
Under review as a conference paper at ICLR 2022

A SUPPLEMENTARY MATERIAL

A.1 PROOF OF THEOREM 3.1

Proof. We give the proof in two steps.

Step 1: For a fixed W , Solve optimal Z⇤ as a function of W : When fixing W as constant, the
problem becomes quadratic and convex. There is a unique solution, given by first-order optimal
condition. Let ` denote the objective function as given in (5). Its gradient can be calculated as

@`

@Z
= 2(I + ↵L̃)Z � 2XW . (14)

Setting (14) to 0 leads to the solution Z⇤ = (I + ↵L̃)�1XW .

Step 2: Replace Z with Z⇤, Solve optimal W ⇤: Substituting Z in objective ` with Z⇤ = (I +
↵L̃)�1XW , we reduce the optimization to

min
W,WTW=I

kX� (I+↵L̃)�1XWWT k2F + ↵Tr
⇥
WTXT (I+↵L̃)�1L̃(I+↵L̃)�1XW

⇤
. (15)

For this part only, let M = (I + ↵L̃)�1 to simplify notation. We can show that (15) is equivalent to

min
W,WTW=I

Tr(XXT +MXWWTWWTXTM)

� 2Tr(MXWWTXT) + ↵Tr(WTXTML̃MXW) (16)

Using the cyclic property of (Tr)ace (and plugging (I + ↵L̃)�1 for M back), we can write it as (see
Supp. A.2 for detailed derivation.)

max
W,WTW=I

Tr
⇥
WTXT (I + ↵L̃)�1XW

⇤
. (17)

Based on the spectral theorem of PSD matrices, the optimal solution W ⇤ of problem (17) is the
combination of eigenvectors, associated with the largest c eigenvalues of the graph-revised covariance
matrix XT (I + ↵L̃)�1X .

A.2 DERIVATION FROM EQ. (16) TO EQ. (17)

For this part only, let A = (I + ↵L̃)�1 to simplify the notation. We can show that (15) is equivalent
to

min
W,WTW=I

Tr(XXT)� 2Tr(AXWWTXT)

+ Tr(AXWWTWWTXTA) + ↵Tr(WTXTAL̃AXW)

⌘ max
W,WTW=I

2Tr(AXWWTXT)� Tr(AXWWTXTA)

� ↵Tr(WTXTAL̃AXW) (18)

Using the cyclic property of (Tr)ace, we can write

max
W,WTW=I

2Tr(WTXTAXW)� Tr(WTXTAAXW)

� ↵Tr(WTXTAL̃AXW)

max
W,WTW=I

Tr
⇥
WTXT (2A�AA�A(↵L̃)A)XW

⇤

max
W,WTW=I

Tr
⇥
WTXT

�
A+ {I �A(I + ↵L̃)}A

�
XW

⇤

max
W,WTW=I

Tr
⇥
WTXT (I + ↵L̃)�1XW

⇤
(19)

where the objective simplifies upon replacing A with (I + ↵L̃)�1.

13

Under review as a conference paper at ICLR 2022

A.3 DERIVATION OF EQUIVALENCE IN EQ. (9)

max
z

⇥
corr(Y, z)

⇤T ⇥corr(Y, z)
⇤
var(z)

⌘ max
z

var(Y)
⇥
corr(Y, z)

⇤T ⇥corr(Y, z)
⇤
var(z) (20)

⌘ max
z

⇥
cov(Y, z)

⇤T ⇥cov(Y, z)
⇤

(21)

where cov(Y, z) =
p

var(Y)corr(Y, z)
p

var(z)

⌘ max
z

⇥
Y T z

⇤T ⇥
Y T z

⇤
(22)

⌘ max
z

zTY Y T z (23)

Note that in (20) we added the term var(Y) without affecting the optimization problem as it is with
respect to z.

A.4 DATASET STATISTICS

Table 4: Statistics of used datasets.

DATASET #NODES #EDGES #FEATURES #CLASSES TRAIN/VAL./TEST

CORA 2,708 5,429 1,433 7 5.2%/18.5%/36.9%
CITESEER 3,327 4,732 3,703 6 3.6%/15%/30%
PUBMED 19,717 44,338 500 3 0.3%/2.5%/5%
ARXIV 169,343 1,166,243 128 40 54%/18%/28%
PRODUCTS 2,449,029 61,859,140 100 47 8%/2%/90%

Datasets used in the experiments are presented in Table 4. Cora, CiteSeer, and PubMed can be
downloaded in Pytorch Geometric Library Fey & Lenssen (2019). Arxiv and Products can be
accessed in https://ogb.stanford.edu/.

A.5 HYPERPARAMETER CONFIGURATIONS

We setup hyperparameters pool for each dataset, presented in Table 5. All methods use the same pool.
The only exception is GPCA, as GPCA is just a 1-layer shallow model which can be trained with
lager learning rate; we use 0.1 learning rate for it on all datasets.

Table 5: Hyperparameters pool for each dataset, includes learning rate (LR), weight decay (WD),
number of layers (#Layers), hidden size, dropout, ↵, and �. For ARXIV and PRODUCTS, weight
decay is set as 0 because the dataset is large and no overfit happened. Same reason for choosing
smaller dropout rate for them.

DATASET LR WD #LAYERS HIDDEN

CORA 0.001 [0.0005, 0.005, 0.05] [2, 3, 5, 10, 15] [128, 256]
CITESEER 0.001 [0.0005, 0.005, 0.05] [2, 3, 5, 10, 15] [128, 256]
PUBMED 0.001 [0.0005, 0.005, 0.05] [2, 3, 5, 10, 15] [128, 256]
ARXIV 0.005 0 [2, 3, 5, 10, 15] [128, 256]
PRODUCTS 0.001 0 [2, 3, 5, 10, 15] [128, 256]

DATASET DROPOUT ↵ �

CORA [0, 0.5] [1, 5, 10, 20, 50] [0, 0.1, 0.2]
CITESEER [0, 0.5] [1, 5, 10, 20, 50] [0, 0.1, 0.2]
PUBMED [0, 0.5] [1, 5, 10, 20, 50] [0, 0.1, 0.2]
ARXIV [0, 0.2] [1, 5, 10, 20, 50] 0
PRODUCTS [0, 0.1] [1, 5, 10, 20, 50] 0

14

https://ogb.stanford.edu/

Under review as a conference paper at ICLR 2022

Models are trained on every configuration across HP pools and picked based on validation perfor-
mance. We use the Adam optimizer for all models. Learning rate is first manually tuned for each
dataset to achieve stable training, and the same learning rate is fixed for all models—we empirically
observed that learning rate is sensitive to datasets but insensitive to models. For GPCA and GP-
CANET, number of power iterations in Eq. (??) is always set to 5. All experiments use the maximum
training epoch as 1000 and repeat 5 times. Detailed configuration of HPs can be found in Supp.
A.5. We mainly use a single GTX-1080ti GPU for small datasets CORA, CITESEER, and PUBMED.
RTX-3090 GPU is used for ARXIV and PRODUCTS.

Mini-batch training. As nodes are not independent, GNN is mostly trained in full-batch under
semi-supervised setting. We use full-batch training for all datasets except PRODUCTS, which is too
large to fit into GPU memory during training. ClusterGCN Chiang et al. (2019), a subgraph based
mini-batch training algorithm, is used to train GCN and GPCANET. For evaluation, we still use
full-batch since a single forward pass can be conducted without memory issues. Initialization is also
employed in full-batch.

Fair evaluation. Instead of picking the hyperparameter configurations manually, reported (test)
performance is based on the best configuration selected using validation performance, where all
models leverage the same hyperparameter pools. Further, each configuration from the pool is
conducted 5 times to reduce randomness.

A.6 GPCA WITH VARYING ↵

Table 6: Performance of unsupervised GPCA (� = 0) for varying ↵ w.r.t. mean test accuracy and
standard deviation (in parentheses). GPCA (best ↵) selects ↵ 2 {1, 5, 10, 20, 50} based on validation,
whereas GPCA with specific ↵ uses the specified fixed ↵.

CORA CITESEER PUBMED ARXIV PRODUCTS

GPCA (BEST ↵) 81.10 71.80 78.78 71.86 79.23
(0.00) (0.75) (0.36) (0.18) (0.14)

GPCA-↵=1
72.57 70.90 76.92 65.47 73.65
(0.79) (0.58) (0.30) (0.26) (0.07)

GPCA-↵=5
80.95 71.80 79.40 70.69 78.66
(0.17) (0.75) (0.29) (0.11) (0.09)

GPCA-↵=10
82.23 71.65 78.78 71.37 79.24

(0.58) (0.53) (0.36) (0.09) (0.09)

GPCA-↵=20
82.05 72.15 78.15 71.86 79.23
(0.54) (0.47) (0.50) (0.18) (0.14)

GPCA-↵=50
81.10 71.50 78.00 71.48 78.92
(0.00) (0.32) (0.19) (0.15 (0.10)

A.7 CONFIGURATIONS FOR EXPERIMENTS OF 1⇠3-LAYER GPCANET

The goal is train a shallow GPCANET with tunable ↵ (�=0 is used), we setup different ↵ pool for
different number of layers, because the effect of increasing ↵ is the same to increasing number of
layers (shown in Figure 1). We report the pool for ↵ for each layer in Table 7. For other parameters
we use the same setting mentioned in Table 5.

Table 7: Pool of ↵ for 1⇠3-layer GPCANET, same across all datasets.

LAYERS POOL OF ↵

1-LAYER [10, 20, 30]
2-LAYER [3, 5, 10]
3-LAYER [1, 2, 3, 5]

15

Under review as a conference paper at ICLR 2022

A.8 GPCANET-INIT’S ROBUSTNESS FOR ADDITIONAL DATASETS

Histogram of test set accuracy over 100 runs for GCN initialized by Xavier-initialization and
GPCANET-initialization in CORA (Figure 3), CITESEER (Figure 4), and PUBMED (Figure 5).
We have ignored PRODUCTS as it takes too long to run 100 times, but the result should be similar.

Figure 3: Comparison between Xavier-init and GPCANET-init in terms of test accuracy robustness
over 100 seeds on CORA.

Figure 4: Comparison between Xavier-init and GPCANET-init in terms of test accuracy robustness
over 100 seeds on CITESEER.

Figure 5: Comparison between Xavier-init and GPCANET-init in terms of test accuracy robustness
over 100 seeds on PUBMED.

16

	Introduction
	Related Work
	Graph Convolution and GPCA
	Graph Convolution
	Graph-regularized PCA (GPCA)
	Connection between GCN and GPCA
	Connection between PPNP and GPCA
	Supervised GPCA
	Approximation and Complexity Analysis

	GPCAnet: A Stacking GPCA Model
	GPCAnet
	GPCAnet-initialization for GCN

	Experiments
	Experimental Setup
	Q1: Performance of (Unsupervised) GPCA and GPCAnet
	Q2: Unsupervised vs. Semi-supervised GPCA
	Q3: GPCAnet-initialization for GCN

	Conclusion
	Supplementary Material
	Proof of Theorem 3.1
	Derivation from Eq. (16) to Eq. (17)
	Derivation of Equivalence in Eq. (9)
	Dataset Statistics
	Hyperparameter Configurations
	GPCA with varying
	Configurations for Experiments of 13-Layer GPCAnet
	GPCAnet-Init's Robustness for Additional Datasets

