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In the supplementary material, we additionally provide more in-
formation about the SVAD dataset and further comparison with
other datasets in Section 1. We provide implementation details of
SVAD-VLM and text-to-video retrieval experiments in Section 2
We also include more quantitative results in Section 3. We attach
a video named "demo.mp4" containing some samples in the SVAD
dataset to this supplementary material and raw data examples in
the "examples" folder.

1 THE SVAD DATASET
Word Frequency. We plot the word frequency of both Chinese

and English version of annotations through word cloud, as illus-
trated in Figure 1. We conduct a brief analysis of the words that
appeared in the word cloud. It can be observed that words denoting
colors such as "white", "black", "red", "blue", etc., appear frequently.
Additionally, verbs related to clothing like "wear" and nouns such
as "clothes", "shirt" also show a high frequency of occurrence. These
words are derived from descriptions of visual details in the anno-
tations. Furthermore, verbs like "hold", "display", "stand", "sit" are
also prominently featured, stemming from descriptions of charac-
ter movements in the video. It is noteworthy that words like "left",
"right" and "hand" are among the high-frequency vocabulary, as
our dataset requires precise descriptions at the level of "movement"
instead of action. Lastly, the high occurrence of the word "game" in
the word cloud indicates that our dataset includes a rich array of
gaming scenarios.

Data Annotation.We provide the instructions and examples of
annotation process in Figure 2. In our annotation instructions, vi-
sual details and fine-grained movements are emphasized, as shown
in rule No.5 and rule No.6. We find that we can improve annota-
tion qualities by simply providing several annotation examples to
annotators.

Further Comparison. We provide comprehensive comparison
of SVAD dataset to five datasets, including VATEX [13], FAVD [11],
MSVD [3], Chinaopen [2] and Youku-mplug Caption (YOUKU) [14].
Complete distributions of annotation lengths (Figure 3a), number
of words per second (Figure 3b), unique verb per annotation (Figure
3c) and unique noun per annotation (Figure 3d) are plotted in Figure
3. All distributions of SVAD dataset shift to the right and exhibit
characteristics of a long-tail distribution. The presence of more
samples with extensive annotation lengths increases the difficulty
of accurate generation, highlighting the challenge of the SVAD
dataset. The inclusion of a substantial number of (video,annotation)
pairs with high word per second (Word/S) metric indicates the
characteristic of high information density found within short video
clips. Moreover, the presence of a greater number of nouns and
verbs in each annotation, compared to other datasets, demonstrates
that the SpatioTemporal Fine-grained Video Description (STFVD)
task provides a rich set of visual details and captures fine-grained
movements.

Distributions of Videos. In Figure 4, Figure 5, Figure 6, and
Figure 7, we demonstrate that videos in the SVAD dataset are sam-
pled from a wide range of categories. In Figures 4 and 5, we present
the statistical histograms of videos from 191 sub-industries across
15 industry categories. In Figure 6 and Figure 7, we show complete
statistical histograms of videos across all product and game cate-
gories. These figures demonstrate the high diversity of the SVAD
dataset.

(a) Chinese Word Frequency.

(b) English Word Frequency.

Figure 1: Word Frequency. The word frequency of Chinese
annotation (Figure 1a) and English (Figure 1b) is computed
and illustrated through word clouds.
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2 IMPLEMENTATION DETAILS
Dataset. We use two downstream datasets, SVAD as primary

dataset and Youku-mplug caption [14] as auxiliary dataset. Pretrain-
ing is conducted on an advertisement short video dataset, in which
videos are sampled from the same short video platform with the
SVAD dataset. This pretraining dataset is significantly larger than
the SVAD dataset, encompassing around 1 million advertisement
entries. We generate pseudo-labels using existing image caption
models [5] and get temporal information by concatenating queries
from several frames.

Experimental Settings. The Q-Former parameter from BLIP2
[5] is employed to initialize our Q-Former. GMHRA [7] and learn-
able queries are initialized with VideoChat [6] parameters, while
the dual alignment layer undergoes random initialization. Only
the aforementioned parameters are trained, with the remainder
being frozen. For the vision encoder, ViT-g/14 from EVA-CLIP [12]
is utilized alongside Baichuan-13B [16] for the LLM. Each video
is processed to sample eight frames at equal intervals for visual
feature extraction. The batch size is set at 32 for pretraining and
reduced to 16 for fine-tuning. Model optimization is achieved using
AdamW [10], coupled with a linear warm-up and cosine learning
rate adjustment. The initial learning rate for the Q-Former is set to
3e-6, while that for other parameters is set to 3e-5. We train SVAD-
VLM 1 epoch for pretraining and 3 epoch for fine-tuning. Training
commences with the pre-training dataset, followed by employing
a mixed-dataset approach as detailed in our methodology in main
text.

Text-to-video Retrieval Details. We obtain video representa-
tions using a Vision Transformer (ViT) [4] with temporal attention,
which models the sequential relationships of the frames. Drawing
on the method of CLIP-ViP [15], we aggregate the video representa-
tions onto a single video proxy token. We then use the video frames
and the video’s ASR (Automatic Speech Recognition) to train this
model. We adopt video-text contrastive learning loss as our train-
ing objective. For a reference video, we generate general caption
and fine-grained description are used by BLIP2 [5] and SVAD-VLM.
Text-to-video retrieval experiments are then conducted using these
two types of text message.

3 QUALITATIVE RESULTS
Video description. Figure 8 illustrates more qualitative exam-

ples, where we compare SVAD-VLM with the BLIP2 [5], Qwen-vl
[1], LLaVA(v1.5) [9], VideoChat [6], GVT [2] and Video-LLaVA
[8]. SVAD-VLM outperforms all competitors by providing accu-
rate visual details like "cheongsam" and "ponytail" in Figure 8a
and accurately describing movements of the woman in Figure 8b.
This demonstrates that SVAD-VLM extracts key information due
to prompt-guided keyword generation task and shows strong gen-
eralization capability benefited from mixed-datasets training.

Text-to-video Retrieval. In Figure 9, we provide qualitative
results of general caption and our fine-grained description on text-
to-video retrieval. Fine-grained descriptions outperform general
captions, demonstrating that spatiotemporal fine-grained video
description task is more suitable for short videos by providing a
more detailed description both spatially and temporally.
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INSTRUCTION:
1. Describe all significant individuals and movements presented in the video.
2. Describe the setting of the event if it is clear; otherwise, omit.
3. If there are no human figures in the video, describe the main subject.
4. If there is no clear movement, only describe the characters or main subject.
5. If multiple characters or subjects appear sequentially, label them accordingly; 
separate them with semicolons.
6. Describe details related to the main subject, omit unimportant details.
7. Each sentence should contain at least fifteen words.
8. Avoid typing or grammatical errors.
9. Maintain objectivity, refrain from including personal feelings, and do not use "I" or 
"my."
10. Do not use phrases like "here is" or "there is."
11. Do not describe events that occurred in the past or are expected to happen in the 
future.
12. Do not assign names to people on your own; if specific names are mentioned in the 
video, do not label them.

EXAMPLES:

Annotation: A man holds a glass with light green tea soup and green tea leaves inside. 
A man uses a white plate to scoop up raw tea leaves in a white woven bag for display.

Annotation: In the shooting game, there are multiple flames in the scene, and a man 
wearing a red suit, carrying a black gun and a tan backpack opens a box and picks up 
the game equipment.

Figure 2: Annotation instructions and examples.
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(a) Distributions of annotation lengths.

(b) Distributions of number of word percend.

(c) Distributions of unique verb per annotation.

(d) Distributions of unique noun per annotation

Figure 3: Statistical histogram distributions on VATEX [13], FAVD [11], MSVD [3], Chinaopen [2], Youku-mplug Caption
(YOUKU) [14] and SVAD. Compared to other datasets, distributions of SVAD shift to the right, which means its annotations are
longer and richer in verbs and nouns, with a higher text information density.
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Figure 4: Statistical histograms of videos from 191 sub-industries across 15 industry categories (first 8 categories).
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Figure 5: Statistical histograms of videos from 191 sub-industries across 15 industry categories (last 7 categories).



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Spatiotemporal Fine-grained Video Description for Short Videos
Supplementary Material ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 6: Statistical histograms of videos across different product categories.

Figure 7: Statistical histograms of videos across different game categories.
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SVAD-VLM: In front of a pink background, a woman in a cheongsam with a ponytail, sitting on a chair, is playing the erhu. She is 
holding the headstock of the erhu with the left hand and pulling the bow with the right hand.

GVT: A woman in a cheongsam is sitting on a chair, holding a black wind controller in her right hand.

VideoChat: A woman in fancy clothes is playing a violin on a pink wall. On the back are the words “how to adjust the violin frequency.”

LLaVA (v1.5): The image depicts a woman dressed in traditional Chinese clothing, sitting on a chair and holding a long, thin musical 
instrument. She appears to be playing this instrument, probably a violin or similar stringed instrument. 

BLIP2: A Chinese woman is playing a musical instrument.

Qwen-v1: In the picture, a woman in a pink cheongsam is playing the erhu. A huqin stool is placed under the erhu, along with an erhu 
and some music books.

VideoLLaVA: A woman dressed in pink, holding a long black stick, speaks to the camera.

Reference: A woman in a pink cheongsam with a ponytail is sitting on a chair playing the erhu.

(a)

… … …… …

SVAD-VLM: A woman in a gray coat stands and shows off a fanny bag, then unzips it with both hands and takes cell phone and the 
perfume inside out. She then put the items back and fasten the buckle of the bag.

GVT: A woman dressed in gray shows off an invisible anti-theft and degaussed fanny pack.

VideoChat: A woman wearing a gray coat and a gray skirt holds a brown fanny pack in her left hand, taps the leather of the fanny pack 
with her fingers, and then puts the cellphone into it.

LLaVA (v1.5): The image shows a woman wearing a black dress and a brown handbag. She has a cell phone in her hand. The woman is 
standing in a room with handbags on the floor nearby. There are several other handbags in the scene.

BLIP2: A woman is holding a cell phone.

Qwen-v1: This picture is an advertising copy for a product. At the center is a female model in a gray dress holding a cell phone bag made 
of coffee-colored leather material with lanyards for crossbody use and a separate space inside the bag for the phone.

VideoLLaVA: A woman in a gray coat hangs a brown fanny pack around her waist, then holds it in both hands to show the inner 
structure of the fanny pack.

Reference: A woman dressed in gray opens a brown fanny bag tied around her waist, pulls her cell phone and perfume out of the bag, 
pulls the key, and shakes it from side to side to show a brown fanny waist.

(b)

Figure 8: Qualitative results from the SVAD dataset, comparing our proposed SVAD-VLM with the BLIP2 [5], Qwen-vl [1],
LLaVA(v1.5) [9], VideoChat [6], GVT [2] and Video-LLaVA [8].
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Original Video Top1 Top2 Top3 Top4 Top5Text
General Caption:
A woman pours red 
liquid into a glass on a 
table.

Fine-grained 
Description (Ours):
A woman in a yellow 
top pours red liquid 
from a clear glass into 
another glass.

(a)

General Caption:
A video game screen 
showing a person 
playing a game.

Original Video Top1 Top2 Top3 Top4 Top5Text

Fine-grained 
Description (Ours):
In a video game, a 
character dressed in 
red uses Spider-Man’s 
skills to fly to a tall 
building.

(b)

Figure 9: Qualitative results general caption and fine-grained description in text-to-video retrieval.
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