
Graph Neural Networks Can Escape Oversmoothing

Supplementary Material for:
Graph Neural Networks (with Proper Weights) Can Escape

Oversmoothing

Appendix A. Proofs of Main Results

In this section, we provide omitted proofs in the main paper.

A.1. Proof of Propostion 2

We first give some useful lemmas here, which would be used in the later proof.

Definition 9 The square matrix A is irreducible if there is no permutation matrix P s.t.,

PAP−1 ̸=
(

E F
0 G

)
, (16)

where E and G are non-trivial square matrices. Otherwise, we say A is reducible.

By combining Theorem I and Theorem II in Herstein (1954), we have the following
lemma.

Lemma 10 If A ≥ 0 and Am > 0 for some m ∈ N, then A has a positive eigenvalue r such
that

• if λ is any other eigenvalue of A, then |λ| < r (thus ρ(A) = r),

• there exists a eigenvector x associated eigenvalue r such that x > 0.

Lemma 11 (Lemma 3 in Herstein (1954)) If an N × N matrix A ≥ 0 and is irre-
ducible, and Aii > 0 for all i ∈ [N ], then AN−1 > 0.

The following proposition is an extension of Theorem 1 in Li et al. (2018).

Proposition 12 Under Assumption 1, for any P ∈ P = {P ∈ RN×N |∃a > 0 s.t., aP ≥
A and ρ(P ) = 1}, P has eigenpair (1, v) where all components of v are positive and any
other eigenvalue λ of P satisfies |λ| < 1. Let λ2 be the eigenvalue of P with the second
maximal module. Then for any x ∈ RN , we have

lim
k→+∞

P kx = θv, for some θ ∈ R, (17)

∥P kx− θv∥2 = O(|λ2|k). (18)

Proof [Proof of Proposition 12] Since there exists a > 0, P ≥ 1
aA ≥ 0. It follows from

Assumption 1 that Aii > 0 for i ∈ [N ], hence Pii > 0 for i ∈ [N ]. Next, we prove that P is
irreducible by contradiction. If P is reducible, there exists permutation matrix P1 s.t.,

P1PP−1
1 ̸=

(
P11 P12

0 P22

)
.
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Combining P ≥ 1
cA ≥ 0, we have

P1AP
−1
1 ̸=

(
A11 A12

0 A22

)
.

Since A is a symmetric matrix and P−1
1 = p⊤1 , P1AP

−1
1 is also a symmetric matrix. It

follows that

P1AP
−1
1 ̸=

(
A11 0
0 A22

)
.

This means that graph G can be can be divided into two parts with no edge to each other.
It contradicts Assumption 1, thus P is irreducible. According to Lemma 10 and Lemma
11, P has dominant eigenpair (1, v1) where all components of v1 are positive and any other
eigenvalue λ of P satisfies |λ| < 1. Suppose P = V ΛV −1 with Λ = diag{λ1, λ2, . . . , λN},
1 = λ1 > |λ2| ≥ · · · , |λN | and V = [v1, v2, . . . , vN ]. If x =

∑N
i=1 θivi, then

P kx = θ1v1 +
N∑
i=2

θiλ
k
i vi. (19)

Therefore, we conclude that
lim

k→+∞
P kx = θ1v1,

∥P kx− θ1v1∥2 = O(|λ2|k).

Then we can give the proof of Proposition 2 in the following.
Proof [Proof of Proposition 2] Armed with Propsittion 12, we can get the results directly.

A.2. Proof of Proposition 3.

The proof of Proposition 3 mainly follows the proof of Lemma 3 in Daneshmand et al.
(2020) which is based on Lemma 15. So we first introduce some definitions and lemma in
the following.

Definition 13 A set of of d× d matrices T is contracting if there exists a sequence {Mn ∈
T}∞n=1 such that Mn/ ∥Mn∥ converges to a rank one matrix.

Definition 14 The set d×d matrices T is strongly irreducible if there does not exist a finite
family of proper linear subspaces V1, . . . , Vk ⊂ Rd such that the union of these subspaces is
invariant with respect to T i.e., Mv ∈ V1 ∪ V2 ∪ . . . ∪ Vk holds for ∀v ∈ V1 or V2 or . . . or
Vk and ∀M ∈ T .

Lemma 15 (Theorem 3.1 in Bougerol et al. (2012)) Let W1,W2, . . . be random d×d
matrices which drawn independently from a distribution P. Let Bn =

∏n
k=1Wk. If the

support of P is strongly irreducible and contracting, then any limit point of {Bn/ ∥Bn∥}∞n=1

is a rank one matrix almost surely.
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Then we can give the proof for Proposition 3 as follows:
Proof [Proof of Proposition 3] Without loss of generality, we assume that each indepen-
dent and identically distributed element of the weight matrices is drawn from the standard
Gaussian distribution N (0, 1) or the uniform distribution Uniform[-1,1]. And the supports
of two distributions are TG = Rd×d and TU = [−1,−1]d×d, respectively. Since TU ⊂ TG, we
only need to prove that TU is contracting and strongly irreducible.

First, we prove that TU is contracting. Since Mn = 11⊤ ∈ TU , n = 1, 2, . . . , and the
limit of { Mn

∥Mn∥}
∞
n=1 is a rank one matrix, we have that TU is contracting.

For strongly irreducible. For any finite family of proper linear subspaces V1, . . . , Vk ⊂ Rd,
suppose v ∈ V1 such that ∥v∥ = 1. Let ei be the i-th standard basis in Rd, i = 1, 2, . . . , d.
Define Mi = eiv

⊤,i = 1, 2, . . . , d. Obviously, Mi ∈ TU and Miv = ei. Hence, Miv
d
i=1 = ei

d
i=1

is not contained in any union of the finite proper linear subspace of V1, . . . , Vk for k < d.
And this follows that TU is strongly irreducible.

Combining Lemma 15, we finite the proof.

Remark. It is easy to verify that for any α ∈ (0, 1], (I−αLsym), (I−αLrw) ∈ P which

mentioned by Theorem 1 in Li et al. (2018). (I − αLsym) has dominant eigenpair (1, D
1
21)

and (I − αLrw) has dominant eigenpair (1,1) . And the aggregation matrix in GAT also
belongs to P and has dominant eigenpair (1,1).

A.3. Proof of Theorem 4

Proof Assume that P has eigendecomposition P = V ΛV −1, where Λ = diag{λ1, λ2, . . . , λN},
|λ1| > |λ2| ≥ · · · , |λN | and V = [v1, v2, . . . , vN ]. Without loss of generality, we assume that
Rank(X) = d < n, |λd| > 0 and X = VdQ, where Vd = [v1, v2, . . . , vd] and Q is a nonsingular
matrix. Let Λd = diag{λ1, λ2, · · · , λd},

W (1) = Q−1Λ−1
d , W (k) = Λ−1

d , k ≥ 2. (20)

Then we have the following:

X(1) = X, X(k) = Vd, ∀ k ≥ 2. (21)

It follows that columns of X(k) are linearly independent for any k ≥ 2. Therefore, there
exists a > 0 such that Expression (11) holds.

A.4. Proof of Proposition 6

Proof [Proof of Proposition 6] It is straightforward to verify that X(k)⊤X(k) = Id, i.e., X
(k)

is column orthogonal. Hence, there exists a > 0 s.t.,

E(X(k)), E(
X(k)

∥X(k)∥F
), MAD(X(k)) > a.
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A.5. Proof of Proposition 8

We first give a lemma which is modified from Theorem 4 in Zhuo et al. (2023).

Lemma 16 Let X,Y ∈ RN×d have singular values σX
1 ≥ σX

2 ≥ · · · ≥ σX
m > 0 and σY

1 ≥
σY
2 ≥ · · · ≥ σY

m > 0 (m = min{N, d}), respectively. Assume that
σY
i

σX
i

is monotonically

increasing with index i, then we have Erank(Y ) ≥ Erank(X). Further, if
σY
i

σX
i

are non-

constant, the inequality holds strictly, i.e., Erank(Y ) > Erank(X).

The proof for Proposition 8 is as follows:
Proof [Proof of Proposition 8] Suppose Σ = X̂⊤X̂ = UΛU⊤ and the singular value de-

composition of X̂ is X̂ = V ΣX̂U⊤, where ΣX is a diagonal matrix with singular val-

ues σX̂
i = λ

1/2
i , i = 1, 2, . . . , d. X = X̂Σf , it follows that the singular values of X are

σX
i = λ

1/2+p
i , i = 1, 2, . . . , d. Therefore, with −1/2 ≤ p < 0, σX

i /σX̂
i = λp

i , i = 1, 2, . . . , d
are strictly monotonically increasing with index i. Lemma 16 tells us that

Erank(X̂) > Erank(X).

Appendix B. Experiment Details

In this section, we provide details and hyperparameters for WeightRep.

B.1. Datasets Details

We evaluate the performance of our methods on nine benchmark datasets. And we use
torch geometric.datasets in PyTorch Geometric to load these datasets. Dataset statistics
are summarized in Table 4.

• The citation network datasets Cora, CiteSeer, and Pubmed (Yang et al., 2016) are
homophily graph datasets in which nodes represent documents and edges represent
citation links.

• The Amazon datasets Computers and Photo (Shchur et al., 2018) are the Amazon
co-purchase graph datasets in which nodes represent products and edges indicate two
products frequently bought together.

• The Coauthor datasets CS and Physics (Shchur et al., 2018) are co-authorship graphs
based on the Microsoft Academic Graph in which nodes represent authors, edges
indicate two authors co-authored a paper, node features represent paper keywords for
each author’s papers, and class labels indicate each author’ respective field of study.

• The Wikipedia graphs Chameleon and Squirrel (Rozemberczki et al., 2021) are het-
erophily datasets in which nodes represent web pages and edges indicate hyperlinks
between two web pages.
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Table 4: Statistics of graph datasets in this paper.

Dataset #nodes #edges #classes #features

Cora 2708 10556 7 1433
CiteSeer 3327 9104 6 3703
Pubmed 19717 88648 3 500
Computers 13752 491722 10 767
Photo 7650 238162 8 745
Coauthor CS 18333 163,788 15 6805
Coauthor Physics 34493 495924 5 8415
Chameleon 2277 36101 6 2325
Squirrel 5201 217073 5 2089

B.2. Parameter Settings

For all methods, we use standard GCNs as the backbone. We provide our parameter settings
in Table 5.

Table 5: Training hyperparameters.

Config optimizer learning rate weight decay training epochs hidden dimension dropout rate

Value Adam 5e− 3 5e− 4 200 32 0.6

Appendix C. Additional Results

C.1. Additional Comparation of GCN and MLP

Here, we add more experiments on CiteSeer and Pubmed datasets (see Figure 3).

C.2. Additional Results on GCN with 64 Hidden Dimensions

We conduct more experiments on GCN with 64 hidden dimensions. The results are shown
in Table 6.

C.3. Different Calculation Methods of Spectral Decomposition

Note that one step in WeightRep is to get the spectral decomposition of the covariance
matrix. We use the common linear algebra PyTorch library torch.linalg to implement
this operator. There are two ways to do this, the eigenvalue decomposition (EIG) and
the singular value decomposition (SVD). Then we compare the performances of different
implementations in Table 7. Roughly speaking, the performance is not very sensitive to



Zhuo Wang Ma Wang

Table 6: Node classification accuracies (%) for nine datasets. We use GCN as the backbone
with various depths: 2, 4, 8, 16. The hidden dimension is set to 64. Reported
results are averaged over 5 runs. For every layer setting, the highest accuracy is
in bold.

Datasets model #L=2 #L=4 #L=8 #L=16

Cora
GCN 82.05 ± 0.44 78.47 ± 1.11 18.18 ± 6.46 7.97 ± 2.60
WeightRep 81.99 ± 0.34 80.62 ± 0.48 78.11 ± 0.72 47.42 ± 0.61

CiteSeer
GCN 69.19 ± 0.43 58.71 ± 2.08 19.65 ± 0.00 19.3 ± 0.71
WeightRep 68.50± 0.24 64.61 ± 0.45 61.65 ± 1.68 38.83 ± 1.29

Pubmed
GCN 77.71 ± 0.15 75.94 ± 0.49 28.32 ± 9.21 35.71 ± 7.46
WeightRep 77.48 ± 0.21 75.92 ± 0.32 74.82 ± 0.52 73.72 ± 1.11

Computers
GCN 80.74 ± 0.42 45.32 ± 6.56 33.39 ± 19.29 37.20 ± 24.27
WeightRep 87.02 ± 0.22 83.03 ± 0.6 77.58 ± 1.00 62.76 ± 6.94

Photo
GCN 84.57 ± 1.45 76.67 ± 14.47 7.06 ± 1.64 13.50 ± 13.44
WeightRep 92.57 ± 0.09 91.35 ± 0.78 89.07 ± 0.25 76.37 ± 5.18

Coauthor CS
GCN 93.57 ± 0.10 88.91 ± 0.33 2.58 ± 2.32 3.74 ± 2.84
WeightRep 93.65 ± 0.03 92.8 ± 0.18 91.4 ± 0.14 89.67 ± 0.45

Coauthor Physics
GCN 95.68 ± 0.13 96.02 ± 0.30 90.88 ± 6.39 84.3 ± 0.00
WeightRep 96.77 ± 0.05 96.46 ± 0.10 96.09 ± 0.33 95.47 ± 0.30

Chameleon
GCN 50.88 ± 1.47 39.08 ± 2.27 22.37 ± 0.00 22.37 ± 0.00
WeightRep 64.61 ± 0.58 57.98 ± 0.67 48.29 ± 0.76 36.58 ± 0.87

Squirrel
GCN 29.70 ± 0.44 19.31 ± 0.00 19.31 ± 0.00 19.31 ± 0.00
WeightRep 48.24 ± 1.15 39.21 ± 0.72 35.52 ± 0.93 27.44 ± 1.58
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Figure 3: The impact of message aggregation and weight transformation when varying the
depth of models on CiteSeer, and Pubmed datasets. MLP has the same structure
as GCN except for the absence of message aggregation.

Table 7: Comparison of different calculation methods for the spectral decomposition. EIG
and SVD are denoted the eigenvalue decomposition and the singular value decom-
position, respectively.

Datasets Method #L=2 #L=4 #L=8 #L=16

Cora
EIG 81.79 80.70 77.85 22.01
SVD 82.21 80.71 76.35 25.62

CiteSeer
EIG 68.61 65.36 58.15 31.56
SVD 69.04 65.56 57.63 34.38

Pubmed
EIG 77.00 75.95 74.84 75.63
SVD 77.68 75.58 75.23 73.41

the implementation ways. However, compared to the eigenvalue decomposition, the sin-
gular value decomposition performs better in most cases and is more numerically stable.
Therefore, we use the singular value decomposition as our default implementation.

C.4. Expanded Table 2

We attach the expanded Table 2 in Table 8, which contains more datasets and standard
deviation. It can be seen that our method is superior to other methods or comparable.
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Table 8: Test accuracy (%) comparison of different normalizations. The highest accuracy
is in bold and the second one is underlined. OOM: out of memory.

Datasets Models #L=2 #L=4 #L=8 #L=16

CiteSeer GCN 68.96 ± 0.51 53.74 ± 4.13 19.65 ± 0.0 19.65 ± 0.0
LayerNorm 64.89 ± 0.5 61.74 ± 0.81 25.4 ± 3.09 19.65 ± 0.0
PairNorm 46.38 ± 1.93 40.17 ± 1.81 39.57 ± 2.04 24.09 ± 1.19
ContraNorm 63.67 ± 0.65 60.69 ± 0.9 60.18 ± 0.22 43.63 ± 4.02
WeightRep 69.04 ± 0.33 65.56 ± 0.24 57.63 ± 3.16 34.38 ± 2.72

Pubmed GCN 77.94 ± 0.12 75.96 ± 0.51 20.8 ± 0.0 32.02 ± 9.16
LayerNorm 75.04 ± 0.35 73.82 ± 0.61 43.51 ± 20.67 35.97 ± 7.59
PairNorm 72.81 ± 0.76 67.99 ± 2.06 64.05 ± 1.96 72.27 ± 1.1
ContraNorm 75.42 ± 0.39 OOM OOM OOM
WeightRep 77.68 ± 0.12 75.58 ± 0.36 75.23 ± 0.8 73.41 ± 1.71

Coauthor CS GCN 93.25 ± 0.33 72.3 ± 14.99 2.58 ± 2.32 1.42 ± 0.0
LayerNorm 93.8 ± 0.14 92.14 ± 0.62 16.94 ± 12.51 1.42 ± 0.0
PairNorm 93.4 ± 0.25 91.97 ± 0.62 85.25 ± 4.98 43.71 ± 21.94
ContraNorm 93.73 ± 0.36 OOM OOM OOM
WeightRep 93.81 ± 0.13 92.49 ± 0.07 91.24 ± 0.14 84.47 ± 0.57

Coauthor Physics GCN 95.74 ± 0.1 95.97 ± 0.11 91.53 ± 3.71 84.3 ± 0.0
LayerNorm 96.49 ± 0.33 96.82 ± 0.25 94.85 ± 3.33 84.3 ± 0.0
PairNorm 96.5 ± 0.23 96.15 ± 0.2 95.54 ± 0.44 93.93 ± 0.36
ContraNorm OOM OOM OOM OOM
WeightRep 96.62 ± 0.09 96.15 ± 0.07 95.7 ± 0.12 94.76 ± 0.18

Chameleon GCN 47.89 ± 1.5 36.89 ± 1.03 22.37 ± 0.0 22.37 ± 0.0
LayerNorm 61.36 ± 1.19 51.75 ± 3.35 22.37 ± 0.0 22.37 ± 0.0
PairNorm 63.11 ± 0.47 58.9 ± 1.34 48.86 ± 0.78 37.63 ± 2.83
ContraNorm 64.91 ± 1.04 58.68 ± 2.23 46.89 ± 2.33 38.99 ± 1.72
WeightRep 63.38 ± 0.95 59.42 ± 1.52 49.79 ± 1.76 35.22 ± 1.04

Squirrel GCN 28.66 ± 0.83 19.31 ± 0.0 19.31 ± 0.0 19.31 ± 0.0
LayerNorm 42.19 ± 1.37 25.65 ± 5.22 19.4 ± 0.19 19.31 ± 0.0
PairNorm 43.61 ± 0.4 39.44 ± 0.51 35.41 ± 1.5 23.11 ± 2.6
ContraNorm 45.48 ± 1.23 39.21 ± 0.79 35.16 ± 1.33 25.26 ± 2.08
WeightRep 45.9 ± 0.44 39.47 ± 1.02 34.33 ± 0.77 26.07 ± 1.45
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Table 9: The MAD metric for representation of each layer on 16-layer GNNs (higher is
better).

Datasets Method #L=1 #L=3 #L=5 #L=7 #L=9 #L=11 #L=13 #L=15

Cora GCN 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.15
WeightRep 0.23 0.35 0.36 0.38 0.39 0.39 0.40 0.40

CiteSeer GCN 0.02 0.00 0.00 0.00 0.00 0.00 0.02 0.14
WeightRep 0.25 0.40 0.36 0.33 0.35 0.36 0.38 0.45

Pubmed GCN 0.03 0.00 0.00 0.00 0.00 0.00 0.01 0.04
WeightRep 0.35 0.39 0.38 0.42 0.40 0.43 0.48 0.48

Computers GCN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03
WeightRep 0.17 0.16 0.24 0.26 0.20 0.20 0.26 0.29

Photo GCN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05
WeightRep 0.13 0.29 0.29 0.35 0.31 0.32 0.34 0.44

Coauthor CS GCN 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.20
WeightRep 0.36 0.46 0.44 0.46 0.47 0.47 0.49 0.49

Coauthor Physics GCN 0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.32
WeightRep 0.35 0.39 0.43 0.45 0.49 0.47 0.49 0.46

Chameleon GCN 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.01
WeightRep 0.34 0.24 0.31 0.32 0.33 0.40 0.46 0.52

Squirrel GCN 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
WeightRep 0.11 0.19 0.27 0.28 0.20 0.30 0.20 0.29

C.5. Quantify Oversmoothing by MAD

We add the MAD metric to quantify oversmoothing. The experiment was conducted on a
16-layer network, and we measured MAD at each layer. From the following table, we note
that the MAD of WeightRep is much higher than GCN.

C.6. The Benefits of Deeper GNNs

From Table 1 and Table 6, one can see that increasing the depth does not lead to better
performance. Howvever, in the case that we need to extract multi-hop information to com-
plete the prediction, the deeper graph neural network can extract multi-hop information to
solve the problem. For example, deeper GNNs perform better than shallow ones in datasets
with missing features which often happens in the real world, such as recommendation sys-
tems, and traffic prediction. Here we give a concrete example: we randomly remove p% the
node features in validation and test set following the setting in Zhao and Akoglu (2020).
Our experiments are concluded on Pubmed datasets. From the table, we can see that the
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Table 10: Node classification accuracies (%) on Pubmed dataset with missing features. The
missing percentage p% means we randomly remove p% the node features in vali-
dation and test set

Missing Percentage Method #L=2 #L=4 #L=8 #L16

50% GCN 76.83 ± 0.11 75.59 ± 1.17 28.45 ± 9.36 35.71 ± 7.46
WeightRep 76.83 ± 0.28 76.17 ± 0.43 75.31 ± 1.14 76.23 ± 0.88

100% GCN 34.47 ± 9.0 39.96 ± 0.46 28.19 ± 9.05 32.27 ± 9.36
WeightRep 35.26 ± 8.54 44.04 ± 6.68 45.7 ± 2.69 59.63 ± 3.35

performance increases with the depth under 100% missing percentage. Hence, increasing
the depth will lead to better performance in some cases.


