashed line denotes the optimum. The results using
the number of evaluations as the x-axis are provided in Appendix E, showing that the performance
of BO-style methods is similar, as already observed in [20]. This may be because there are many
structures whose objective values are close to the optimum. But when considering the actual
runtime, MCTS-VS-BO is still clearly better as shown in Figure 3, due to the advantage of variable
selection. We also provide results on more NAS-Bench problems, including NAS-Bench-1Shot1 [46],
TransNAS-Bench-101 [8] and NAS-Bench-ASR [25] in Appendix E.

MuJoCo Locomotion Tasks. Next we turn to the more difficult MuJoCo tasks in RL. The goal
is to find the parameters of a linear policy maximizing the accumulative reward. Different from

9

0.050 0.025 0.000 0.025 0.050

0.04

0.02

0.00

0.02

0.04

MCTS-VS-BO MCTS-VS-TuRBO TuRBO LA-MCTS-TuRBO

0.050 0.025 0.000 0.025 0.050

0.04

0.02

0.00

0.02

0.04

SAASBO HeSBO ALEBO CMA-ES VAE-BO

0 100 200
Time (sec)

0.920

0.925

0.930

0.935

0.940

0.945

Ac
cu

ra
cy

NAS-Bench-101

0 100 200
Time (sec)

0.68

0.69

0.70

0.71

0.72

0.73

Ac
cu

ra
cy

NAS-Bench-201

Figure 3: Comparison on NAS-Bench.

0 300 600 900
Number of evaluations

0

500

1000

1500

2000

Re
wa

rd

Hopper

0 300 600 900
Number of evaluations

0

200

400

600

800

Re
wa

rd

Walker2D

Figure 4: Comparison on MuJoCo.

previous problems, the objective f (i.e., the accumulative reward) is highly stochastic here, making
it difficult to solve. We use the mean of three independent evaluations to estimate f , and limit the
evaluation budget to 1200 due to expensive evaluation. Note that we do not run SAASBO, ALEBO,
and VAE-BO because SAASBO and ALEBO are extremely time-consuming, and VAE-BO behaves
badly in previous experiments. The results are shown in Figure 4. TuRBO behaves well on Hopper
with a low dimension D = 33, and MCTS-VS-TuRBO, combining the advantage of variable selection
and TuRBO, achieves better performance, outperforming all the other baselines. On Walker2d with a
high dimension D = 102, MCTS-VS-BO performs the best, because of the good scalability. Most
methods have large variance due to the randomness of f . For HeSBO, we have little knowledge about
the parameter d, and use 10 and 20 for Hopper and Walker2d, respectively. Its performance may
be improved by choosing a better d, which, however, requires running the experiment many times,
and is time-consuming. Note that on the two MuJoCo tasks, Hopper and Walker2d, each variable is
valid. The good performance of MCTS-VS may be because optimizing only a subset of variables is
sufficient for achieving the goal and MCTS-VS can select them. For example, the Walker2D robot
consists of four main body parts: a torso, two thighs, two legs and two feet, where adjacent ones
are connected by two hinges. The goal is to move forward by optimizing the hinges, each of which
is valid. But even locking the hinges between legs and feet, the robot can still move forward by
optimizing the other hinges. This is similar to that when the ankles are fixed, a person can still walk.

Further Studies. We further perform sensitivity analysis about the hyper-parameters of MCTS-VS,
including the employed optimizer, “fill-in” strategy, Cp for calculating UCB in Eq. (1), number
2×Nv ×Ns of sampled data in each iteration, threshold Nbad for re-initializing a tree and Nsplit

for splitting a tree node. Please see Appendix D. We conduct additional experiments in Appendix E,
including experiments on synthetic functions depending on a subset of variables to various extent
and with increasing ratio of valid variables, examination of combining MCTS-VS with SAASBO
(which can be viewed as a hierarchical variable selection method), and comparison with other variable
selection methods (e.g., LASSO).

6 Conclusion

In this paper, we propose the MCTS-VS method for variable selection in high-dimensional BO,
which uses MCTS to recursively partition the variables into important and unimportant ones, and
only optimizes those important variables. Theoretical results suggest selecting as important variables
as possible, which may be of independent interest for variable selection. Comprehensive experiments
on synthetic, NAS-bench and MuJoCo problems demonstrate the effectiveness of MCTS-VS.

However, MCTS-VS relies on the assumption of low effective dimensionality, and might not work
well if the percentage of valid variables is high. The amount of hyper-parameters might be another
limitation, though our sensitivity analysis has shown that the performance of MCTS-VS is not
sensitive to most hyper-parameters. The current theoretical analysis is for general variable selection,
while it will be very interesting to perform specific theoretical analysis for MCTS-VS.

Acknowledgement

The authors would like to thank reviewers for their helpful comments and suggestions. This work
was supported by the NSFC (62022039, 62276124) and the Fundamental Research Funds for the
Central Universities (0221-14380014).

10

References
[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.

Machine learning, 47(2):235–256, 2002.

[2] M. Binois and N. Wycoff. A survey on high-dimensional Gaussian process modeling with appli-
cation to Bayesian optimization. ACM Transactions on Evolutionary Learning and Optimization,
2(2):1–26, 2022.

[3] M. Binois, D. Ginsbourger, and O. Roustant. A warped kernel improving robustness in Bayesian
optimization via random embeddings. In Proceedings of the 9th International Conference on
Learning and Intelligent Optimization (LION’15), pages 281–286, Lille, France, 2015.

[4] M. Binois, D. Ginsbourger, and O. Roustant. On the choice of the low-dimensional domain
for global optimization via random embeddings. Journal of Global Optimization, 76(1):69–90,
2020.

[5] C. Browne, E. J. Powley, D. Whitehouse, S. M. M. Lucas, P. I. Cowling, P. Rohlfshagen,
S. Tavener, D. P. Liebana, S. Samothrakis, and S. Colton. A survey of Monte Carlo tree search
methods. IEEE Transactions on Computational Intelligence and AI in Games, 4(1):1–43, 2012.

[6] R. Calandra, A. Seyfarth, J. Peters, and M. P. Deisenroth. Bayesian optimization for learning
gaits under uncertainty. Annals of Mathematics and Artificial Intelligence, 76(1):5–23, 2015.

[7] X. Dong and Y. Yang. NAS-Bench-201: Extending the scope of reproducible neural architecture
search. In Proceedings of the 8th International Conference on Learning Representations
(ICLR’20), Addis Ababa, Ethiopia, 2020.

[8] Y. Duan, X. Chen, H. Xu, Z. Chen, X. Liang, T. Zhang, and Z. Li. TransNAS-Bench-101:
Improving transferability and generalizability of cross-task neural architecture search. CoRR
abs/2105.11871, 2021.

[9] D. Eriksson and M. Jankowiak. High-dimensional Bayesian optimization with sparse axis-
aligned subspaces. In Proceedings of the 37th Conference on Uncertainty in Artificial Intelli-
gence (UAI’21), pages 493–503, Virtual, 2021.

[10] D. Eriksson, M. Pearce, J. R. Gardner, R. D. Turner, and M. Poloczek. Scalable global
optimization via local Bayesian optimization. In Advances in Neural Information Processing
Systems 32 (NeurIPS’19), pages 5497–5508, Vancouver, Canada, 2019.

[11] P. I. Frazier. A tutorial on Bayesian optimization. CoRR abs/1807.02811, 2018.

[12] R. Gómez-Bombarelli, D. K. Duvenaud, J. M. Hernández-Lobato, J. Aguilera-Iparraguirre, T.D.
Hirzel, R. P. Adams, and A. Aspuru-Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. ACS Central Science, 4(2):268 – 276, 2018.

[13] E. Han, I. Arora, and J. Scarlett. High-dimensional Bayesian optimization via tree-structured
additive models. In Proceedings of the 35th Association for the Advancement of Artificial
Intelligence (AAAI’21), pages 7630–7638, Virtual, 2021.

[14] N. Hansen. The CMA evolution strategy: A tutorial. CoRR abs/1604.00772, 2016.

[15] T. N. Hoang, Q. M. Hoang, R. Ouyang, and K. H. Low. Decentralized high-dimensional
Bayesian optimization with factor graphs. In Proceedings of the 32nd Association for the
Advancement of Artificial Intelligence (AAAI’18), pages 3231–3239, New Orleans, LA, 2018.

[16] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black-box
functions. Journal of Global Optimization, 13(4):455–492, 1998.

[17] K. Kandasamy, J. G. Schneider, and B. Póczos. High dimensional Bayesian optimisation and
bandits via additive models. In Proceedings of the 32nd International Conference on Machine
Learning (ICML’15), pages 295–304, Lille, France, 2015.

[18] D. P. Kingma and M. Welling. Auto-encoding variational Bayes. CoRR abs/1312.6114, 2014.

11

[19] H. J. Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in
the presence of noise. Journal of Basic Engineering, 86(1):97–106, 1964.

[20] B. Letham, R. Calandra, A. Rai, and E. Bakshy. Re-examining linear embeddings for high-
dimensional Bayesian optimization. In Advances in Neural Information Processing Systems 33
(NeurIPS’20), pages 1546–1558, Vancouver, Canada, 2020.

[21] C. Li, S. Gupta, S. Rana, V. Nguyen, S. Venkatesh, and A. Shilton. High dimensional Bayesian
optimization using dropout. In Proceedings of the 26th International Joint Conference on
Artificial Intelligence (IJCAI’17), pages 2096–2102, Melbourne, Australia, 2017.

[22] X. Lu, J. I. González, Z. Dai, and N. D. Lawrence. Structured variationally auto-encoded
optimization. In Proceedings of the 35th International Conference on Machine Learning
(ICML’18), pages 3306–3314, Stockholm, Sweden, 2018.

[23] M. Malu, G. Dasarathy, and A. Spanias. Bayesian optimization in high-dimensional spaces: A
brief survey. In Proceedings of the 12th International Conference on Information, Intelligence,
Systems & Applications (IISA’21), pages 1–8, Virtual, 2021.

[24] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods for selecting
values of input variables in the analysis of output from a computer code. Technometrics, 21(2):
239–245, 1979.

[25] A. Mehrotra, A. G. C. P. Ramos, S. Bhattacharya, Ł. Dudziak, R. Vipperla, T. Chau, M. S.
Abdelfattah, S. Ishtiaq, and N. D. Lane. NAS-Bench-ASR: Reproducible neural architecture
search for speech recognition. In Proceedings of the 9th International Conference on Learning
Representations (ICLR’21), Virtual, 2021.

[26] M. Mutný and A. Krause. Efficient high dimensional Bayesian optimization with additivity
and quadrature Fourier features. In Advances in Neural Information Processing Systems 31
(NeurIPS’18), pages 9005–9016, Montreal, Canada, 2018.

[27] A. Nayebi, A. Munteanu, and M. Poloczek. A framework for Bayesian optimization in em-
bedded subspaces. In Proceedings of the 36th International Conference on Machine LearninG
(ICML’19), pages 4752–4761, Long Beach, CA, 2019.

[28] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, NY, second edition
edition, 2006.

[29] C. Qian, H. Xiong, and K. Xue. Bayesian optimization using pseudo-points. In Proceedings of
the 29th International Joint Conference on Artificial Intelligence (IJCAI’20), pages 3044–3050,
Yokohama, Japan, 2020.

[30] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT
Press, Cambridge, MA, 2006.

[31] P. Rolland, J. Scarlett, I. Bogunovic, and V. Cevher. High-dimensional Bayesian optimization via
additive models with overlapping groups. In Proceedings of the 21st International Conference
on Artificial Intelligence and Statistics (AISTATS’18), pages 298–307, Playa Blanca, Spain,
2018.

[32] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas. Taking the human out of
the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2015.

[33] Y. Shen and C. Kingsford. Computationally efficient high-dimensional Bayesian optimization
via variable selection. CoRR abs/2109.09264, 2021.

[34] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalch-
brenner, I. Sutskever, T. P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.
Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):
484–489, 2016.

12

[35] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. baker,
M. Lai, A. Bolton, Y. Chen, T. P. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel,
and D. Hassabis. Mastering the game of Go without human knowledge. Nature, 550(7676):
354–359, 2017.

[36] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. M. A. Patwary, Prabhat,
and R. P. Adams. Scalable Bayesian optimization using deep neural networks. In Proceedings
of the 32nd International Conference on Machine Learning (ICML’15), pages 2171–2180, Lille,
France, 2015.

[37] A. Spagnol, R. L. Riche, and S. D. Veiga. Bayesian optimization in effective dimensions
via kernel-based sensitivity indices. In Proceedings of the 13th International Conference on
Applications of Statistics and Probability in Civil Engineering (ICASP’13), Seoul, Korea, 2019.

[38] N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger. Information-theoretic regret bounds
for Gaussian process optimization in the bandit setting. IEEE Transactions on Information
Theory, 58(5):3250–3265, 2012.

[39] E. Todorov, E. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control.
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033, 2012.

[40] L. Wang, R. Fonseca, and Y. Tian. Learning search space partition for black-box optimization
using Monte Carlo tree search. In Advances in Neural Information Processing Systems 33
(NeurIPS’20), pages 19511–19522, Vancouver, Canada, 2020.

[41] L. Wang, S. Xie, T. Li, R. Fonseca, and Y. Tian. Sample-efficient neural architecture search
by learning actions for Monte Carlo tree search. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2021.

[42] Z. Wang, F. Hutter, M. Zoghi, D. Matheson, and N. de Feitas. Bayesian optimization in a billion
dimensions via random embeddings. Journal of Artificial Intelligence Research, 55(1):361–387,
2016.

[43] Z. Wang, C. Gehring, P. Kohli, and S. Jegelka. Batched large-scale Bayesian optimization in
high-dimensional spaces. In Proceedings of the 21st International Conference on Artificial
Intelligence and Statistics (AISTATS’18), pages 745–754, Playa Blanca, Spain, 2018.

[44] J. T. Wilson, R. Moriconi, F. Hutter, and M. P. Deisenroth. The reparameterization trick for
acquisition functions. CoRR abs/1712.00424, 2017.

[45] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter. NAS-bench-101: Towards
reproducible neural architecture search. In Proceedings of the 36th International Conference on
Machine Learning (ICML’19), pages 7105–7114, Long Beach, CA, 2019.

[46] A. Zela, J. Siems, and F. Hutter. NAS-Bench-1Shot1: Benchmarking and dissecting one-shot
neural architecture search. In Proceedings of the 8th International Conference on Learning
Representations (ICLR’20), Addis Ababa, Ethiopia, 2020.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See the end of Section 5.1 and

the last paragraph of the paper.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 4.

13

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix B.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See Appendix C,
and the code is provided in GitHub.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix C.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We show error bars by the length of vertical bars in the
figures.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

A Example Illustration of MCTS-VS

A

B C

D E

B

D E

Variable score 𝒔 before
optimizing the variables in B

Variable score 𝒔 after
optimizing the variables in B

𝑥1, 𝑥2𝑥4, 𝑥7, 𝑥8

Figure 5: Example illustration of how MCTS-VS bifurcates a leaf node.

Figure 5 gives an example of how MCTS-VS bifurcates a leaf node. Assume that we are to optimize
a problem with dimension D = 9, and the variables are denoted as x1, x2, . . . , x9. The Monte
Carlo tree shown in the middle of Figure 5 now has three nodes, i.e., A, B and C, denoted as
the solid circles. The root A contains all the nine variables. The current variable score vector
s = [8.5, 8, 5, 7, 3, 3, 7, 10.7, 4.5], which is represented by the bar graph as shown in the left of
Figure 5. For each i, the value of si represents the importance of the corresponding variable xi. The
blue and gray bars denote the important and unimportant variables, respectively, which are contained
by the leaf nodes B and C, respectively. That is, the leaf B contains x1, x2, x4, x7, x8, and C contains
the remaining x3, x5, x6, x9. The current v values (i.e., the average scores of the contained variables)
of the three nodes A, B and C are vA = (8.5 + 8 + 5 + 7 + 3 + 3 + 7 + 10.7 + 4.5)/9 = 6.3,
vB = (8.5 + 8+ 7+ 7+ 10.7)/5 = 8.24 and vC = (5 + 3+ 3+ 4.5)/4 = 3.875, respectively. For
the number that they have been visited, we have nA = 1, nB = 0 and nC = 0.

MCTS-VS starts from the root node A at one iteration and recursively selects a node with a larger
UCB value until a leaf node. According to the way of calculating UCB in Eq. (1), the UCB values of
the leaf nodes B and C are both∞ as nB = nC = 0. In this case, MCTS-VS will select B and C
randomly. Assume that B is selected. The variables (i.e., x1, x2, x4, x7 and x8) contained by B will
then be optimized by BO with AB = {1, 2, 4, 7, 8}, as in lines 13–23 in Algorithm 1. After that, the
variable score vector s will be re-calculated, which is assumed to be [9, 8.5, 5, 11, 3, 3, 11, 11.2, 4.5],
as shown in the right of Figure 5. The average score of the five variables in B is denoted as the
orange horizontal line, calculated by (9 + 8.5 + 11 + 11 + 11.2)/5 = 10.14. We can see that the
variables x4, x7 and x8 have score larger than the average value 10.14, which are regarded as more
important variables in B. We use the left child D to represent these variables. The scores of variables
x1 and x2 are smaller than the average, which are regarded as less important variables in B. We
use the right child E to represent them. Thus, the node B has been partitioned into two children D
and E, denoted as the dashed circles in Figure 5. The v values and the number of visits of these
two new leaf nodes are then calculated. The v value of a node is the average score of the contained
variables. Thus, vD is the average score of x4, x7 and x8, i.e., (11 + 11 + 11.2)/3 = 11.067, and
vE is the average score of x1 and x2, i.e., (9 + 8.5)/2 = 8.75. For the number of visits, obviously
nD = nE = 0. Finally, back-propagation is performed to update the v value and the number of
visits of the nodes along the path from the root A to the node B. vA is the average score of all the
variables, i.e., (9 + 8.5 + 5 + 11 + 3 + 3 + 11 + 11.2 + 4.5)/9 = 7.356. vB is the average score of
x1, x2, x4, x7 and x8, i.e., (9 + 8.5 + 11 + 11 + 11.2)/5 = 10.14. Their number of visits will be
increased by 1. That is, nA = 2 and nB = 1. By far, one iteration of MCTS-VS has been finished,
and this process will be performed iteratively.

15

B Details of Theoretical Analysis

B.1 Detailed Proof of Theorem 4.2

The proof is inspired by [38]. To prove the upper bound on the cumulative regret RT in Theorem 4.2,
we analyze the instantaneous regret rt = f(x∗) − f(xt

Mt
), i.e., the gap between the function

values of the optimal point x∗ and the sampled point xt
Mt

at iteration t. Note that RT =
∑T

t=1 rt.
Let µt−1(·) and σ2

t−1(·) denote the posterior mean and variance after running t − 1 iterations,
respectively. Lemma B.1 gives a confidence bound on f(xt

Mt
), leading to a lower bound on f(xt

Mt
),

i.e., f(xt
Mt

) ≥ µt−1(x
t
Mt

) − β
1/2
t σt−1(x

t
Mt

). Note that Mt denotes the sampled variable index
subset at iteration t, and |Mt| = dt.

Lemma B.1. ∀δ ∈ (0, 1),∀t ≥ 1, let βt = 2 log(πt/δ), where
∑

t≥1 π
−1
t = 1, πt > 0. Then,

∀t ≥ 1,

|f(xt
Mt

)− µt−1(x
t
Mt

)| ≤ β
1/2
t σt−1(x

t
Mt

)

holds with probability at least 1− δ, where xt
Mt

is the point obtained at iteration t.

Proof. At iteration t, f(xt
Mt

) ∼ N (µt−1(x
t
Mt

), σ2
t−1(x

t
Mt

)), and thus, Y =
f(xt

Mt
)−µt−1(x

t
Mt

)

σt−1(xt
Mt

)
∼

N (0, 1). We have

P
(
|f(xt

Mt
)− µt−1(x

t
Mt

)| > β
1/2
t σt−1(x

t
Mt

)
)

= P
(
|Y | > β

1/2
t

)
= 2

∫ ∞

β
1/2
t

(2π)(−1/2) exp

(
−y2

2

)
dy

= 2 exp

(
−βt

2

)∫ ∞

β
1/2
t

(2π)(−1/2) exp

(
− (y − β

1/2
t)2

2

)
exp

(
−β1/2

t (y − β
1/2
t)

)
dy

≤ 2 exp

(
−βt

2

)
P (Y > 0) ≤ exp

(
−βt

2

)
=

δ

πt
.

Using the union bound for all t ∈ N, we have

P
(
∀t ≥ 1 : |f(xt

Mt
)− µt−1(x

t
Mt

)| ≤ β
1/2
t σt−1(x

t
Mt

)
)
≥ 1−

∑
t≥1

δ

πt
= 1− δ,

where the equality holds by
∑

t≥1 π
−1
t = 1. Thus, the lemma holds.

Next we are to analyze the upper bound on f(x∗), which can be represented as (f(x∗)− f(x∗
Mt

)) +
f(x∗

Mt
), where x∗

Mt
denotes the point obtained by projecting x∗ onto Mt. The first term f(x∗)−

f(x∗
Mt

) can be upper bounded by Assumption 4.1. To upper bound the second term f(x∗
Mt

), we
need to discretize the decision space XMt

at iteration t into X̃Mt
, where |X̃Mt

| = (τt)
dt , i.e., we

divide each variable of XMt
into τt parts equally. Let x̃∗

Mt
denote the point closest to x∗

Mt
in the

discretized space X̃Mt . Then, we can write f(x∗
Mt

) as (f(x∗
Mt

)− f(x̃∗
Mt

)) + f(x̃∗
Mt

). The first term
f(x∗

Mt
)− f(x̃∗

Mt
) again can be upper bounded by Assumption 4.1. Lemma B.2 gives a confidence

bound on f(x̃Mt
) for any discretized point x̃Mt

∈ X̃Mt
, leading to an upper bound on f(x̃∗

Mt
), i.e.,

f(x̃∗
Mt

) ≤ µt−1(x̃
∗
Mt

) + β
1/2
t σt−1(x̃

∗
Mt

).

Lemma B.2. ∀δ ∈ (0, 1),∀t ≥ 1, let βt = 2 log(|X̃Mt
|πt/δ), where

∑
t≥1 π

−1
t = 1, πt > 0. Then,

∀t ≥ 1,∀x̃Mt
∈ X̃Mt

,

|f(x̃Mt)− µt−1(x̃Mt)| ≤ β
1/2
t σt−1(x̃Mt)

holds with probability at least 1− δ.

16

Proof. Similar to Lemma B.1, we can derive

P
(
|f(x̃Mt)− µt−1(x̃Mt)| > β

1/2
t σt−1(x̃Mt)

)
≤ exp

(
−βt

2

)
=

δ

|X̃Mt |πt

.

Using the union bound for all t ∈ N and x̃Mt ∈ X̃Mt , we have

P
(
∀t ≥ 1,∀x̃Mt

∈ X̃Mt
: |f(x̃Mt

)− µt−1(x̃Mt
)| ≤ β

1/2
t σt−1(x̃Mt

)
)

≥ 1−
∑
t≥1

∑
x̃Mt∈X̃Mt

δ

|X̃Mt
|πt

= 1− δ.

Thus, the lemma holds.

Now, we can upper bound f(x∗
Mt

) based on Assumption 4.1 and Lemma B.2, as shown in Lemma B.3.
Note that x∗

Mt
denotes the point obtained by projecting x∗ onto Mt, and x̃∗

Mt
denotes the point closest

to x∗
Mt

in X̃Mt
.

Lemma B.3. ∀δ ∈ (0, 1), t ≥ 1, let βt = 2 log(2πt/δ) + 2dt log
(
dtt

2br
√

log 2Da
δ

)
, where∑

t≥1 π
−1
t = 1, πt > 0. Set τt = dtt

2br
√

log 2Da
δ and L = b

√
log 2Da

δ . Then, ∀t ≥ 1,

|f(x∗
Mt

)− µt−1(x̃
∗
Mt

)| ≤ β
1/2
t σt−1(x̃

∗
Mt

) +
αmax

t2
+

∑
i∈[D]\Mt

α∗
iLr

holds with probability at least 1− δ.

Proof. First, we have
|f(x∗

Mt
)− µt−1(x̃

∗
Mt

)| = |f(x∗
Mt

)− f(x̃∗
Mt

) + f(x̃∗
Mt

)− µt−1(x̃
∗
Mt

)|
≤ |f(x∗

Mt
)− f(x̃∗

Mt
)|+ |f(x̃∗

Mt
)− µt−1(x̃

∗
Mt

)|. (7)

By Assumption 4.1 with L = b
√
log 2Da

δ , we have ∀x,y ∈ X , with probability at least 1 − D ·
ae−(L/b)2 = 1− δ/2,

|f(x)− f(y)| ≤
D∑
i=1

α∗
iL|xi − yi|

≤
∑
i∈Mt

α∗
iL|xi − yi|+

∑
i∈[D]\Mt

α∗
iLr

≤ αmaxL∥xMt
− yMt

∥1 +
∑

i∈[D]\Mt

α∗
iLr, (8)

where the second inequality holds by X ⊂ [0, r]D, and the last inequality holds by αmax =
maxi∈[D] α

∗
i . Thus, it holds with probability at least 1− δ/2 that

|f(x∗
Mt

)− f(x̃∗
Mt

)| ≤ αmaxL∥x∗
Mt
− x̃∗

Mt
∥1 +

∑
i∈[D]\Mt

α∗
iLr. (9)

By Lemma B.2 with βt = 2 log(2(τt)
dtπt/δ) = 2 log(2|X̃Mt

|πt/δ), we have, with probability at
least 1− δ/2,

|f(x̃∗
Mt

)− µt−1(x̃
∗
Mt

)| ≤ β
1/2
t σt−1(x̃

∗
Mt

). (10)

Applying Eqs. (9) and (10) to Eq. (7), it holds with probability at least 1− δ that

|f(x∗
Mt

)− µt−1(x̃
∗
Mt

)| ≤ αmaxL∥x∗
Mt
− x̃∗

Mt
∥1 +

∑
i∈[D]\Mt

α∗
iLr + β

1/2
t σt−1(x̃

∗
Mt

)

≤ αmaxL
dtr

τt
+

∑
i∈[D]\Mt

α∗
iLr + β

1/2
t σt−1(x̃

∗
Mt

)

≤ αmax

t2
+

∑
i∈[D]\Mt

α∗
iLr + β

1/2
t σt−1(x̃

∗
Mt

),

17

where the second inequality holds by |Mt| = dt and the way of discretization (i.e., each variable is
discretized into τt parts equally), and the last inequality holds by the definition of τt and L. Thus, the
lemma holds.

Lemma B.3 implies an upper bound on f(x∗
Mt

), i.e., f(x∗
Mt

) ≤ µt−1(x̃
∗
Mt

) + β
1/2
t σt−1(x̃

∗
Mt

) +

αmax/t
2 +

∑
i∈[D]\Mt

α∗
iLr. Combining this upper bound on f(x∗

Mt
) with f(x∗)− f(x∗

Mt
) (which

can be upper bounded by Assumption 4.1), we can derive an upper bound on f(x∗). Together
with the lower bound on f(xt

Mt
) given by Lemma B.1, we can derive an upper bound on the

instantaneous regret rt. Thus, we are now ready to prove the upper bound on the cumulative regret
RT in Theorem 4.2, which is re-stated in Theorem B.4 for clearness.

Theorem B.4. ∀δ ∈ (0, 1), let βt = 2 log(4πt/δ) + 2dt log(dtt
2br
√

log(4Da/δ)) and L =

b
√
log(4Da/δ), where {πt}t≥1 satisfies

∑
t≥1 π

−1
t = 1 and πt > 0. Let β∗

T = max1≤i≤T βt.
At iteration T , the cumulative regret

RT ≤
√
C1Tβ∗

T γT + 2αmax + 2

T∑
t=1

∑
i∈[D]\Mt

α∗
iLr

holds with probability at least 1− δ, where C1 > 0 is a constant, γT = max|D|=T I(yD,fD), I(·, ·)
denotes the information gain, and yD and fD are the noisy and true observations of a set D of points,
respectively.

Proof. For all t ≥ 1, we have

rt = f(x∗)− f(xt
Mt

) = f(x∗)− f(x∗
Mt

) + f(x∗
Mt

)− f(xt
Mt

). (11)

By Eq. (8), we have

f(x∗)− f(x∗
Mt

) ≤ αmaxL∥x∗
Mt
− x∗

Mt
∥1 +

∑
i∈[D]\Mt

α∗
iLr =

∑
i∈[D]\Mt

α∗
iLr. (12)

Note that L = b
√
log(4Da/δ) here, and thus Eq. (12) holds with probability at least 1− δ/4. By

Lemma B.3 with βt = 2 log(4πt/δ) + 2dt log(dtt
2br
√

log(4Da/δ)) and L = b
√
log(4Da/δ),

setting τt = dtt
2br
√

log(4Da/δ) leads to that

f(x∗
Mt

) ≤ µt−1(x̃
∗
Mt

) + β
1/2
t σt−1(x̃

∗
Mt

) +
αmax

t2
+

∑
i∈[D]\Mt

α∗
iLr (13)

holds with probability at least 1 − δ/2. By Lemma B.1 with βt = 2 log(4πt/δ) +

2dt log(dtt
2br
√
log(4Da/δ)) ≥ 2 log(4πt/δ), it holds with probability at least 1− δ/4 that

f(xt
Mt

) ≥ µt−1(x
t
Mt

)− β
1/2
t σt−1(x

t
Mt

). (14)

Applying Eqs. (12), (13) and (14) to Eq. (11), it holds with probability at least 1− δ that ∀t ≥ 1,

rt ≤
∑

i∈[D]\Mt

α∗
iLr + µt−1(x̃

∗
Mt

) + β
1/2
t σt−1(x̃

∗
Mt

) +
αmax

t2
+

∑
i∈[D]\Mt

α∗
iLr

− µt−1(x
t
Mt

) + β
1/2
t σt−1(x

t
Mt

)

≤ µt−1(x
t
Mt

) + β
1/2
t σt−1(x

t
Mt

) +
αmax

t2
+ 2

∑
i∈[D]\Mt

α∗
iLr − µt−1(x

t
Mt

) + β
1/2
t σt−1(x

t
Mt

)

= 2β
1/2
t σt−1(x

t
Mt

) +
αmax

t2
+ 2

∑
i∈[D]\Mt

α∗
iLr,

where the second inequality holds because xt
Mt

is generated by maximizing GP-UCB, and thus

µt−1(x̃
∗
Mt

) + β
1/2
t σt−1(x̃

∗
Mt

) ≤ µt−1(x
t
Mt

) + β
1/2
t σt−1(x

t
Mt

).

18

By summing up rt from t = 1 to T , we have with probability at least 1− δ that, ∀T ≥ 1,

RT =

T∑
t=1

rt ≤
T∑

t=1

2β
1/2
t σt−1(x

t
Mt

) +

T∑
t=1

αmax

t2
+

T∑
t=1

2
∑

i∈[D]\Mt

α∗
iLr

≤
T∑

t=1

2β
1/2
t σt−1(x

t
Mt

) + 2αmax + 2

T∑
t=1

∑
i∈[D]\Mt

α∗
iLr, (15)

where the second inequality holds by
∑T

t=1 1/t
2 ≤ π2/6 ≤ 2. Furthermore, let

C1 = 8/ log(1 + η−2), and Lemma 5.4 in [38] has shown that
∑T

t=1 2β
1/2
t σt−1(x

t
Mt

) ≤√
C1Tβ∗

T

∑T
t=1 log(1 + η−2σ2

t−1(x
t
Mt

))/2 ≤
√

C1Tβ∗
T γT . Finally, by applying this inequality to

Eq. (15), the theorem holds.

We also summarize the main idea of the above proof. The proof is inspired by [38], i.e., to derive
the upper bound on the gap rt = f(x∗)− f(xt

Mt
) between the function values of the optimal point

x∗ and the sampled point xt
Mt

at iteration t. Let x∗
Mt

denote the point obtained by projecting x∗

onto Mt, and x̃∗
Mt

denote its closest discretized point. By utilizing the posterior mean µt−1(·) and

variance σ2
t−1(·) of f(xt

Mt
) and f(x̃∗

Mt
), we can have f(xt

Mt
) ≥ µt−1(x

t
Mt

)− β
1/2
t σt−1(x

t
Mt

) and
f(x∗) = (f(x∗) − f(x∗

Mt
)) + (f(x∗

Mt
) − f(x̃∗

Mt
)) + f(x̃∗

Mt
) ≤

∑
i∈[D]\Mt

α∗
iLr + αmax/t

2 +∑
i∈[D]\Mt

α∗
iLr + µt−1(x̃

∗
Mt

) + β
1/2
t σt−1(x̃

∗
Mt

), where the terms
∑

i∈[D]\Mt
α∗
iLr and αmax/t

2

are led by variable selection and discretization, respectively. As xt
Mt

is generated by maximizing

GP-UCB, we have µt−1(x̃
∗
Mt

) + β
1/2
t σt−1(x̃

∗
Mt

) ≤ µt−1(x
t
Mt

) + β
1/2
t σt−1(x

t
Mt

). Thus, rt ≤
2β

1/2
t σt−1(x

t
Mt

) + αmax/t
2 + 2

∑
i∈[D]\Mt

α∗
iLr. Finally, summing up rt from t = 1 to T and

using Lemma 5.4 in [38] can lead to Theorem 4.2.

The main difference from the proof of GP-UCB [38] is that variable selection brings some uncertainty
introduced by the unselected variables. Based on the Lipschitz condition in Assumption 4.1, the
uncertainty by the i-th unselected variable can be upper bounded by α∗

iLr, leading to the additional
regret 2

∑T
t=1

∑
i∈[D]\Mt

α∗
iLr in Eq. (4).

B.2 Details of Computational Complexity Analysis

The computational complexity of one iteration of BO depends on three critical components: fitting a
GP surrogate model, maximizing an acquisition function and evaluating a sampled point. Assume
that the kernel function is squared exponential kernel. At iteration t, the number of selected variables
is dt. When fitting a GP model, we calculate the marginal likelihood [30] and gradient as follows:

logP (yt | Xt,θ) =−
1

2
yT
t (Kt + η2I)−1yt −

1

2
log |Kt + η2I| − t

2
log(2π)

∇θ logP (yt | Xt,θ) =−
1

2
yT
t (Kt + η2I)−1∇θ(Kt + η2I)(Kt + η2I)−1yt

− 1

2
tr
(
(Kt + η2I)−1∇θ(Kt + η2I)

)
where yt = [y1, . . . , yt]T, Xt = [x1, . . . ,xt], θ are the kernel parameters, Kt is the covariance
matrix, | · | and tr(·) denote the determinant and trace of a matrix, respectively. Then, we can use the
gradient-based methods to optimize the likelihood function. Therefore, the computational complexity
of calculating the kernel parameters is O(t3 + t2dt). Note that θ has been ignored, because its
dimension is much smaller than dt and t. When calculating the mean µt(x) and variance σ2

t (x), the
computational complexity is O(t3 + t2dt), due to the calculation of the kernel matrix and its inverse.
Thus, the total computational complexity of fitting the GP model is O(t3 + t2dt). Maximizing an
acquisition function is related to the optimization algorithm. If we use the Quasi-Newton method to
optimize GP-UCB, the computational complexity is O(m(t2 + tdt + d2t)) [28], where m denotes
the Quasi-Newton’s running rounds. We note that in BO setting, t will not grow very large. The
running rounds m, however, will grow with dt. Thus, the complexity of optimizing the acquisition

19

function can be much larger than the square of dt. The cost of evaluating a sampled point is fixed.
Thus, by selecting only a subset of variables, instead of all variables, to optimize, the computational
complexity can decrease significantly.

C Method Implementation and Experimental Setting

We use the authors’ reference implementations for TuRBO1, LA-MCTS2 and SAASBO.3 For HeSBO
and ALEBO, their implementations in Adaptive Experimentation Platform (Ax4) are used. We use
the pycma library for CMA-ES.5 Their hyper-parameters are summarized as follows.

• Vanilla BO. We use the GP model in Scikit-learn6 and the qExpectedImprovement acqui-
sition function [44]. For the optimization of acquisition function, we randomly generate
numerous points and select some ones with the maximal expected improvements, which is
similar to the implementation in TuRBO [10], LA-MCTS [40], and HeSBO [27].

• MCTS-VS. For the “fill-in” strategy, we use the best-k strategy with k = 20. The hyper-
parameter Cp for calculating UCB in Eq. (1) varies on different problems, as shown in
Table 3. We set all the other parameters to be same on different problems, where the batch
size Nv of variable index set is 2, the sample batch size Ns = 3, the threshold Nbad for
re-initializing a tree is 5, and the threshold Nsplit for splitting a node is 3. When using
TuRBO as the optimizer, we limit the maximal number of evaluations in TuRBO to 50.

Table 3: Setting of the hyper-parameter Cp for calculating UCB on different problems.

LEVY HARTMANN NAS-BENCH MUJOCO
Cp 10 0.1 0.1 50

• Dropout. We set the parameter d to the number of valid dimensions for synthetic functions,
and use the same “fill-in” strategy as MCTS-VS.

• TuRBO. We use the default parameter setting in the authors’ reference implementation.

• LA-MCTS-TuRBO. We use the same TuRBO setting as MCTS-VS. The parameter Cp

is recommended between 1% and 10% of the optimum in LA-MCTS [40]. Because all
our selected values of Cp for MCTS-VS have belonged to the recommended range for
LA-MCTS, we use them directly. The RBF kernel is used for SVM classification.

• SAASBO. We use the default parameter setting in the authors’ reference implementation,
but modify the acquisition function optimization to the same as other methods for fair
comparison.

• HeSBO and ALEBO. We set the parameter d to the number of valid dimensions for synthetic
functions. For real-world problems, we do not know the number of valid dimensions, and
thus we just set a reasonable value, i.e., d = 10 for NAS-Bench, d = 10 for Hopper, and
d = 20 for Walker2d.

• CMA-ES. We only adjust the step-size parameter σ for different problems, because the
default setting σ = 0.01 leads to extremely poor performance. We set σ = 0.8 for Hartmann
problems, σ = 10 for Levy problems, σ = 0.1 for NAS-Bench, and σ = 0.01 for MuJoCo
tasks. We set the population size to 20 and maintain all the other parameters to default.

• VAE-BO uses VAE for embedding. That is, VAE-BO uses the encoder to embed the original
high-dimensional space into a low-dimensional subspace, then optimizes via BO in the
subspace and uses the decoder to project the new sampled point back for evaluation. We set
the learning rate to 0.01 and the interval of updating VAE to 30.

1https://github.com/uber-research/TuRBO
2https://github.com/facebookresearch/LaMCTS
3https://github.com/martinjankowiak/saasbo
4https://github.com/facebook/Ax
5https://github.com/CMA-ES/pycma
6https://github.com/scikit-learn/scikit-learn

20

https://github.com/uber-research/TuRBO
https://github.com/facebookresearch/LaMCTS
https://github.com/martinjankowiak/saasbo
https://github.com/facebook/Ax
https://github.com/CMA-ES/pycma
https://github.com/scikit-learn/scikit-learn

The experiments of comparing wall clock time are conducted on Intel(R) Core(TM) i7-10700 CPU
@ 2.90GHz and use single thread.

D Sensitivity Analysis of Hyper-parameters of MCTS-VS

We provide further studies to examine the influence of the hyper-parameters of MCTS-VS, including
the employed optimization algorithm for optimizing the selected variables in each iteration, the “fill-
in” strategy, the hyper-parameter k used in the best-k strategy, the hyper-parameter Cp for calculating
UCB in Eq. (1), the number 2×Nv ×Ns of sampled data in each iteration, the threshold Nbad for
re-initializing a tree, and the threshold Nsplit for splitting a tree node.

The optimization algorithm is employed by MCTS-VS to optimize the selected variables in each
iteration. We compare three different optimization algorithms, i.e., random search (RS), BO and
TuRBO. First, we conduct experiments similar to “Effectiveness of Variable Selection” in Section 5.1,
to show the effectiveness of MCTS-VS even when equipped with RS. Figure 6 shows that MCTS-
VS-RS is better than Dropout-RS and RS, revealing the advantage of MCTS-VS.

0.050 0.025 0.000 0.025 0.050

0.04

0.02

0.00

0.02

0.04

RS Dropout-RS MCTS-VS-RS

0 100 200 300 400 500
Number of evaluations

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_300

0 100 200 300 400 500
Number of evaluations

0.5

1.0

1.5

2.0

2.5

3.0
Va

lu
e

Hartmann6_500

Figure 6: Effectiveness of MCTS-VS when equipped with RS.

Next we compare the performance of MCTS-VS equipped with RS, BO and TuRBO, by experiments
on the Hartmann functions with increasing ratio of valid variables. Hartmann6_500 has 6 valid
variables. Hartmann6_5_500 is generated by mixing 5 Hartmann6 functions as Hartmann6(x1:6)+
Hartmann6(x7:12)+ · · ·+ Hartmann6(x25:30), and appending 470 unrelated dimensions, where xi:j

denotes the i-th to j-th variables. Hartmann6_10_500 is generated alike. Thus, Hartmann6_5_500
and Hartmann6_10_500 have 30 and 60 valid variables, respectively. The results in Figure 7 show
that as the ratio of valid variables increases, MCTS-VS-TuRBO gradually surpasses MCTS-VS-RS
and MCTS-VS-BO, while MCTS-VS-RS becomes worse and worse. This is expected. If the ratio of
valid variables is high, MCTS-VS is more likely to select the valid variables, so it is worth to use the
expensive optimization algorithm, e.g., TuRBO, to optimize the selected variables. If the ratio is low,
unrelated variables are more likely to be selected most of the time, so using a cheap optimization
algorithm would be better. These observations also give us some guidance on selecting optimization
algorithms in practice.

“Fill-in” strategy is a basic component of variable selection methods, which influences the quality
of the value of unselected variables. We compare the employed best-k strategy (k = 20) with the
average best-k strategy and the random strategy. The average best-k strategy uses the average of
the best k data points for the unselected variables, and the random strategy samples the value of an
unselected variable from its domain randomly. As shown in Figure 8(a), the random strategy leads
to the poor performance of MCTS-VS-BO, which may be because it does not utilize the historical
information and leads to over-exploration. The best-k strategy utilizes the historical points that have
high objective values to fill in the unselected variables, thus behaving much better. The performance
of the average strategy is between the best-k and random strategies. We recommend using the best-k
strategy in practice.

The hyper-parameter k used in the best-k strategy controls the degree of exploitation for the
unselected variables. As shown in Figure 8(b), a smaller k encourages exploitation, which results
in better performance in the early stage, but easily leads to premature convergence. A larger k

21

0.050 0.025 0.000 0.025 0.050

0.04

0.02

0.00

0.02

0.04

MCTS-VS-RS MCTS-VS-BO MCTS-VS-TuRBO

0 100 200 300 400 500
Number of evaluations

0.5

1.0

1.5

2.0

2.5

3.0
Va

lu
e

Hartmann6_500

0 100 200 300 400 500
Number of evaluations

2

4

6

8

10

12

14

Va
lu

e

Hartmann6_5_500

0 100 200 300 400 500
Number of evaluations

5

10

15

20

Va
lu

e

Hartmann6_10_500

Figure 7: Sensitivity analysis of the optimization algorithm.

encourages exploration and behaves worse in the early stage, but may converge to a better value. We
recommend using a larger k if allowing enough evaluations.

0 100 200 300 400 500
Number of evaluations

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_300

best-k
average best-k
random

(a) “Fill-in” strategy

0 100 200 300 400 500
Number of evaluations

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_300

k=1
k=5
k=10
k=15
k=20

(b) Hyper-parameter k of the best-k strategy

Figure 8: Sensitivity analysis of the “fill-in” strategy and the hyper-parameter k of the best-k strategy,
using MCTS-VS-BO on Hartmann6_300.

The hyper-parameter Cp for calculating UCB in Eq. (1) balances the exploration and exploitation
of MCTS. As shown in Figure 9, a too small Cp leads to relatively worse performance, highlighting
the importance of exploration. A too large Cp may also lead to over-exploration. But overall MCTS-
VS is not very sensitive to Cp. We recommend setting Cp between 1% and 10% of the optimum (i.e.,
max f(x)), which is consistent with that for LA-MCTS [40].

0 100 200 300 400 500
Number of evaluations

40

30

20

10

0

Va
lu

e

Levy10_100

Cp=0.01
Cp=0.1
Cp=1
Cp=10
Cp=100

0 100 200 300 400 500
Number of evaluations

40

30

20

10

0

Va
lu

e

Levy10_300

Cp=0.01
Cp=0.1
Cp=1
Cp=10
Cp=100

0 100 200 300 400 500
Number of evaluations

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_300

Cp=0.01
Cp=0.1
Cp=1
Cp=10
Cp=100

0 100 200 300 400 500
Number of evaluations

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_500

Cp=0.01
Cp=0.1
Cp=1
Cp=10
Cp=100

Figure 9: Sensitivity analysis of the hyper-parameter Cp for calculating UCB in Eq. (1), using
MCTS-VS-BO on Levy and Hartmann.

The number 2 × Nv × Ns of sampled data in each iteration depends on the batch size Nv of
variable index subset and the sample batch size Ns, and will influence the accuracy of estimating
the variable score vector in Eq. (2). If we increase Nv and Ns, we can calculate the variable score
more accurately, but also need more evaluations. Figure 10(a) shows that given the same number of
evaluations, MCTS-VS-BO achieves the best performance when Nv = 2 and Ns = 3. Thus, this
setting may be a good choice to balance the accuracy of variable score and the number of evaluations,
which is also used throughout the experiments.

The threshold Nbad for re-initializing a tree controls the tolerance of selecting bad tree nodes (i.e.,
nodes containing unimportant variables). A smaller Nbad leads to frequent re-initialization, which

22

can adjust quickly but may cause under-exploitation of the tree. A larger Nbad can make full use of
the tree, but may optimize too much on unimportant variables. Figure 10(b) shows that MCTS-VS
achieves the best performance when Nbad = 5. Thus, we recommend to use this setting, to balance
the re-initialization and exploitation of the tree.

The threshold Nsplit for splitting a node. If the number of variables in a node is larger than
Nsplit, the node can be further partitioned. That is, the parameter Nsplit controls the least number of
variables in a leaf node and thus affects the number of selected variables, which has a direct influence
on the wall clock time. Note that MCTS-VS selects a leaf node and optimizes the variables contained
by this node in each iteration. The smaller Nsplit, the shorter the time. Figure 10(c) shows that Nsplit

has little influence on the performance of MCTS-VS-BO, and thus we recommend to set Nsplit = 3
to reduce the wall clock time.

0 100 200 300 400 500
Number of evaluations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_300

Nv=2,Ns=3
Nv=2,Ns=5
Nv=2,Ns=10
Nv=5,Ns=3
Nv=5,Ns=5
Nv=5,Ns=10

(a) Number of samples

0 100 200 300 400 500
Number of evaluations

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_300

Nbad=1
Nbad=5
Nbad=10
Nbad=15
Nbad=20

(b) Nbad

0 100 200 300 400 500
Number of evaluations

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_300

Nsplit=3
Nsplit=6
Nsplit=10
Nsplit=20
Nsplit=50

(c) Nsplit

Figure 10: Sensitivity analysis of the number 2 ×Nv ×Ns of sampled data in each iteration, the
threshold Nbad for re-initializing a tree and the threshold Nsplit for splitting a node, using MCTS-
VS-BO on Hartmann6_300.

Influence of the hyper-parameters on the runtime of MCTS-VS. We also provide some intuitive
explanation about the influence of the hyper-parameters on the runtime. The threshold Nsplit for
splitting a node has a direct impact on the runtime, because it controls the least number of variables
to be optimized in a leaf node. That is, the runtime will increase with Nsplit. Other parameters
may affect the depth of the tree and thus the runtime. For the threshold Nbad for re-initializing a
tree, if it is set to a small value, MCTS-VS will re-build the tree frequently and the depth of the
tree is small. The shallow nodes have more variables, leading to more runtime to optimize. For the
hyper-parameter Cp for calculating UCB, if it is set to a large value, the exploration is preferred and
MCTS-VS will tend to select the right node (regarded as containing unimportant variables). The tree
thus will be re-built frequently, leading to more runtime. For the number 2×Nv ×Ns of sampled
data at each iteration, if Nv and Ns are set to large values, the depth of the tree will be small given
the total number of evaluations, and thus lead to more runtime.

E Additional Experiments

Detailed results on NAS-Bench-101 and NAS-Bench-201. Figure 11 shows the performance of
the compared methods on the task of NAS-Bench-101 and NAS-Bench-201 when using the number
of evaluations and wall clock time as the x-axis, respectively. Though most of their performance
is similar in the left two subfigures, it can be clearly observed from the right two subfigures that
MCTS-VS-BO uses the least time to achieve the best accuracy. Note that we only show the subfigures
with the wall clock time as the x-axis in the main paper due to the space limitation. Besides, we also
run a longer time here (i.e., in the right two subfigures) to provide a more complete observation.

Experiments on more NAS-Bench problems. We also conduct experiments on NAS-Bench-
1Shot1 [46], TransNAS-Bench-101 [8] and NAS-Bench-ASR [25]. NAS-Bench-1Shot1 is a weight-
sharing benchmark based on one-shot NAS methods, deriving from the large architecture space of
NASBench-101. TransNAS-Bench-101 is a benchmark dataset containing network performance
across seven vision tasks, e.g., object classification, scene classification and so on. We use the
scene classification task with cell-level search space in our experiments. NAS-Bench-ASR is a
benchmark for Automatic Speech Recognition (ASR) and trained on the TIMIT audio dataset. For
NAS-Bench-ASR, we use Phoneme Error Rate (PER) on the validation dataset as the metric. In
the same way as [20], we create problems with D = 33, D = 24 and D = 30 for NAS-Bench-

23

0.050 0.025 0.000 0.025 0.050

0.04

0.02

0.00

0.02

0.04

MCTS-VS-BO MCTS-VS-TuRBO TuRBO LA-MCTS-TuRBO

0.050 0.025 0.000 0.025 0.050

0.04

0.02

0.00

0.02

0.04

SAASBO HeSBO ALEBO CMA-ES VAE-BO

0 50 100 150
Number of evaluations

0.90

0.91

0.92

0.93

0.94
Ac

cu
ra

cy
NAS-Bench-101

0 50 100 150
Number of evaluations

0.68

0.69

0.70

0.71

0.72

0.73

Ac
cu

ra
cy

NAS-Bench-201

0 1000 2000
Time (sec)

0.920

0.925

0.930

0.935

0.940

0.945

Ac
cu

ra
cy

NAS-Bench-101

0 1000 2000
Time (sec)

0.69

0.70

0.71

0.72

0.73

Ac
cu

ra
cy

NAS-Bench-201

Figure 11: Performance comparison on NAS-Bench-101 and NAS-Bench-201, using the number of
evaluations and wall clock time as the x-axis, respectively.

1Shot1, TransNAS-Bench-101 and NAS-Bench-ASR, respectively. The results in Figure 12 show
that MCTS-VS-BO still uses the least time to achieve the best performance.

0.050 0.025 0.000 0.025 0.050

0.04

0.02

0.00

0.02

0.04

MCTS-VS-BO MCTS-VS-TuRBO TuRBO LA-MCTS-TuRBO

0.050 0.025 0.000 0.025 0.050

0.04

0.02

0.00

0.02

0.04

SAASBO HeSBO ALEBO CMA-ES VAE-BO

0 100 200
Time (sec)

0.920

0.925

0.930

0.935

0.940

Ac
cu

ra
cy

NAS-Bench-1Shot1

0 100 200
Time (sec)

0.525

0.530

0.535

0.540

0.545

0.550

Ac
cu

ra
cy

TransNAS-Bench-101

0 100 200 300 400
Time (sec)

0.70

0.75

0.80

0.85

0.90

0.95

PE
R

NAS-Bench-ASR

Figure 12: Performance comparison on more NAS-Bench problems.

Experiments on extremely low and high dimensional problems. We also evaluate the compared
methods for extremely low and high dimensional problems by testing on Hartmann6_100 and
Hartmann6_1000. We only run MCTS-VS, TuRBO, LA-MCTS-TuRBO and HeSBO here, because
they behave well in the previous experiments. As expected, the right subfigure of Figure 13 shows
that MCTS-VS-BO has a clear advantage over the rest methods on the extremely high dimensional
function Hartmann6_1000. The left subfigure shows that on Hartmann6_100, TuRBO behaves the
best and MCTS-VS is the runner-up, implying that MCTS-VS can also tackle low dimensional
problems to some degree.

Experiments on synthetic functions depending on a subset of variables to various extent.
In the experiments, the synthetic functions are generated by adding unrelated variables directly.
For example, Hartmann6_500 has the dimension D = 500, and is generated by appending 494
unrelated dimensions to Hartmann with 6 variables. Here, we test the performance of MCTS-VS on
a synthetic function whose dependence on a subset of variables is more various. For this purpose,
we generate Hartmann6_5_500_v by mixing five Hartmann6 functions as 0.50Hartmann6(x1:6) +
0.51×Hartmann6(x7:12) + · · ·+ 0.54Hartmann6(x25:30), and appending 470 unrelated dimensions,
where xi:j denotes the i-th to j-th variables, and different coefficients represent various degrees of
dependence. The results in Figure 14 show that MCTS-VS-BO performs the best.

Experiments with increasing ratio of valid variables. We also examine the performance of MCTS-
VS when the ratio of valid variables increases. We use the synthetic function Hartmann6_500,
and generate the variants with more valid variables by mixing multiple Hartmann6 functions
as in Appendix D. For example, Hartmann6_5_500 is generated by mixing five Hartmann6
functions as Hartmann6(x1:6)+ Hartmann6(x7:12) + · · ·+ Hartmann6(x25:30), and appending
470 unrelated dimensions. We have compared MCTS-VS-TuRBO with LA-MCTS-TuRBO and
TuRBO on Hartmann6_500, Hartmann6_5_500, Hartmann6_10_500, . . . , Hartmann6_30_500, and
Hartmann6_83_500, which has the largest number (i.e., 6 × 83 = 498) of valid variables. The
results are shown in Figure 15. It can be observed that LA-MCTS-TuRBO performs the worst. As
expected, when the percentage of valid variables is low (e.g., in Hartmann6_500, Hartmann6_5_500
and Hartmann6_10_500), MCTS-VS-TuRBO can be better than TuRBO; but as the percentage of

24

0.050 0.025 0.000 0.025 0.050

0.04

0.02

0.00

0.02

0.04

MCTS-VS-BO MCTS-VS-TuRBO TuRBO LA-MCTS-TuRBO HeSBO

0 100 200 300 400 500
Number of evaluations

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_100

0 100 200 300 400 500
Number of evaluations

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_1000

Figure 13: Performance comparison on extremely low and high
dimensional problems.

0 100 200 300 400 500
Number of evaluations

0

1

2

3

4

5

Va
lu

e

Hartmann6_5_500_v

Figure 14: Performance compar-
ison on synthetic functions de-
pending on a subset of variables
to various extent.

valid variables increases, TuRBO becomes better, because a leaf node of MCTS can contain only a
small fraction of valid variables.

0.050 0.025 0.000 0.025 0.050

0.04

0.02

0.00

0.02

0.04

MCTS-VS-TuRBO LA-MCTS-TuRBO TuRBO

0 100 200 300 400 500
Number of evaluations

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_500

0 100 200 300 400 500
Number of evaluations

2

4

6

8

10

12

14

Va
lu

e

Hartmann6_5_500

0 100 200 300 400 500
Number of evaluations

5

10

15

20

25

Va
lu

e

Hartmann6_10_500

0 100 200 300 400 500
Number of evaluations

5

10

15

20

25

30

Va
lu

e

Hartmann6_15_500

0 100 200 300 400 500
Number of evaluations

5

10

15

20

25

30

35

Va
lu

e

Hartmann6_20_500

0 100 200 300 400 500
Number of evaluations

5

10

15

20

25

30

35

Va
lu

e

Hartmann6_25_500

0 100 200 300 400 500
Number of evaluations

10
15
20
25
30
35
40

Va
lu

e

Hartmann6_30_500

0 100 200 300 400 500
Number of evaluations

20

30

40

50

60

70

80

Va
lu

e

Hartmann6_83_500

Figure 15: Performance comparison with increasing ratio of valid variables.

Hierarchical variable selection for extremely high-dimensional problems. We attempt to combine
MCTS-VS and SAASBO (i.e., MCTS-VS-SAASBO) to handle extremely high-dimensional problems.
MCTS-VS-SAASBO can be viewed as a hierarchical variable selection method, i.e., MCTS-VS
first performs an efficient but rough variable selection to select some variables, and then SAASBO
performs a time-consuming but precise variable selection under the relative low-dimensional space, to
further select the important variables. We run MCTS-VS-SAASBO and SAASBO on Hartmann6_500.
The results are shown in Figure 16. The performance of MCTS-VS-SAASBO and SAASBO is similar.
But when considering the runtime, the time of 200 iterations of MCTS-VS-SAASBO is about 6000s,
while the time of SAASBO is about 45000s. That is, MCTS-VS-SAASBO can achieve more than 7
times acceleration. The curves of using the wall clock time as the x-axis in the right sub-figure of
Figure 16 clearly show the advantage of MCTS-VS-SAASBO over SAASBO. MCTS-VS-SAASBO
selects the variables containing important ones by MCTS and then uses SAASBO to optimize the
selected variables, which reduces the dimension and thus costs much less time than using SAASBO
directly. The combination of MCTS-VS and SAASBO may be a potential solution for BO to handle
extremely high-dimensional optimization problems, where it is difficult to select important variables
directly.

Comparison with LASSO-VS. There are other variable selection methods (e.g., LASSO), which
are not designed for high dimensional BO but can be used directly. We have implemented the
LASSO-based variable selection method, named LASSO-VS. We compare MCTS-VS, LASSO-VS
and Dropout on the synthetic function Hartmann6_300. When using LASSO-VS, the d variables
with the largest absolute values of the regression coefficients are selected at each iteration. The
results are shown in Figure 17. When equipped with either BO or TuRBO, the proposed MCTS-VS
always performs the best. We can also observe that when equipped with BO, LASSO-VS can even

25

0.050 0.025 0.000 0.025 0.050

0.04

0.02

0.00

0.02

0.04

MCTS-VS-SAASBO SAASBO

0 50 100 150
Number of evaluations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_500

0 10000 20000 30000 40000
Time (sec)

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

Va
lu

e

Hartmann6_500

Figure 16: Performance comparison among MCTS-VS-SAASBO and SAASBO on the synthetic
function Hartmann6_500.

be worse than Dropout. This may be because many of existing variable selection methods (e.g.,
LASSO) usually require a large number of samples to fit the linear regression model well, while in
BO scenarios, only a limited number of samples can be evaluated.

0.050 0.025 0.000 0.025 0.050

0.04

0.02

0.00

0.02

0.04

Vanilla BO
Dropout-BO

MCTS-VS-BO
LASSO-VS-BO

TuRBO
Dropout-TuRBO

MCTS-VS-TuRBO
LASSO-VS-TuRBO

0 100 200 300 400 500
Number of evaluations

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_300

0 100 200 300 400 500
Number of evaluations

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_300

Figure 17: Performance comparison among MCTS-VS, LASSO-VS and Dropout on the synthetic
function Hartmann6_300.

Statistical tests. As most of the previous works, we have conducted experiments using 5 random
seeds (2021–2025). Here, we also conduct statistical tests on Hartmann and Levy functions by
running the methods for 50 times (random seeds 2021–2070), to make a more confident comparison.
Considering the performance and runtime of the methods we have observed in Figure 2, we only
compare MCTS-VS with LA-MCTS-TuRBO and TuRBO, which achieve good performance in
acceptable time. The results are shown in Table 4. MCTS-VS-BO achieves the best average objective
value on all the synthetic functions except Levy10_100 where the dimension is relatively low and
TuRBO performs the best. By the Wilcoxon signed-rank test with confidence level 0.05, MCTS-VS-
TuRBO is significantly better than LA-MCTS-TuRBO on all the synthetic functions, showing the
advantage of MCTS-VS over LA-MCTS for variable selection. Compared with TuRBO, MCTS-VS-
TuRBO is only significantly better on Hartmann functions, which may be because the ratio of valid
variables of Hartmann6_300 and Hartmann6_500 is lower than that of Levy10_100 and Levy10_300,
and thus the advantage of performing variable selection by MCTS-VS is more clear. Note that the
observations about the performance rank of the compared methods are consistent with that observed
in Figure 2, which plot the results of the compared methods by running five times.

F Enlargement of Some Figures in the Main Paper

Due to space limitation, Figures 1 and 2 in the main paper are a little small. Here, we also provide
their enlarged versions, i.e., Figures 18 and 19.

26

Table 4: Objective values obtained by MCTS-VS-BO, MCTS-VS-TuRBO, LA-MCTS-TuRBO
and TuRBO on synthetic functions. Each result consists of the mean and standard deviation of 50
runs. The best mean value on each problem is bolded. The symbols ‘+’, ‘−’ and ‘≈’ indicate that
MCTS-VS-TuRBO is significantly superior to, inferior to, and almost equivalent to the corresponding
method, respectively, according to the Wilcoxon signed-rank test with confidence level 0.05.

Problem MCTS-VS-BO MCTS-VS-TuRBO LA-MCTS-TuRBO TuRBO

Levy10_100 -2.620(1.757) + -1.102(1.711) -2.444(1.708) + -0.662(1.049) −
Levy10_300 -1.506(0.854) ≈ -1.765(1.811) -6.218(3.389) + -1.855(2.038) ≈

Hartmann6_300 3.223(0.074) ≈ 3.153(0.264) 2.892(1.147) + 2.857(0.475) +
Hartmann6_500 3.200(0.091) − 3.012(0.434) 2.619(0.672) + 2.629(0.672) +

+/−/≈ 1/1/2 / 4/0/0 2/1/1

0.050 0.025 0.000 0.025 0.050

0.04

0.02

0.00

0.02

0.04

Vanilla BO Dropout-BO MCTS-VS-BO

0 100 200 300 400 500
Number of evaluations

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_300

0 100 200 300 400 500
Number of evaluations

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_500

0.050 0.025 0.000 0.025 0.050

0.04

0.02

0.00

0.02

0.04

TuRBO Dropout-TuRBO MCTS-VS-TuRBO

0 100 200 300 400 500
Number of evaluations

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_300

0 100 200 300 400 500
Number of evaluations

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_500

Figure 18: Performance comparison among the two variable selection methods (i.e., MCTS-VS and
Dropout) and the BO methods (i.e., Vanilla BO and TuRBO) on two synthetic functions.

27

0.050 0.025 0.000 0.025 0.050

0.04

0.02

0.00

0.02

0.04

MCTS-VS-BO MCTS-VS-TuRBO TuRBO LA-MCTS-TuRBO

0.050 0.025 0.000 0.025 0.050

0.04

0.02

0.00

0.02

0.04

SAASBO HeSBO ALEBO CMA-ES VAE-BO

0 100 200 300 400 500
Number of evaluations

50

40

30

20

10

0

Va
lu

e

Levy10_100

0 100 200 300 400 500
Number of evaluations

40

30

20

10

0
Va

lu
e

Levy10_300

0 100 200 300 400 500
Number of evaluations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_300

0 100 200 300 400 500
Number of evaluations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Hartmann6_500

Figure 19: Comparison among MCTS-VS and state-of-the-art methods on synthetic functions.

28

	Introduction
	Background
	Bayesian Optimization
	High-dimensional Bayesian Optimization
	Monte Carlo Tree Search

	MCTS-VS Method
	Details of MCTS-VS

	Theoretical Analysis
	Experiment
	Synthetic Functions
	Real-World Problems

	Conclusion
	Example Illustration of MCTS-VS
	Details of Theoretical Analysis
	Detailed Proof of Theorem 4.2
	Details of Computational Complexity Analysis

	Method Implementation and Experimental Setting
	Sensitivity Analysis of Hyper-parameters of MCTS-VS
	Additional Experiments
	Enlargement of Some Figures in the Main Paper

