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Spatiotemporal Fine-grained Video Description for Short Videos
Anonymous Authors

ABSTRACT
In the mobile internet era, short videos are inundating people’s
lives. However, research on visual language models specifically
designed for short videos has not yet received sufficient attention.
Short videos are not just videos of limited duration. The promi-
nent visual details and high information density of short videos
differentiate them to long videos. In this paper, we propose the
SpatioTemporal Fine-grained Description (STFVD) emphasizing on
the uniqueness of short videos, which entails capturing the intricate
details of the main subject and fine-grained movements. To this
end, we create a comprehensive Short Video Advertisements De-
scription (SVAD) dataset, comprising 34,930 clips from 5,046 videos.
The dataset covers a range of topics, including 191 sub-industries,
649 popular products, and 470 trending games. Various efforts have
been made in the data annotation process to ensure the inclusion of
fine-grained spatiotemporal information, resulting in 34,930 high-
quality annotations. Compared to existing datasets, samples in
SVAD exhibit a superior text information density, suggesting that
SVAD is more appropriate for the analysis of short videos. Based
on the SVAD dataset, we develop a visual language model (SVAD-
VLM) to generate spatiotemporal fine-grained description for short
videos. We use a prompt-guided keyword generation task to ef-
ficiently learn key visual information. Moreover, we also utilize
dual visual alignment to exploit the advantage of mixed-datasets
training. Experiments on SVAD dataset demonstrate the challenge
of STFVD and the competitive performance of proposed method
compared to previous ones.

CCS CONCEPTS
• Computing methodologies → Video summarization; • In-
formation systems→Multimedia databases.

KEYWORDS
Multimodal Large Language Model, Short Video Advertisements
Description, Visual Language Model

1 INTRODUCTION
Short videos lasting less than one minute have become popular

owing to the emergence of social media platforms such as Tik-
Tok. However, they are not just characterized by limited duration.
Short videos, featuring a quick-swipe, single-column format in
apps, differ from long-form videos posted on platforms such as
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YouTube by cutting down switching costs and ramping up com-
petition. The differences in duration and dissemination method
distinguish short videos from long-form videos. On one hand, com-
pared to movies and TV shows, the visual details in short videos
play an more important role in affecting the audience’s perception.
The high pixel density of small screens for short videos, combined
with their simple composition, leads to clear images and facilitates
easy absorption of visual details by viewers. On the other hand,
short videos contain a high amount of information due to the short
durations and limited user attention spans. With the low switching
cost and intense competitions, short videos typically lack setting
shots, with each shot aiming to present climax as much as possible.
As a result, existing video based text generation tasks, such as video
caption [6, 12, 35] and dense video caption [10, 11, 46], are not
suitable for short videos.

To this end, we propose a new task called SpatioTemporal Fine-
grained Video Description (STFVD). The aim of this task is to pro-
vide comprehensive descriptions of the video subject in both spatial
and temporal dimensions. Wang et al. [33] reports that the incor-
poration of key elements, which we term as video subjects, can
significantly enhance the effectiveness of advertising short videos.
Spatially, STFVD requires comprehensive details about the subject
because details in the short video are more prominent compared
to longer formats, thus requiring a level of granularity often over-
looked in standard video captioning tasks. Temporally, STFVD re-
quires a sequential and comprehensive depiction of a series of move-
ments throughout the video to effectively capture the highlights of
short videos. This differs from conventional video captioning that
might offer sparse and condensed summaries. In summary, focusing
on short videos, STFVD provides a higher level of visual details and
movements, resulting in higher text information density compared
to video captioning and dense video captioning (Figure 2b). Existing
datasets are inadequate for this task. Therefore, we create the Short
Video Advertisements Description (SVAD) dataset. This dataset
comprises 34,930 clips extracted from 5,046 short videos, covering
a wide range of information relevant to advertising scenarios. This
dataset spans over 191 sub-industries, 649 popular products, and
470 trending games. We establish a rigorous and detailed annota-
tion protocol and provide comprehensive training to annotators
to ensure the inclusion of fine-grained spatiotemporal information
in the annotations, resulting in high-quality annotations with rich
semantics and high linguistic complexity.

Despite assembling the SVAD dataset, we are faced with two
significant challenges. The first challenge is related to the richness
of semantics in STFVD annotations. In spatiotemporal fine-grained
video descriptions, each annotation typically contains more nouns
and verbs compared to those in video captioning (see Figure 2),
which increases the difficulty in generating accurate results. The
second challenge is the generalization capabilities of the model.
Advertisement short videos comprise a wide range of categories
and exhibit a high degree of diversity, thus training a model with
robust generalization capabilities requires a large amount of data.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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A person is scraping off some face cream.Video captioning

Dense video captioning

Spatiotemporal Fine-grained Video Description
(Part.1)   A person is holding a jar of face cream on her left hand, and run her right index finger across the product name on the package.
(Part.2)   Then place the product in the palm of her right hand and unscrew the lid, then hold the product in her left hand.
(Part.3)   With a small spatula in her right hand, scraping off a small portion of the yellow paste from the jar.

[A person is displaying a jar of face cream.] 

A person is opening a jar of face cream.

0s 10s

Spatiotemporal Fine-grained Video Description
A woman wearing a blue top, wearing glasses, with a bun 
head, holding a plate with her right hand, and using spoon
with her left hand, is eating.

Video captioning & Dense video captioning
A woman is eating food.

(a) Illustration of fine-grained spatial details of STFVD.

A person is scraping off some face cream.

Video captioning

Dense video captioning

Spatiotemporal Fine-grained Video Description
(Part.1)   A person is holding a jar of face cream on her left hand, and run her right index finger across the product name on the package.
(Part.2)   Then place the product in the palm of her right hand and unscrew the lid, then hold the product in her left hand.
(Part.3)   With a small spatula in her right hand, scraping off a small portion of the yellow paste from the jar.

[A person is displaying a jar of face cream.] 

A person is opening a jar of face cream.

0s 10s

Spatiotemporal Fine-grained Video Description
A woman wearing a blue top, wearing glasses, with a bun 
head, holding a plate with her right hand, and using spoon
with her left hand, is eating.

Video captioning & Dense video captioning
A woman is eating food.

0s 5s 10s

(b) Illustration of fine-grained temporal details of STFVD.

Figure 1: The distinctions between video captioning, dense video captioning, and spatiotemporal fine-grained video description
(STFVD). Visual details are highlighted in blue, whereas movement details are marked in orange. Figure 1a showcases the
depth of STFVD on spatial (picture) level, offering a richer visual context (e.g., blue top, glasses, bun hairstyle) compared to the
more general approaches of video captioning and dense video captioning. Figure 1b delves into the temporal (movement) level,
where STFVD surpasses traditional captioning methods by providing detailed descriptions of movements, closely mirroring
the video’s content.

However, providing high-quality annotations for such a large-scale
dataset is not economically viable due to the high costs associated
with manual labeling.

In this work, we propose Short Video Advertisements Descrip-
tion Visual Language Model (SVAD-VLM) to generate fine-grained
descriptions for short video advertisements. To overcome the diffi-
culty in generating rich semantic descriptions, we utilize prompt-
guided keyword generation to enable the model to concentrate on
key information within annotations, such as visual details and fine-
grained movements of video subjects. Moreover, we investigate
utilizing abundant video caption data to enhance the generalization
capabilities of SVAD-VLM across diverse advertisement scenarios.
In order to adapt different text patterns in various datasets, we pro-
pose dual visual alignment to boost the efficiency of mixed training
with heterogeneously annotated datasets. We achieve state-of-the-
art results on the SVAD dataset. Comprehensive experiments are
conducted to demonstrate the effectiveness of our method.

The contributions of this paper are summarized as follows:

• We describe the uniqueness of short videos in video un-
derstanding and present a new problem of spatiotemporal
fine-grained video description.

• We create the Short VideoAdvertisements Description (SVAD)
dataset with videos from a broad spectrum of categories and
spatiotemporal fine-grained descriptions of considerable lin-
guistic complexity. SVAD is, to the best of our knowledge,
the first dataset aimed at the fine-grained description of short
video advertisements.

• We develop SVAD-VLM to facilitate spatiotemporal fine-
grained video description for short video advertisements. We

develop prompt guided keyword generation to overcome the
challenge posed by rich semantic fine-grained descriptions.
Furthermore, we introduce dual visual alignment to leverage
the benefits of mixed training with auxiliary datasets and
enhance the model’s generalization capability.

2 RELATEDWORKS
Video Captioning Datasets and Methods. Video captioning

aims to describe the main event and content in a video with a few
simple and concise natural language sentences [6, 12, 17, 23, 29,
35, 37]. Furthermore, one video with multiple events can also be
captured in dense video captioning task [10, 11, 46], which automat-
ically localizes the multiple temporal events and then generates the
descriptions one by one. However, video captioning and dense video
captioning only provide simple description, which is not enough
to understand and sort out the rich information in the short video
era. The work most closely related to ours is FAVD [27]. However,
SVAD dataset is made up of short videos collected from a main
stream short video platform, which distinct from long-form videos
by attracting visual details and high information density. There are
datasets in the era of e-commerce [43, 44], but they only provide
description of products [43] or video-related advertising slogan [44].
Instead, SVAD provides comprehensive video description including
subjects and movements and covers a wide range of industries such
as finance, healthcare and game (see Figure 3).

Recent video captioning methods [16, 34, 39] achieve impressing
performance on video caption and dense video caption, but they
are not suitable for STFVD because of the domain gap of short
videos and long-form videos. Specifically, Lavender [16] also adopts
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Table 1: Statistical information in comparison with other
datasets.

Dataset Video Annotation Language
#Clip DUR(s) #Word/s #Word/Annotation

MSVD [6] 1,970 9.7 0.92 8.7 English/Chinese
MSR-VTT [9] 10,000 14.8 0.66 9.3 English
VATEX [35] 41,250 10.0 1.46 14.6 English/Chinese
TVC [12] 21,793 76.2 3.11 13.4 English
YouCookII [46] 15,433 41.0 0.82 7.9 English
FAVDBench [27] 11,424 7.7 5.54 17.4 English/Chinese
Chinaopen-1k [5] 1,092 32.5 0.44 14.2 English/Chinese

SVAD 34,930 5.1 12.2 45.2 English/Chinese

multi-task training. However, the purpose of this work is to unify
different tasks at the expense of a slight sacrifice in accuracy. In
contrast, our goal is to enhance the model’s performance on the
primary data as much as possible through carefully designed multi-
task, multi-dataset training.
Visual Language Models. Recent advancements in the field of
large visual languagemodels have shown remarkable efficacy across
a spectrum of visual language tasks. Pioneering models [1, 8, 24, 31]
typically adopt a structured approach comprising a visual encoder,
a visual adaptor, and a comprehensive large language model [4, 26].
These models undergo a pretraining phase on extensive visual lan-
guage datasets, effectively integrating visual context into the LLM.
In terms of the image language model, BLIP2 and InstructBLIP
[7, 13] employ the Q-Former, a transformer visual adaptor, to ex-
tract language-aligned visual features. LLaVA [21] implements a
straightforward projector for the integration of visual data into
Vicuna [45], concurrently training the LLM during the fine-tuning
phase. These methodologies underscore the efficacy of incorporat-
ing pretrained visual features into LLMs, significantly enhancing
the model’s ability to interpret and understand images In terms of
video language model, InternVideo [36] is a general video founda-
tion model, which combines masked video encoder VideoMAE [28]
with spatial-temporal video model UniFormerv2 [15]. VideoChat
[14] is proposed to design a multimodal dialogue system adopt-
ing a Q-Former architecture to integrate the video tokens from
InternVideo with the large language model Vicuna. VideoLLaMA
[42] combines Q-Former with the large language model LLaMA
[30] and designs two branches to realize video language alignment
and audio language alignment. Video-LLaVA [18] extents LLaVA to
video understanding by inducing joint training of image and video.

3 SHORT VIDEO ADVERTISEMENTS
DESCRIPTION DATASET

In this section, we present the Short Video Advertisements De-
scription dataset from four aspects. In Section 3.1, we introduce
Spatiotemporal Fine-grained Video Description task, focusing on
uniqueness of short videos. In Section 3.2, we discuss collection
and cleaning process of the dataset, highlighting a diverse range
of high-quality video samples. Moving to Section 3.3, we describe
our approach to data annotation. Spot-checking and self-review
by annotators are employed to enhance the quality of labeling.
In Section 3.4, we offer an exhaustive statistical overview of the
dataset, demonstrating its broad diversity and differences to existing
datasets.

Table 2: Statistical information of dataset splits.

Split Industry Entity Game

#Videos #Clips #Videos #Clips #Videos #Clips

Train 2,965 22,477 827 5,116 731 3,574
Test 376 2,968 60 361 87 464
Total 3,341 25,445 887 5,477 818 4,038

3.1 Spatiotemporal Fine-grained Video
Description

The task of STFVD involves generating descriptions that are both
spatially and temporally detailed for short video clips. This task
requires the generation of descriptions that convey information
about all subjects within the video, adhering to two primary rules.
Rule No.1: Important visual details about the video’s subjects must
be described. Given that short videos are often viewed on relatively
small phone screens and tend to have simpler compositions than
films or TV shows, these visual details are crucial for capturing
the audience’s attention and thus are essential for inclusion in the
description. Rule No.2: The movements of all subjects within the
video should be described in sequence. Short videos are of higher
information density than long videos due to limited length and
competitions of attention spans of users, movement level instead
of action level description can reduce the loss of information.

3.2 Data Collection
To ensure the dataset includes a broad spectrum of advertising

short videos, a uniform sampling from an extensive range of sub-
industries is conducted. With e-commerce and game identified as
the leading industries in short video advertising, a deliberate selec-
tion of advertisements for trending products and popular games is
made to enhance the dataset’s diversity.

To streamline the annotation workflow, an in-house segmenta-
tion model is utilized to facilitate the annotation process by delin-
eating individual shots within the videos. It is observed that the
rapid pace of short videos frequently lead to a high occurrence of
extremely brief segments. These segments, providing limited tem-
poral context, are deemed suboptimal for the intended descriptive
analysis within an advertising framework. As a remedy, a dual filtra-
tion strategy is implemented: videos with more than 30 percent of
their duration consisting of short clips are classified as fragmented
and excluded; furthermore, within each chosen video, brief clips
shorter than a specific threshold are disregarded.

In our comprehensive sampling, a collection of 3,341 short videos
is compiled, representing over 15 categories and 191 sub-industries.
To capture a wide array of product diversity, an additional 887
videos are selected based on top product categories, showcasing
649 trending products. Recognizing the significant role of gaming
in advertising, 818 gaming-related short videos from 470 renowned
games are also included. The distribution and examples of videos
across various industries, products, and games, depicted in Figure
3, demonstrate the substantial diversity within the Short Video
Advertisements Description (SVAD) dataset.

This strategic curation process culminated in a dataset compris-
ing 34,930 individual clips from 5,046 short videos.
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(a) Annotation lengths. (b) Words per second. (c) Unique verbs per annotation. (d) Unique nouns per annotation.

Figure 2: Statistical histogram distributions on VATEX [35], FAVD [27], and SVAD. Compared to VATEX and FAVD, distributions
of SVAD shift to the right, which means its annotations are longer and richer in verbs and nouns, with a higher text information
density.

Strategy Elimination Riddle 

Game

Fishing RPG Casual Sports Card 

Real Estate Education Finance Retail Tourism Automotive ENT Healthcare Jewelry

Industry

Technology

Adventure Management

Spice Clothing Agri-industry Cosmetics Home Decor Gifts Shoes Snacks Beverages

Product

APLS

Figure 3: The statistical histogram distribution and examples of SVAD videos in industry, product, and game categories. The
height of the bars indicates the number of videos in each class. Video distribution across different industry categories is
colored blue. The distributions of the top 15 product categories and the top 15 game categories are colored orange and green,
respectively. This figure demonstrates that SVAD exhibits substantial diversity.

Figure 4: Type-annotation curve, with "type" referring to a
unique 4-gram. Our SVAD shows more annotation diversity
than other datasets.

3.3 Data Annotation
Expert annotators are hired by a professional annotation com-

pany to label the data. Comprehensive guidelines for annotation
are crafted, and a range of example annotations are supplied. It is

discovered that beyond standard annotation guidelines, an abun-
dance of illustrative examples significantly assists annotators in
accurately understanding these standards, thereby enabling the
production of high-quality annotations.

To stringently control the quality of annotations, daily quality
checks are conducted at the end of each annotation session. Work
from annotators who do not meet the quality criteria is subject to re-
evaluation by the annotation team. Moreover, after the initial round
of annotations, trained annotators are required to review their
peers’ work and make necessary corrections to any substandard
annotations. These practices ensure the high annotation quality
of the dataset. As a result, a total of 34,930 valid annotations are
obtained.

3.4 Dataset Statistics
The compiled dataset encompasses 34,930 segments extracted from
5,046 videos, showcasing an extensive variety covering 649 different
products, 470 various games, and 191 distinct sub-industries. This
diversity is depicted in Figure 3. The dataset is segmented into
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Table 3: POS tags and average unique 𝑛-grams.

Dataset Fine-grained POS tag Average Unique N-grams
% Adv. % Verb % Noun % Adj. 1-gram 2-gram 3-gram 4-gram

MSVD - 3.7 17.9 33.5 2.0 0.4 1.7 2.7 2.9
VATEX - 6.4 16.4 28.4 3.7 0.1 0.8 2.2 3.5
FAVD ✓ 2.9 15.3 33.9 8.4 0.2 1.7 4.2 6.0
SVAD ✓ 3.7 18.4 32.7 4.9 0.6 4.8 10.7 15.4

training and testing sets; the former comprises 4,523 short videos
and 31,167 clips, while the latter includes 523 short videos with
3,793 segments. Detailed information regarding the dataset division
is presented in Table 2. On average, each short video consists of
seven clips, with an average duration of 5.1 seconds per clip. The
annotations have an average length of 45.2 words.

In comparison with other datasets relevant to video captioning
and dense video captioning, as shown in Table 1, we highlight our
text information density by calculating the number of words per
annotation divided by the duration of a video clip (Word/s). It is ob-
served that while many datasets score around 1, our SVAD dataset
reaches the highest text information density of 12.2, doubling the
highest value (5.5) found among competitors. This significant vari-
ance, attributed to the high information density characteristic of
short videos and the fine-grained nature of STFVD, highlights the
domain gap between short and conventional videos.

Amore thorough comparison is conductedwith thewell-established
video captioning dataset VATEX [35] and another fine-grained
video description dataset, FAVD [27]. Compared to VATEX [35]
and FAVD [27], all four distributions of SVAD shift to the right, as
depicted in Figure 2, suggesting that each SVAD annotation is char-
acterized by a greater length (Figure 2a), encompassing more nouns
(Figure 2d) and verbs (Figure 2c). As demonstrated in Figure 2b,
SVAD boasts a higher count of video-annotation pairs with elevated
text information density in comparison to the other datasets.

To examine linguistic complexity, unique n-grams per annotation
and Part-of-Speech (POS) are computed , as detailed in Table 3. A
higher count of unique n-grams per annotation in SVAD suggests
superior linguistic complexity, presenting a challenge for precise
generation. The POS analysis reveals that datasets focused on fine-
grained descriptions, such as FAVD [27] and SVAD, contain a higher
percentage of adjectives than those centered on video captioning.
Moreover, the proportion of verbs in SVAD exceeds that in FAVD
[27] and other datasets, indicating that SVAD annotations feature
more movements, primarily because short video shots often capture
intense plot conflicts or highlights.

Inspired by the type-token vocabulary curve [41] and the Type-
Caption Curve in VATEX [35], the Type-Annotation Curve is illus-
trated in Figure 4. Each data point (𝑥,𝑦) on this curve signifies the
count of unique types 𝑦 in a corpus with 𝑥 annotations, with SVAD
showcasing the steepest curve. This implies that SVAD possesses a
higher linguistic complexity compared to other datasets.

4 METHOD
Given an advertisement short video that is divided into multiple

segments{𝑥1, ..., 𝑥𝑛} , the objective is to generate a spatiotemporal
fine-grained video description for each segment. Specifically, for the

ViT

Description Loss
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Tokenizer & Embedding

Description
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Keyword Generation
Prompt

Feed Forward
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Self Attention

Dual Visual Alignment

Large Language Model 

Keyword Generation Loss

Q-Former

×"

Primary data Auxiliary data
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Description Prompt: 
Describe the video
Target:  A man in blue striped half-
sleeved brown with a key chain tied 
around his waist on a brown men’s bag.

Keyword Generation Prompt: 
A man in blue striped half sleeve had 
a key chain tied around his waist on 
__ men’s bag
Target: Brown

$

%*#+,!"#$ %*#+,%'(
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&- &.

Figure 5: Overview of SVAD-VLM method. Data from vari-
ous datasets are processed through a vision encoder and a
Q-Former, after which they are projected into the embed-
ding space of LLM by different components of the dual visual
alignment layer. The learnable queries from primary and
auxiliary data are concatenated with either a description
prompt or a keyword generation prompt. The concatenated
sequence is then fed into the LLM to produce response. Subse-
quently, these responses are optimized with the correspond-
ing description loss or keyword generation loss. Examples
of description prompt and keyword generation prompt are
illustrated on bottom.

multiple frames 𝑥𝑖 = {𝐼1, 𝐼2, ...𝐼𝑇 } of the i-th short video segment,
the aim is to product a text that sequentially describes the subject’s
movements within the segment, while capturing relevant details.
This section begins with an introduction to the model structure
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(Section 4.1), proceeds to discuss the prompt-guided keyword gen-
eration task (Section 4.2), and concludes with the presentation of
the dual visual alignment designed for training with mixed data
(Section 4.3).

4.1 Model Architecture
The model comprises three main components. Initially, visual in-

formation from the short videos is extracted using a visual encoder.
Subsequently, the features are compressed by cross-attention based
Q-Former. Finally, they are mapped to the token embedding space
of the Large Language Model (LLM) to generate the desired output.

Visual Encoder: A pre-trained Vision Transformer (ViT) model
equippedwith aGlobalMulti-Head Relational Aggregator is utilized.
For a sequence of frames 𝑣 in a short video clip:

𝑣 ∈ 𝑅𝑇×𝐻×𝑊 ×𝐶 . (1)

Each frame is aprtitioned into𝑀 non-overlapping patches, yielding
𝑋 𝑡
𝑣𝑖𝑠

∈ 𝑅𝑀×𝑑 . A class token is inserted into each frame along with
spatial positional encoding, formally:

𝑧𝑡(0) = [𝑒𝑡
𝑐𝑙𝑠
, 𝑋 𝑡𝑣𝑖𝑠 ] + 𝑒

𝑠𝑝𝑎 . (2)

The model integrates these features into 𝐿 stacked ViT blocks B(i) .
Global Multi-Head Relation Aggregators (GMHRA) are inserted
behind specific 𝐾 ViT blocks 𝐵 𝑗0 , ..., 𝐵 𝑗𝑘−1 to obtain temporal infor-
mation across multiple frames. The final step involves concatenat-
ing the aggregated features with all frame features to obtain the
desired result:

𝑧𝑡(𝑖 ) = Bi (𝑧𝑡(𝑖−1) ),∀𝑡 ∈ {0, ...,𝑇 − 1}, 𝑖 ∈ {0, ..., 𝐿 − 1}, (3)

𝑧𝑔𝑚ℎ𝑟𝑎,ℎ+1 = GMHRA(𝑧𝑔𝑚ℎ𝑟𝑎,ℎ, [𝑧0( 𝑗ℎ ) , ...𝑧
𝑇−1
( 𝑗ℎ ) ]), ℎ ∈ {0, ..., 𝑘 − 1},

(4)

𝑍𝑣𝑖𝑠 = [𝑧𝑔𝑚ℎ𝑟𝑎,𝑘 , 𝑧0, ..., 𝑧𝑇−1] . (5)

Visual Feature Compression: The visual features are com-
pressed by a series of learnable queries using the Q-Former struc-
ture, as in BLIP2 [13]. These queries are subsequently mapped to
the token embedding space compatible with the Large Language
Model (LLM) via a linear layer. Within the Q-Former, the learnable
queries undergo self-attention to interact amongst themselves and
cross-attention to engage with the visual features. Formally, given
the visual features 𝑍𝑣𝑖𝑠 and learnable queries 𝑄 ∈ 𝑅𝑛𝑞×𝑑 :

𝑄 = QFormer(𝑄,𝑍𝑣𝑖𝑠 ). (6)

An alignment layer is introduced to ensure that the outcomes pro-
duced by the Q-Former align with the LLM’s token embedding
space.

𝑄 =𝑊𝑄 + 𝑏. (7)

LLMGeneration: The decoder employed in ourmodel is Baichuan
[40]. Prompt tokens 𝑃𝑖𝑛 are embedded into the input space of LLM,
then concatenated with the aligned queries𝑄 to generate the output
tokens.

𝑇𝑜𝑢𝑡 = LLM(𝑐𝑎𝑡 (𝑄, Emb(𝑃𝑖𝑛))) . (8)

4.2 Prompt-guided Keyword Generation
The most straightforward method to train a fine-grained video

description model invloves issuing description prompts, such as
“Please describe this video” to themodel and expecting it to generate
output a desired description for the specified clip. Employing this
strategywith our dataset, however, yielded unsatisfactory outcomes.
Visual inspection of the results indicated biases in themodel’s recog-
nition of certain key information. We propose a prompt-guided
keyword generation approach to enhance the model’s ability to
identify key information.

In the data preprocessing phase, key words are extracted from
the fine-grained description corresponding to each clip using LLM.
During generation, the model receives a description wherein a
randomly selected keyword is replaced with placeholders. The
model is then tasked with filling in these blanks, compelling it to
distill key visual information from the learned queries. Contrary to
the description task, where many words may have little relevance to
the visual content, this method focuses on crucial visual details. The
prompts 𝑃𝑑 , 𝑃𝑘 and targets 𝑇𝑑 ,𝑇𝑘 of these two different tasks are
illustrated in Figure 5. The training objectives for the description
task and the prompt-guided keyword generation task are denoted
by 𝐿𝑑 and 𝐿𝑘 , respectively, where

𝐿𝑥 = −
𝑙∑︁

𝑚=1
log 𝑝 (𝑇𝑥,𝑚 |𝑄, 𝑃𝑥 ,𝑇𝑥,1:𝑚−1), 𝑥 ∈ {𝑑, 𝑘}, (9)

𝐿 = 𝜆𝑑𝐿𝑑 + 𝜆𝑘𝐿𝐾 . (10)

4.3 Dual Visual Alignment
In the current landscape, short video platforms are inundated with a
plethora of advertisement short videos. The exorbitant cost of man-
ual annotation renders the procurement of fine-grained annotations
for such an extensive dataset currently impractical. Nonetheless,
many publicly available video caption data exist. It is posited that
mixed training with lower-quality video captioning data could en-
dow our model with enhanced generalization capabilities. Within
this context, data from SVAD is designated as primary data, while
general video caption data is classified as auxiliary data.

Due to varying text patterns in different datasets, directly inte-
grating auxiliary data into mixed-dataset training may detrimen-
tally affect the model’s performance. To mitigate the negative im-
pact of incorporating auxiliary data, dual visual alignment is used.
A dual alignment layer is introduced to project the learnable queries
derived from primary and auxiliary data into distinct embedding
spaces 𝑄𝑝𝑟𝑖𝑚 and 𝑄𝑎𝑢𝑥 . Specifically,

𝑄𝑖 =𝑊𝑖QFormer(𝑄,𝑍𝑣𝑖𝑠,𝑖 ) + 𝑏𝑖 , 𝑖 ∈ {𝑝𝑟𝑖𝑚, 𝑎𝑢𝑥} (11)

Furthermore, two disparate tasks using auxiliary data are explored,
encompassing description and prompt-guided keyword generation,
as depicted in Figure 5.

5 EXPERIMENTS
This section introduces the implementation details, encompassing
the dataset utilized, model experimental settings, and evaluation
metrics. Subsequently, we delineate our experimental findings, in-
cluding comparative analyses with other studies, an ablation study,
and a text-to-video result as an application.
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Table 4: Comparison experiments with other methods on the SVAD dataset. The LLM-based metrics includes correctness (Cor),
detail (Det), temporal accuracy (Tem), and context (Con). The methods marked with * are re-implemented by the authors.

Method Mod LLM Conventional Metrics LLM-based Metrics
B@1 ↑ B@4 ↑ C ↑ R ↑ Mean ↑ Cor ↑ Det ↑ Tem ↑ Con ↑ Mean ↑

General MLLM
BLIP2 [13] image OPT-6.7B 0.9 0.1 3.5 9.6 3.5 1.64 1.30 1.31 1.94 1.30
Qwen-vl [3] image Qwen-7B 16.7 2.2 7.5 16.8 10.8 1.56 2.19 1.15 1.96 1.72
LLaVA(v1.5) [20] image Vicuna-7B 13.9 0.8 1.1 14.3 7.5 1.61 2.30 0.98 1.94 1.71

VideoChat∗ [14] video Vicuna-13B 27.4 6.5 21.3 26.5 20.4 1.75 2.10 1.56 2.14 1.89
GVT∗ [5] video - 23.3 6.2 32.2 28.3 22.5 1.86 1.90 1.57 2.19 1.88
Video-LLaVA∗ [18] video Baichuan-13B 22.3 5.9 36.8 27.4 23.1 2.27 2.37 2.09 2.17 2.23

Upper Limit
Rewrite - - 39.8 10.6 99.3 41.7 47.8 4.68 3.89 4.75 4.45 4.44

Ours video Baichuan-13B 29.8 6.9 38.5 29.8 26.3 2.40 2.41 2.19 2.82 2.46

Table 5: Ablation study of the proposed methodologies, with
PKG denoting prompt-guided keyword generation and Mix
representing mixed-dataset training

PKG Mix B@1 ↑ B@4 ↑ C ↑ R ↑ Mean

✗ ✗ 30.7 6.7 28.1 27.2 23.2
✓ 29.0 6.6 32.4 27.9 24.0

✓ 27.9 6.8 34.3 29.0 24.5
✓ ✓ 27.4 6.9 38.5 29.8 25.7

Table 6: Ablation study on the proportions of prompt-guided
keyword generation and description tasks (𝜆𝑘 and 𝜆𝑑 ).

𝜆𝑘 :𝜆𝑑 B@1 ↑ B@4 ↑ C ↑ R ↑ Mean ↑
0:1 30.7 6.7 28.1 27.2 23.2
1:2 30.4 6.5 30.8 27.4 23.7
3:2 28.8 6.4 31.7 27.3 23.6
5:2 29.0 6.6 32.4 27.9 24.0
10:2 28.0 6.1 31.6 27.5 23.3

Table 7: Ablation study of different experimental settings
involving auxiliary data.

Dataset Task Method B@1 ↑ B@4 ↑ C ↑ R ↑ Mean ↑Mixed Des PKG DVA

✓ 27.6 6.4 34.7 28.1 24.2

✓ ✓ 25.2 6.2 34.3 27.8 23.5
✓ ✓ 20.7 5.2 33.1 27.5 21.6

✓ ✓ ✓ 26.1 6.4 36.7 28.8 24.5
✓ ✓ ✓ 25.6 6.5 38.7 29.2 25.0
✓ ✓ ✓ ✓ 27.4 6.9 38.5 29.8 25.7

5.1 Implementation Details
The dataset comprises one pretrain dataset sampled from the same
short video platform as SVADdataset, and two downstream datasets,
SVAD as primary dataset and Youku-mplug caption [37] as aux-
iliary dataset. Training commences with the pre-training dataset,
followed by employing a mixed-dataset approach as detailed in our
methodology. The quality of the generated short video descriptions
is assessed using four rule-based metrics: BLEU1 [25], BLEU4 [25],

CIDEr [32] and ROUGE-L [19] Inspired by Video-ChatGPT [22],
We also consider four LLM-based metrics:information correctness,
detail orientation, contextual understanding, and temporal under-
standing. More implementation details can be found in appendix.

5.2 Comparative Experiment
Our SVAD-VLM is benchmarked against the state-of-the-art gen-
eral multimodal large language models (MLLMs) which are evalu-
ated in a zero-shot manner including BLIP2 [13], Qwen-vl [3] and
LLaVA(v1.5) [20]. For equitable comparison, we also re-implement a
sota video captioning method, GVT [5], and two sota video MLLMs,
VideoChat [14] and Video-LLaVA [18]. Additionally, the rewriting
of reference annotations by a large language model [2] is evalu-
ated, serving as an approximate upper limit for the SVAD dataset.
Quantitative and qualitative outcomes are detailed in Table 4 and
illustrated in Figure 6. SVAD-VLM surpasses all competitors across
the 10 evaluation metrics outlined in Table 4, demonstrating con-
siderable advantages.

General image MLLMs exhibit suboptimal performance on the
SVAD dataset due to its extensive variety, encompassing diverse
industries, trending products, and popular games (Figure 3), which
might not be represented in the training data of general MLLMs.
This diversity makes the SVAD dataset particularly challenging.
Furthermore, while general image MLLMs generate video descrip-
tions based on intermediate frame, the Spatiotemporal Fine-grained
Video Description (STFVD) necessitates a robust temporal model-
ing capability owing to the high information density characteristic
of short videos.

SVAD-VLM also notably outperforms GVT [5], VideoChat [14]
and Video-LLaVA [18]. This superior performance is attributed
not to the integration of LLMs but to its tailored designs for short
videos.

Given the inherent randomness in the generation process of
LLMs, we utilized a large language model, Qwen-72B [2], to rewrite
the reference annotations, presenting these evaluations as upper
bounds for the metrics. The substantial discrepancy between ex-
isting methods and this theoretical upper limit underscores the
complexity of STFVD on the SVAD dataset, highlighting the need
for further in-depth investigation.
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SVAD-VLM: On a table sits a white automatic stirring cup. A person is pouring a packet of coffee powder into the cup, then pressing a button with their 
right hand, causing the cup to automatically stir.

GVT: On a gray table sits a white stirring cup filled with water and coffee powder, then a hand presses a button, and the cup starts stirring automatically.

VideoChat: A person is pouring a packet of coffee powder into a white electric stirring cup, then tapping the lid on the stirring cup and pressing the button to start 
stirring. On a white table sits a white stirring cup filled with water and coffee powder, then the cup is tapped open, and the button is pressed. 

LLaVA (v1.5): The picture shows a person holding a cup of coffee, with a spoon inside. The cup is placed on a dining table, and the person is stirring the coffee. 

BLIP2: A person is using a tool to clean a cup.

Qwen-v1: The picture shows a multifunctional automatic stirring cup. The cup has a stainless-steel exterior with a handle, a white interior, and stripes at the top. 

Video-LLaVA: A person holds a cup filled with coffee powder, then uses an electric mixer to stir it, and pours the well-stirred coffee into a white coffee cup.

Reference: On a table, there is a white automatic blender cup filled with water. A person is pouring a bag of coffee into the blender cup and pressing the yellow 
button. The blender cup starts stirring automatically.

… … … … … … …

Figure 6: Qualitative results from the SVAD dataset, comparing our proposed SVAD-VLM with the BLIP2 [13], Qwen-vl [3],
LLaVA(v1.5) [20], VideoChat [14], GVT [5] and Video-LLaVA [18].

5.3 Ablation Study
The Effect of Proposed Methods. As depicted in Table 5, signif-
icant enhancements in model performance are attributed to both
prompt-guided keyword generation and mixed-dataset training
techniques. Adopting the two techniques separately brings 15.3%
and 22.1% performance improvements to CIDEr, respectively, while
adopting them simultaneously improves the performance by 37%.
A minor decline in BLEU1 scores primarily results from increased
text complexity. This study prioritizes sentence-level similarity to
ensure the model accurately extracts key information, rather than
achieving word-for-word consistency. Such consistent improve-
ments across metrics affirm the effectiveness of our approach.
Impact of Task Proportions. Table 6 presents the effect of vary-
ing the ratios of prompt-guided keyword generation tasks to de-
scription tasks within the SVAD dataset. The findings suggest that,
within a specific range, integrating these two tasks proves advanta-
geous for the model. However, due to the significant difference in
output lengths between the keyword generation and the targeted
short video descriptions, exceeding this range compromises the
model’s descriptive capability.
The Effect of Auxiliary Data Settings. Through comprehensive
experimentation, we explore the effects of diverse experimental
setups on the auxiliary dataset, as presented in Table 7. We use
post-pretraining as a baseline to illustrate the effectiveness of mixed-
dataset training. Post-pretraining indicates the sequence where the
model, following its initial pretraining, is trained first on auxiliary
data and subsequently on primary data. Direct mixed-dataset train-
ing is found to adversely impact the performance by 0.2, 0.4 and
0.3 to BLEU4, CIDEr, and ROUGE-L, highlighting a domain gap
between SVAD and other datasets. The introduction of dual visual
alignment considerably enhances performance across all evalua-
tion metrics when incorporating auxiliary data. When using the
description task and prompt-guided keyword generation task sepa-
rately on auxiliary data, incorporating dual visual alignment can

lead to performance improvements by 4.8% and 11.1% to BLEU4,
12.8% and 10.9% to CIDEr, as well as 5.0% and 4.7% to ROUGE-L.
Furthermore, within the context of auxiliary data, amalgamating
the prompt-guided keyword generation task with the description
task offers additional benefits, which is by 1.2 compared with de-
scription task and by 0.7 with prompt-guided keyword generation
task to the average of four metrics. The increase is not as much
as on SVAD dataset given that auxiliary data annotations lack the
details present in SVAD.

5.4 Text-to-video Retrieval
An experiment is conducted on the text-to-video retrieval task
utilizing a contrastive learning model similar to CLIP-ViP [38] and
results are shown in Table 8. In comparison with general video
captions produced by BLIP2 [13], employing spatiotemporal fine-
grained video descriptions as text queries significantly improves
the recall rate, indicating a closer match to the source video. This
outcome further substantiates the efficiency of spatiotemporal fine-
grained video descriptions in modeling short videos.

Table 8: Application on text-to-video retrieval.

Text Type R@1 R@5 R@10 Mean

General Caption (BLIP2) 45.3 79.0 89.2 71.17
Fine-grained Description (Ours) 86.7 99.0 99.7 95.12

6 CONCLUSION
We propose spatiotemporal fine-grained video description, a new
video-language modeling task provides detailed spatiotemporal de-
scriptions focusing on short video. A new dataset named SVAD has
been established to support this research. We suggest adding a com-
pletion task during training to efficiently utilize key information in
the text. Also, We design a simple yet effective dual alignment layer
for mixed-data training to benefit from auxiliary data. Extensive
experiments have validated the effectiveness of our approach.
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