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Abstract

Communication cost and security issues are both
important in large-scale distributed machine learn-
ing. In this paper, we investigate a multiclass sparse
classification problem under two distributed sys-
tems. We propose two distributed multiclass sparse
discriminant analysis algorithms based on mean-
aggregation and median-aggregation under the nor-
mal distributed system or Byzantine failure system.
Both of them are computation and communication
efficient. Several theoretical results, including es-
timation error bounds, and support recovery, are
established. With moderate initial estimators, our
iterative estimators achieve a (near-)optimal rate
and exact support recovery after a constant number
of rounds. Experiments on both synthetic and real
datasets are provided to demonstrate the effective-
ness of our proposed methods.

1 INTRODUCTION

Multiclass classification is one of the most important topics
in machine learning and plays a crucial role in many fields,
such as facial recognition, text mining, and gene analysis
[Heisele et al., 2001, Zhang et al., 2015, Ramaswamy et al.,
2001].

Linear discriminant analysis (LDA) is a useful tool in clas-
sification problem, which aims to find linear discriminant
directions to separate the samples from different classes.
We consider the random variable X and its label Y , where
X ∈ Rp is a multivariate normal random variable with
mean µk and covariance matrix Σ when Y = k for
k = 1, 2, ...,K. Let πk = P(Y = k) be the prior prob-
ability that variable X is observed from Class k, the oracle
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Bayes rule under the LDA model can be written as

Ŷ = argmax
k

{
θ∗⊤
k

(
X − µk + µ1

2

)
+ log

πk
π1

}
,

where θ∗
k = Σ−1(µk − µ1) for k = 1, 2, ...,K denotes

Fisher’s discriminant directions. In practice, we need to
estimate µ1, µk, and Σ to obtain the estimation of θ∗

k.
Given independent samples {(Xi, Yi), i = 1, 2, ..., N}
from K classes and denote

∑N
i=1 I(Yi = k) = Nk, the

classical estimators of Fisher’s discriminant directions are
given by θ̂k = Σ̂

−1
(µ̂k − µ̂1) for k = 2, ...,K where

µ̂k =
∑

{i:Yi=k}Xi/Nk and

Σ̂ =
1

N

K∑
k=1

∑
{i:Yi=k}

(Xi − µ̂k)(Xi − µ̂k)
⊤.

Then the classical discriminant rule is

Ŷ = argmax
k

{
θ̂
⊤
k

(
X − µ̂k + µ̂1

2

)
+ log

π̂k
π̂1

}
,

where π̂k = Nk/N . It has been shown to be both theoretical
and practical efficient in the classical fixed dimensionality
regime. Nevertheless, the classical linear discriminant rule
performs poorly (no better than random guessing) when the
dimensionality p increases as the sample size N [Bickel and
Levina, 2004]. The main reason is that the sample covari-
ance matrix will be ill-conditioned in such a case. Another
related problem is over-fitting, and it leads to great perfor-
mance loss to the model.

Due to the rapid growth in the size of datasets and resource
sharing, there has been tremendous interest in developing
distributed machine learning methods in recent years. How-
ever, not many works focus on sparse LDA in a distributed
environment. The main challenge of distributed estimation
is the communication cost. The existing sparse LDA algo-
rithms require constructing an overall sample covariance
matrix, which is unrealistic in the distributed system when p
is large since the bandwidth of the local machine is limited.
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To reduce communication cost, Tian and Gu [2017] pro-
posed a distributed sparse LDA algorithm that only required
one round of communication. To the best of our knowledge,
it is also the only existing distributed sparse LDA algo-
rithm. Despite this, the computational issue is salient for
each local machine. The algorithm involves solving large-
scale linear programming and estimating the inverse of the
covariance matrix, which is computation expensive in the
high-dimensional setting. Furthermore, the convergence rate
in Tian and Gu [2017] will be sub-optimal when the number
of local machines is large.

Another concerning issue in distributed machine learning
is security. Most distributed machine learning algorithms
require a master machine to aggregate the information from
local machines, which are susceptible to errors due to un-
predictable and potential attacks. The security issue is more
prominent in large-scale distributed systems, such as Feder-
ated Learning [Konečnỳ et al., 2016]. Byzantine failure is
used to model the local machine’s inherent abnormal behav-
ior, which means that some local machines may send wrong
messages or behave completely arbitrarily [Lamport et al.,
1982]. The algorithm in Tian and Gu [2017] takes simple
averaging aggregation of the information from local ma-
chines, which is highly non-robust in the Byzantine failure
system. We note that there are several works related to the
robust LDA algorithm [Zhang and Yeung, 2010, Wen et al.,
2018, Nie et al., 2019], whereas these methods only work
for heavy-tailed data and are not resistant to Byzantine fail-
ure. Thus it is of great interest to develop Byzantine-robust
multi-classification algorithm with a theoretical guarantee.

Although there are extensive studies for distributed estima-
tion and optimization, few are related to sparse LDA in the
high-dimensional regime. Tian and Gu [2017] proposed a
communication efficient distributed sparse LDA method
by constructing a debiased version of linear programming
discriminant (LPD) estimator [Cai and Liu, 2011] for the
binary classification task. Recently, Bian et al. [2020] pro-
posed a distributed sparse LDA method that does not require
the communications of data information among different
local machines. Unfortunately, no theoretical guarantee was
provided in their work. More importantly, both of them are
sensitive to the abnormal behaviors of local machines in the
distributed system.

1.1 OUR CONTRIBUTIONS

To address the challenge of increasing dimensionality and
Byzantine failure, we propose a new communication effi-
cient distributed sparse LDA algorithm for distributed multi-
classification problem in two different systems, respectively:

• System I: The distributed system without Byzantine
failures;

• System II: There are α fraction Byzantine local ma-

chines, and the remaining 1−α fraction local machines
are normal.

Under System I, we propose the distributed sparse LDA
method based on mean-aggregation (Mean-DSLDA). As
for System II, the median-aggregation is applied against the
potential Byzantine failure. Thus we propose the Byzantine-
tolerant Median-DSLDA. With these two methods, we
highlight the main contributions of this paper:

1. Our proposed algorithm shares the same O(p) com-
munication cost with the state-of-the-art distributed
learning algorithms [Lee et al., 2017a, Wang et al.,
2017].

2. Compared with Tian and Gu [2017], our proposed
algorithm requires less computation complexity in the
local machine.

3. The theoretical results guarantee that our proposed
algorithm attains (near-)optimal statistical convergence
rate and exact support recovery after a constant number
of communication rounds.

4. The experiments on synthetic and real data show
that our proposed algorithm converges quickly, and
Median-DSLDA is highly robust to Byzantine fail-
ures.

1.2 RELATED WORK

Sparse LDA methods in the high-dimensional regime have
been broadly investigated in recent years [Witten and Tib-
shirani, 2011, Cai and Liu, 2011, Fan et al., 2012, Mai et al.,
2012, 2019]. For binary classification case, Cai and Liu
[2011] and Mai et al. [2012] assumed the Bayesian discrim-
inant direction Σ−1(µ2 − µ1) is sparse then directly esti-
mated it by using Dantzig selector [Candes and Tao, 2007]
and lasso penalty respectively. Unfortunately, these meth-
ods can not be generalized to multiclass classification cases
easily. For the multiclass sparse LDA problem, penalized
Fisher’s discriminant [Witten and Tibshirani, 2011], sparse
optimal scoring [Clemmensen et al., 2011] and multiclass
sparse discriminant analysis (MSDA) proposed in Mai et al.
[2019] are three popular proposals. Specifically, the MSDA
method simultaneously estimates all the sparse Bayesian
discriminant directions by solving a quadratic group lasso
problem.

Owing to the growth of sample size and dimensionality
of datasets, extensive works on high-dimensional sparse
distributed machine learning algorithms are proposed. A
popular method for distributed sparse estimation is divide-
and-conquer debiased (DC-debiased) framework proposed
by Lee et al. [2017a]. Thanks to easy implementation and
low communication cost, the DC-debiased scheme has been
broadly deployed in several sparse estimation problems [Lv
and Lian, 2022, Tian and Gu, 2017, Battey et al., 2018,
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Lian and Fan, 2018]. However, the debiased operation re-
quires estimating the inverse of the Hessian matrix, which
leads to expensive computation costs for each local machine.
There exists a constraint on the number of local machines for
DC-debiased estimators to achieve optimal statistical conver-
gence rate[Zhang et al., 2013, Lee et al., 2017b, Battey et al.,
2018]. Wang et al. [2017] and Jordan et al. [2019] devel-
oped another framework, namely Communication-efficient
Surrogate Likelihood (CSL), which refines the estimator by
multi-round communication. Each local machine in the CSL
framework only needs to compute and transmit gradients in
each round, and then the master machine solves a penalized
sub-problem. Particularly, this kind of method has no re-
striction on the number of machines. Relate literature based
on CSL scheme are Wang et al. [2019], Fan et al. [2021],
Chen et al. [2020, 2021].

To tackle potential Byzantine failures in distributed learn-
ing, some related works are proposed by letting the master
machine conduct a robust aggregation on the gradient infor-
mation received from local machines [Yin et al., 2018, Xie
et al., 2018, Alistarh et al., 2018, Li et al., 2019, Yin et al.,
2019]. The most common robust aggregation rule is median-
of-means (MOM). Yin et al. [2018] established several opti-
mal statistical rates under mild conditions for the proposed
robust algorithms based on median and trimmed mean op-
erations. Other robust aggregation rules such as marginal
trimmed mean, dimensional median, Krum are also inves-
tigated in the existing literature [Xie et al., 2018, Li et al.,
2019]. Tu et al. [2021b] proposed a variance-reduced version
of the median-of-means aggregation procedure motivated by
the composite quantile. For distributed penalized regression
problems, Tu et al. [2021a] developed a Byzantine-robust
least-square Lasso method.

1.3 NOTATION

The following notations will be used throughout the pa-
per. For a vector x ∈ Rp, ∥x∥1 =

∑p
j=1 |xj |, ∥x∥2 =

(
∑p
j=1 x

2
j )

1/2 and ∥x∥∞ = maxj |xj |. For a matrix
A = (Ai,j) ∈ Rp×p, spectral norm is defined by
∥A∥2 = supx∈Rp ∥Ax∥2, ℓ∞ norm is defined by ∥A∥∞ =
maxi

∑p
j=1 |Ai,j | and |A|∞ = maxi,j |Ai,j |. For symmet-

ric matrix A, the smallest and largest eigenvalue of A are
denoted by λmin(A) and λmax(A) respectively. For a ma-
trix A ∈ Rm×n, AST denotes the submatrix (asitj ) for
S = {s1, . . . , sr} ⊆ {1, . . . ,m} and T = {t1, . . . , tq} ⊆
{1, . . . , n}. For two sequences of positive numbers cn and
dn, we write cn ≲ dn if there exists some positive con-
stant c such that cn ≤ cdn holds for sufficiently large n;
and cn ≍ dn if cn ≲ dn and dn ≲ cn. For a sequence
of random variables Xn, Xn = OP(dn) means that for
any ε > 0 there exists some positive constant C such that
P(|Xn| > Cdn) < ε.

2 MODELS AND ALGORITHMS

Recall that the Bayesian discriminant directions to be es-
timated are θ∗

k = Σ−1(µk − µ1) for k = 2, ...,K. Ac-
cording to Mai et al. [2019], the contribution to discrim-
inant from j-th variable of X vanishes if and only if
θ∗2,j = · · · = θ∗K,j = 0, which means θ∗k,j , k = 2, ...,K
are grouped according to j. Denote the support set S to be
S = {j : θ∗kj ̸= 0 for some k = 2, ...,K − 1} and s = |S|
is the sparsity. Given independent samples {(Xi, Yi), i =
1, 2, ..., N} from K classes, Mai et al. [2019] proposed the
multiclass sparse discriminant analysis (MSDA) method and
estimated θ∗

k for k = 2, ...,K simultaneously by solving
the following group lasso problem

min
θ2,...,θK

K∑
k=2

{
1

2
θ⊤
k Σ̂θk − (µ̂k − µ̂1)

⊤
θk

}
+λ

p∑
j=1

∥∥θ(j)

∥∥
2
,

where θ(j) = (θ2,j , . . . , θK,j)
T and λ > 0 is the tuning

parameter. MSDA achieves variable selection consistency
in the centralized sample case. For new observation Xnew,
we classify Xnew to Class Ŷ if

Ŷ = argmax
k

{(
Xnew −

µ̂k + µ̂1

2

)⊤

θ̂k + log
π̂k
π̂1

}
,

where θ̂1 = 0.

For the ease of presentation, we suppose that all the sam-
ples {(Xi, Yi), i = 1, 2, ..., N} are stored in the master
machine and M local machines evenly. Denote the sam-
ple index in the m-th machine byHm for m = 0, 1, ...,M
where H0 is the master machine, then the samples in the
m-th machine are {(Xi, Yi) : i ∈ Hm}. When Yi = k,
the corresponding observation Xi is sampled from multi-
variate normal distribution N (µk,Σ) for k = 1, 2, ...,K.
Without loss of generality, we assume the samples from
K classes are evenly distributed in both the master ma-
chine and M local machines. Thus the sample size of Class
k in each machine is nk. Let n =

∑K
k=1 nk be the sam-

ple size of the master machine then N = n(M + 1) and
Nk = nk(M + 1). In System II, owing to the existence
of Byzantine failure machines, we assume that the master
machine can never be corrupted so that we can trust the in-
formation collected in it. For the remaining local machines,
some of them may collect contaminated data or send ar-
bitrary wrong values to the master machine. Among the
M local machines, the fraction of Byzantine machines is
denoted by α and the remaining 1−α local machines are nor-
mal. In each machineHm for m = 0, 1, ...,M , we compute
the corresponding estimators π̂m,k =

∑
i∈Hm

I(Yi = k)/n,
µ̂m,k =

∑
{i∈Hm:Yi=k} Xi/nk and

Σ̂m =
1

n

K∑
k=1

∑
{i∈Hm:Yi=k}

(
Xi − µ̂m,k

) (
Xi − µ̂m,k

)⊤
.
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Given initial estimators θ̂
(0)

k for k = 2, ...,K and motivated
by CSL framework [Jordan et al., 2019], we update the esti-
mator in the t-th iteration by solving the following quadratic
group lasso problem

min
θ2,...,θK

K∑
k=2

{
1

2
θ⊤
k Σ̂0θk − (Σ̂0θ̂

(t−1)

k − b
(t−1)
k )⊤θk

}

+λ

p∑
j=1

∥∥θ(j)

∥∥
2
,

(2.1)

where b
(t−1)
k is a consistent estimator of Σθ̂

(t−1)

k − (µk −
µ1) given θ̂

(t−1)

k . The optimization problem (2.1) can be
efficiently solved by several well studied methods, such
as group coordinate descent algorithm [Yuan and Lin,
2006] and iterative soft-thresholding algorithm [Beck and
Teboulle, 2009]. Thus the keystone is to construct b(t−1)

k

in the master machine by using the local information under
different distributed systems (System I and II) efficiently
and safely.

The following are two kinds of aggregations considered in
our algorithms to construct b(t−1)

k and estimate µk, πk.

Aggregation 1 (Mean-aggregation). The master machine
estimate µd and πd by using µ̂d =

∑M
m=0 µ̂m,d/(M +

1) and π̂d =
∑M
m=0 π̂m,d/(M + 1) respectively for d =

1, 2, ...,K. Denote

d̂
(t−1)

m,k =
1

n

K∑
d=1

∑
{i:i∈Hm,Yi=d}

(Xi−µ̂d)(Xi−µ̂d)Tθ̂
(t−1)

k ,

and construct b(t−1)
k by using

b̂
(t−1)

k = d̂
(t−1)

k − (µ̂k − µ̂1),

where d̂
(t−1)

k =
∑M
m=0 d̂

(t−1)

m,k /(M + 1).

For vectors xm ∈ Rp, m = 0, 1, ...,M , the coordinate-
wise median operator is denoted by cmed. Then z :=
cmed{xm,m = 1, 2...,M} is a p-vector and zj is the me-
dian of {xm,j : m = 0, 1, ...,M}. Then we define the
following aggregator and estimators.

Aggregation 2 (Median-aggregation). The master ma-
chine estimate µd and πd by using µ̃d = cmed{µ̂m,d :
m = 0, 1, ...,M} and π̃d = median{π̂m,d : m =
0, 1, ...,M} respectively for d = 1, 2, ...,K. Denote

d̃
(t−1)

m,k = Σ̂mθ̂
(t−1)

k and construct b(t−1)
k by using

b̃
(t−1)

k = d̃
(t−1)

k − (µ̃k − µ̃1),

where d̃
(t−1)

k = cmed{d̃
(t−1)

m,k : m = 0, 1, ...,M}.

With the help of Aggregation 1 and 2, we propose
Mean-DSLDA and Median-DSLDA under System I and
System II, respectively. We start by obtaining µ̂k, π̂k, µ̃k,
and π̃k in the master machine through one round of commu-

nication. Given the initial estimators θ̂
(1)

k satisfying some

mild conditions (see Section 3), the vectors d̂
(1)

m,k or d̃
(1)

m,k

are parallelly computed on the m-th local machine. We only
need to communicate these p-dimension vectors to the mas-
ter machine, thus the communication cost is O(p). With
these constructed vectors, the master machine computes
b
(1)
k by Aggregation 1 and 2 under System I and II respec-

tively and obtains the updated estimators θ̂
(1)

k by solving
(2.1). These steps can be repeated iteratively to refine the
estimators at each communication round.

Algorithm 1: Distributed Multiclass Sparse Linear Discrim-
inant Analysis (DSLDA)

Input: Local data sets {Xi, Yi : i ∈ Hm} for
m = 0, 1, ...,M , the number of iterations T , the initial

estimators {θ̂
(0)

k : k = 2, ...,K}, the tuning parameters
λt for t = 1, ..., T .

Output: Final estimators {θ̂
(T )

k : k = 2, ...,K}.
for m = 0, 1, ...,M do

The m-th machine: Compute µ̂m,k, π̂m,k then
send them to the master machine.

end
The master machine: Compute µ̂k, π̂k, µ̃k and π̃k for

k = 1, 2, ...,K then broadcast θ̂
(0)

k and µ̂k to all local
machines.

for t = 1, 2, ..., T do
for m = 0, 1, ...,M do

The m-th machine: Compute{
d̂
(t−1)

m,k , System I

d̃
(t−1)

m,k , System II
,

according to Aggregation 1 and 2 then send it
to the master machine.

end
The master machine: Construct b(t−1)

k by

b
(t−1)
k ←

{
b̂
(t−1)

k , System I

b̃
(t−1)

k , System II
,

according to Aggregation 1 and 2 and obtain θ̂
(t)

k

by solving (2.1). Then broadcast θ̂
(t)

k for
k = 2, ...,K to all local machines.

end

After T communication rounds, we can obtain the final

estimators θ̂
(T )

k for k = 2, ...,K. Then for new observation
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Xnew, we classify Xnew to Class argmaxk

(
Xnew − µ̂k+µ̂1

2

)⊤
θ̂
(T )

k + log π̂k, System I

argmaxk

(
Xnew − µ̃k+µ̃1

2

)⊤
θ̂
(T )

k + log π̃k, System II
.

The details of Mean-DSLDA and Median-DSLDA are de-
scribed in Algorithm 1. Our proposed algorithm and the
DC-debiased algorithm in Tian and Gu [2017] both require
computing and storing the local covariance matrix Σ̂m in
each local machine. In addition to this operation, the DC-
debiased algorithm also needs to estimate the sparse dis-
criminant direction and the inverse of the covariance matrix
in each local machine, leading to O(np2) extra computation
complexity least. In each communication round of Algo-

rithm 1, each local machine only needs to compute d̂
(t−1)

m,k

or d̃
(t−1)

m,k . The local computation complexity of our method
is O(Tp2), which is sufficiently reduced compared with the
DC-debiased algorithm since T is a constant based on our
theory (see the discussion of Corollary 3.1).

3 THEORETICAL RESULTS

In this section, we present the theoretical results of our pro-
posed Mean-DSLDA and Median-DSLDA including the
estimation error bounds and support recovery. With slightly
abusing notations, we denote

θ∗min = min
{
|θ∗k,j | : |θ∗k,j | ≠ 0, j ∈ S, 2 ≤ k ≤ K

}
,

∆min = min
1≤k,d≤K,k ̸=d

√
(µk − µd)

⊤
Σ−1 (µk − µd),

and

∆max = max
1≤k,d≤K,k ̸=d

√
(µk − µd)

⊤
Σ−1 (µk − µd).

Let Z∗
j ∈ RK−1 be the subgradient of ∥θ∥2 evaluated at

θ∗
(j) = (θ∗2,j , . . . , θ

∗
K,j)

T and Z∗
S,k = (Z∗

j,k : j ∈ S).
Before presenting the formal results of our proposed method,
we introduce the following technical assumptions for the
clarity of the theoretical guarantee.

(C1) There exists a positive constant c ≥ 1 such that c−1 ≤
λmin(Σ) ≤ λmax(Σ) ≤ c. There exist some constants
c1 > 0 and c2 <∞ such that ∆min > c1, ∆max < c2.

(C2) The sample size of each class satisfies N1 ≍ N2 ≍
· · · ≍ NK . The dimensionality p satisfies log p =
O(nν) with ν < 1

3 . The sparsity s satisfies that s =
O(nβ) with β < 1

3 . The sample size of the master
machine satisfies that n ≳ Nψ with 0 < ψ < 1.

(C3) The initial estimators θ̂
(0)

k for k = 2, ...,K have
the common support set Ŝ(0) and satisfy that

max2≤k≤K ∥θ̂
(0)

k − θ∗
k∥2 = OP(an) with an = o(1).

Moreover, assume that P(Ŝ(0) ⊆ S)→ 1.

(C4) Suppose that Σ satisfies that ∥ΣScSΣ
−1
SS∥∞ <∞ and

for some κ ∈ (0, 1),

max
j∈Sc

{
K∑
k=2

(
Σj,SΣ

−1
SSZ

∗
S,k

)2}1/2

= 1− κ.

(C5) The fraction of Byzantine local machines α < 1
2 .

Condition (C1) is common in sparse LDA literatures [Shao
et al., 2011, Cai and Liu, 2011, Mai et al., 2012]. Condition
(C2) is considered when establishing the support recovery
consistency results, which also appears in Mai et al. [2019].
From condition (C3), the dimension p is allowed to be
greater than the local sample size n. Condition (C4) can
be easily satisfied if we choose some sparse estimators ob-
tained by local samples as the initial estimators. Condition
(C5) guarantees the statistical consistency of the median-
aggregation against Byzantine failures, similar assumption
can be found in Yin et al. [2018], Tu et al. [2021a,b].

3.1 ESTIMATION ERROR BOUND

Theorem 3.1. Suppose that conditions (C1)-(C3) and (C5)
hold. By choosing the tuning parameter λt =

C

(√
log p
N + an

(
s log p
n

)t/2)
, System I

C

(√
log p
N + an

(
s log p
n

)t/2
+ α√

n
+ 1

n

)
, System II

for some sufficiently large positive constant C, we are guar-
anteed that

max
2≤k≤K

∥θ̂
(t)

k − θ∗
k∥2 = OP

(√
sλt
)
, (3.1)

for k = 2, ...,K under both System I and II.

Theorem 3.1 provides ℓ2 estimation error bounds after the
t-th iteration in Algorithm 1. The first term in (3.1) is the
minimax rate of ℓ2 error bound for (group)lasso estimators
in the centralized sample case (see Raskutti et al. [2009],
Bühlmann and Van De Geer [2011], Wainwright [2019]).
The second term implies that the ℓ2 estimation error con-
verges geometrically to the optimal order with contraction
rate

√
s log p/n. Note that Median-DSLDA has two ad-

ditional terms in the convergence rate. The term α
√
s/n

is owing to the existence of Byzantine failure machines
while

√
s/n results from the median-aggregation. Therefore,

Theorem 3.1 also indicates that Mean-DSLDA is more effi-
cient than Median-DSLDA under System I. Considering
that mean-aggregation is not resistant to Byzantine failures,
Median-DSLDA is preferred under System II.

Corollary 3.1. Under the same conditions and settings in
Theorem 3.1, if the initial estimator satisfies that

max
2≤k≤K

∥θ̂
(0)

k − θ∗
k∥2 = OP

(√
s log p

n

)
,
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and the number of iteration round T satisfies

T ≥ log(N/n)

log (n/ (s2 log p))
, (3.2)

we are guaranteed that

max
2≤k≤K

∥θ̂
(T )

k − θ∗
k∥2

=


OP

(√
s log p
N

)
, System I

OP

(√
s log p
N + α√

n
+ 1

n

)
. System II

In System I, there is no constraint on the number of lo-
cal machines M since we only require the sample size of
the master machine satisfies n ≥ Nψ. For System II, we
require all the local machines have O(n) samples to en-
sure the consistency of Median-aggregation. In fact, if the
number of local machines satisfies M ≲

√
N in the Sys-

tem II, the ℓ2 error bounds of Median-DSLDA becomes
OP(

√
s log p/N+α

√
s/n), which cannot be improved due

to the existence of Byzantine machines. In accordance with
the assumption on the sparsity s, the right hand side of (3.2)
can be bounded by

log(N/n)

log (n/ (s2 log p))
≤ 1− 1/ψ

1− ν − 2β
.

It connotes that our proposed method can achieve optimal
convergence rate after a constant number of communication
rounds.

It is worth comparing our results with Tian and Gu [2017]
for the binary classification case (K = 2) under Sys-
tem I. To achieve an optimal convergence rate, they re-
quired that the number of local machines M satisfies
M ≲

√
N/ log p/max(s, s′), where s

′
is the maximum

number of nonzero elements in each column of Σ−1. How-
ever, under System I, the Mean-DSLDA algorithm has no
constraint on the number of local machines and does not
require the sparsity of Σ−1.

3.2 SUPPORT RECOVERY

Due to the group lasso property, θ̂
(t)

k for k = 2, ...,K have
the same support set. We denote the common support set of

estimator θ̂
(t)

k by Ŝ(t) for t = 1, 2, ..., T .

Theorem 3.2. Suppose that conditions (C1)−(C5) hold,
with the same choices of the tuning parameter λt in Theorem
3.1, we have Ŝ(t) ⊆ S holds with probability tending to
1. Moreover, suppose that there exists a sufficiently large
constant C > 0 such that

θ∗min ≥ C
∥∥Σ−1

SS

∥∥
∞ λt, (3.3)

then we have Ŝ(t) = S with probability tending to 1 for
both Mean-DSLDA and Median-DSLDA.

Theorem 3.2 guarantees the exact support recovery consis-
tency of Algorithm 1 under the beta-min condition (3.3).
Note that the beta-min condition becomes weaker as itera-
tion round t increases. And if T satisfies (3.2), the beta-min
condition of Mean-DSLDA in Algorithm 1 under System
I will reduce to θ∗min ≥ C∥Σ

−1
SS∥∞

√
log p/N , which coin-

cides with the order in Wainwright [2009], Mai et al. [2019].

4 SIMULATION RESULTS

In this section, we will investigate the numerical perfor-
mance of the proposed Byzantine-tolerant distributed sparse
LDA method on synthetic data. Three metrics are used to
evaluate the performance of algorithms: the average ℓ2 es-
timation error

∑K
k=2 ∥θ̂k − θ∗

k∥2/K, the misclassification
rate and the F1 score. The F1 score is defined as

F1 = 2 · precision · recall
precision + recall

,

where precision = |Ŝ ∩ S|/|Ŝ| and recall = |Ŝ ∩ S|/|S|
and Ŝ is the support set of θ̂k. In the following experiments,
we generate a training set of size N , a validation set of
size 1, 000 and a test set of size 1, 000 independently, then
randomly partition the training set into M + 1 machines
(including the master machine) evenly. The validation set is
used to choose tuning parameter and the test set is used to
compute misclassification rate. All the results are averaged
over 200 independent trails.

4.1 MULTI-CLASS TASK

The generation of synthetic data is as follows. Denote the
label of each class by k for k = 1, 2, ...,K. We set K = 5,
p = 600, βjk = 1.6 for j = 2k − 1, 2k; k = 1, ...,K and
βjk = 0 otherwise. The covariance matrix is Σ = (σij)p×p
where σij = 0.5|i−j|. Let µk = Σβk and θ∗

k = βk − β1,
then the support set S = {1, 2, ..., 10}. In each machine, we
generate Class k samples independently fromN (µk,Σ) for
k = 1, 2, ...,K with equal sample size. For Byzantine local
machines, the label Y is replaced by 6 − Y . The master
machine is normal in our setting. For comparison, we also
run MSDA algorithm [Mai et al., 2019] using the central-
ized data, which is abbreviated as C-MSDA. The results are
recorded by taking averages over 100 independent trials.

In the first experiment, we investigate the communication
rounds of our proposed method needed to achieve numeri-
cal convergence. We set the total sample size N as 50,000,
and the number of machines (including the master ma-
chine) is 100. In System II, the fraction of Byzantine lo-
cal machines is α = 0.2. The trajectories of three evalua-
tion metrics are presented in Figure 1, where the horizon-
tal lines represent the results of C-MSDA. As we can see,
all metrics of Mean-DSLDA diverge under System II, and
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Figure 1: The evaluation metrics of Mean-DSLDA, Median-DSLDA and C-MSDA versus the number of iterations under
two systems. The total sample ise N is 50,000 and the number of machines is 100. The dimension is p = 100. The fraction
of Byzantine machines in System II is α = 0.2.

Table 1: The evaluation metrics of Mean-DSLDA and Median-DSLDA under different number of machines. The local
sample size is fixed as n = 200 and the dimension is p = 500. The faction of Byzantine machines in System II is α = 0.2.

L2 Error Misclassification rate F1 Score

System I System II System I System II System I System II

m Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median

100 0.645 0.677 >10 0.683 0.135 0.135 0.615 0.135 1 1 0.278 1
200 0.698 0.709 >10 0.748 0.130 0.131 0.577 0.130 1 1 0.330 1
300 0.666 0.696 >10 0.700 0.129 0.130 0.619 0.130 1 1 0.275 1
400 0.663 0.666 >10 0.677 0.130 0.135 0.679 0.135 1 1 0.133 1
500 0.681 0.694 >10 0.716 0.128 0.128 0.706 0.127 1 1 0.155 1

Median-DSLDA shows robustness against Byzantine fail-
ure. In addition, the evaluation metrics of Mean-DSLDA
(under System I) and Median-DSLDA converge numeri-
cally within 5 communication rounds, which corroborates
the statement in Corollary 3.1. The difference of ℓ2 error
between our proposed two methods and C-MSDA is tiny,
which indicates the performance loss caused by distributed
estimation is negligible in two systems.

In the second experiment, we investigate the effect of the
number of local machines on our proposed algorithm. The
local sample size is fixed as n = 200, and the number
of machines (including the master machine) varies from
100 to 500. We summarize the averaged results in Table 1.
It implies that both Mean-DSLDA (under System I) and
Median-DSLDA are not sensitive to the number of ma-
chines since our proposed method can attain an optimal
convergence rate without the constraint on the number of
local machines.

In the third experiment, we run Median-DSLDA under
System II with the fraction of Byzantine local machines
varying from 0 to 0.2. The total sample size N is fixed as
20,000, and the number of machinesM+1 is 100. We report
averages and standard deviations of three evaluation metrics

after the 5-th iteration in Table 2. There is no significant
performance deterioration for Median-DSLDA with the
increasing fraction of Byzantine local machines.

4.2 BINARY-CLASS TASK

For binary-class task, we compare our method with the debi-
ased procedure in Tian and Gu [2017], which is abbreviated
as DC-LPD. For the fairness of comparison, we follow the
same data generation regime in DC-LPD. From the results
in Table 3, it can be seen that our method has a better per-
formance over DC-LPD, and the computational superiority
is salient.

5 REAL DATA

In this section, we use the MNIST dataset1 and ISOLET
dataset2 to verify the performance of our proposed algo-
rithm in real data. A brief description of the two datasets
is given in Table 4. We randomly divide the training sets

1http://yann.lecun.com/exdb/mnist/
2https://archive.ics.uci.edu/ml/datasets/isolet
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Table 2: The evaluation metrics and their standard deviations (in parentheses) of Median-DSLDA under System II. The
total sample ise N is 20,000 and the number of machines (include the master machine) is 100. The dimension is p = 500.

α = 0 α = 0.05 α = 0.1 α = 0.15 α = 0.2

ℓ2 Error 0.687 (0.237) 0.691 (0.243) 0.696 (0.181) 0.702 (0.189) 0.717 (0.198)
Misclassification Rate 0.134 (0.034) 0.134 (0.031) 0.134 (0.027) 0.133 (0.026) 0.134 (0.027)

F1 Score 0.995 (0.053) 0.996 (0.054) 0.996 (0.047) 0.996 (0.052) 0.996 (0.053)

Table 3: The average evaluation metrics and local computational time. The total sample size is 10,000 and the number of
machines is 20. The dimension is p = 200.

Misclassification Rate ℓ2 Error F1 Score Running Time (s)

p 300 400 500 300 400 500 300 400 500 300 400 500

Mean-DSLDA 0.161 0.168 0.166 0.467 0.440 0.446 0.984 0.979 0.98 1.69 2.15 3.08
DC-LPD 0.166 0.171 0.170 1.190 1.161 1.239 0.714 0.733 0.722 37.79 92.03 203.84

of the MNIST dataset and ISOLET dataset into 20 and 10
machines, respectively (including the master machine) with
an equal sample size. For Byzantine local machines, we
use a similar adversarial setting in synthetic data experi-
ments. Then we conduct Algorithm 1 by setting the iteration
step T = 20. The tuning parameter λt in each iteration is
selected by five-fold cross-validation.

Table 4: Data description of MNIST and ISOLET.

Dataset K Training size Test size Dimension Label

MNIST 10 60,000 10,000 784 0-9
ISOLET 26 6,238 1,559 617 1-26

The experiment results are reported in Figure 2. As we can
see, the test errors of our proposed methods decrease dra-
matically after the first communication round, then becomes
stable in the future iterations. Under System I, the test error
of Mean-DSLDA is lower than Median-DSLDA. Under
System II, the classification performance of Mean-DSLDA
is severely affected by the Byzantine machines. In addition,
the utility of Median-DSLDA does not degrade signifi-
cantly under System II.

6 CONCLUSIONS

In this paper, we proposed a communication efficient dis-
tributed sparse linear discriminant analysis (Mean-DSLDA)
algorithm under a normal distributed system and its
Byzantine-tolerant version (Median-DSLDA) for the
multi-classification problem. Compared with the existing
distributed sparse LDA algorithm, our proposed algorithm
sufficiently reduces the computation complexity of each lo-
cal machine. To achieve the optimal statistical convergence
rate, Mean-DSLDA does not require any restrictions on the
number of local machines M , which can be applied in a

large scale distributed system. Experiments on synthetic and
real data corroborate the theoretical results and the superior-
ity of Median-DSLDA against Byzantine failures.
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Figure 2: The test classification error versus the number of
iterations on real data. The fraction of Byzantine machines
under System II is α = 0.1. The numbers of machines in
MNIST and ISOLET are respectively 100 and 10.
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