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Abstract

An open challenge in reinforcement learning (RL)
is the effective deployment of a trained policy
to new or slightly different situations as well as
semantically-similar environments. We introduce
Symmetry-Invariant Transformer (SiT), a scal-
able vision transformer (ViT) that leverages both
local and global data patterns in a self-supervised
manner to improve generalisation. Central to our
approach is Graph Symmetric Attention, which
refines the traditional self-attention mechanism to
preserve graph symmetries, resulting in invariant
and equivariant latent representations. We show-
case SiT’s superior generalization over ViTs on
MiniGrid and Procgen RL benchmarks, and its
sample efficiency on Atari 100k and CIFAR10.

1. Introduction
Despite recent advances in reinforcement learning, out-of-
distribution generalization remains an open challenge. A
widely-used approach to improve generalisation in image-
based RL is data augmentation (Laskin et al., 2020; Yarats
et al., 2021b; Hansen & Wang, 2021) but it can lead to
over regularisation to specific augmentations. Moreover,
data augmentation’s inherent non-determinism can amplify
the variance in regression targets, which can be detrimental
to learning (Hansen et al., 2021). Complimentary to data
augmentation, leveraging symmetries can improve general-
ization and lead to sample-efficient RL (Tang & Ha, 2021;
Van der Pol et al., 2020; Weissenbacher et al., 2022).

Image-based RL may benefit from both local and global
symmetries, which preserve a particular structure or prop-
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erty within a neighborhood of a pixel or image patches and
throughout the entire image respectively. Enforcing local
symmetries through data augmentation is sample inefficient
and computationally expensive. When an image is divided
into local patches to capture these symmetries, the number
of augmented samples we may need to represent all possible
variations grows exponentially. Given the prevalence of
symmetries in RL settings, it is advantageous for neural net-
works to possess the capability to develop a understanding
of these local and global symmetries in a self-supervised
manner that is data-driven.

However, leveraging symmetries in RL presents various
challenges. In particular, an agent’s action choices in gen-
eral are not invariant under symmetries both globally and
locally, see Figure 1. Permutation invariance (Tang & Ha,
2021) in Figure 1 (a) admits the shortcoming that it leads
to dead-end situations in many settings, while local and
global flip symmetries (b) inter-changes left /right and up /
down actions. Moreover, in many scenarios, it’s essential
for a decision-making process to consider the local context
within the broader global setting, e.g., in Figure 1 (c), the
global 90◦ rotation is an exact symmetry but local patch-
wise rotations change the neighbourhood of the agent. In
contrast, even minimal permutations are fatal for learning,
see Figure 1 (a) bottom-right. This situation is common
amongst many games and real-world environments (Belle-
mare et al., 2012; Cobbe et al., 2020; Silver et al., 2016;
Bellemare et al., 2020; Kitano et al., 1997).

To address the aforementioned challenges, we present a
self-attention based network architecture, which we call
Symmetry-invariant Transformer (SiT). SiTs incorporates a
flexible relational inductive bias (Battaglia et al., 2018) to
recognize relational patterns or symmetries, enabling it to
adapt effectively to unfamiliar or out-of-distribution data.
In addition to invariance, SiTs account for dead-end situ-
ations by incorporating equivariance, which refers to the
property of an action to transform equivalently as the states
under symmetries in our SiT module and by introducing a
rotation symmetry preserving but flip-symmetry breaking
layer. Additionally, we introduce novel invariant as well
as equivariant Graph Symmetric Attention (GSA). GSA is
akin to self-attention of Vision Transformers (ViTs) (Doso-
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(a) Original (top-left) vs. patch and pixel-
wise permutations. Permutation result in
non-solvable domains; e.g. permuting 6 in-
dividual patches (bottom-right).

(b) Horizontal and vertical flips; patch-
wise (top) - entire image (bottom). Ap-
proximate symmetry as it breaks left /
right actions.

(c) Left and right rotations by 90◦. Patch-
wise (top): agent’s local neighbourhood
altered; Entire image: global exact sym-
metry (bottom).

Figure 1. Local (patch-wise) and global transformations of observations of the CaveFlyer environment, Procgen suite (Cobbe et al., 2020).
Permutation invariant agents (Tang & Ha, 2021) can’t discern key features (a) in contrast to agents with local and/or global flip and
rotation invariance (b) and (c).

vitskiy et al., 2020), by adapting permutation-invariant self-
attention (Lee et al., 2019) to maintain graph symmetries.

SiTs capitalize on the interplay between local and global
information. This is achieved by incorporating both local
and global GSA modules. In particular, the local attention
window stretches over several image patches, such that the
local symmetries do not change the agent’s local broader
neighbourhood. We demonstrate the efficacy of SiTs over
ViTs on prevalent RL generalization benchmarks, namely
MiniGrid and Procgen, and show sample-efficiency on the
the Atari100k and CIFAR-10 vision benchmark.

In summary, our contribution is fourfold. First, we introduce
a scalable invariant / equivariant transformer architecture
(SiT), i.e. accounting for symmetries down to the pixel
level (Section 4). Second, we perform empirical model eval-
uation on RL tasks; in contrast to conventional ViTs, SiTs
require less hyper-parameter tuning, generalise better in RL
tasks and are more sample-efficient. Specifically, SiTs lead
to a 3× and 9× improvement in performance on commonly-
used MiniGrid and Procgen environments. Third, SiTs in-
corporate a novel method to account for the interplay of
local and global symmetries, which is complementary to
widely-used data augmentation in image-based RL. Fourth,
GSA is a novel approach to accomplish graph-symmetries in
self-attention, not relying on positional embeddings (Fuchs
et al., 2020; Romero & Cordonnier, 2021). We open sourced
the SiT model-code on GitHub .

2. Background
Reinforcement Learning. A Markov Decision Process
(MDP) is a mathematical framework for modeling decision-
making problems in stochastic environments. MDPs are

characterized by a tuple (S,A,P,R, γ), where S is a fi-
nite set of states, A is a finite set of actions, P is the
transition probability function, R is the reward function,
and γ ∈ [0, 1) is the discount factor. In RL, one aims to
learn optimal decision-making policies in MDPs. A pol-
icy, denoted as π : S → A, is a mapping from states
to actions. The optimal policy π maximizes the expected
cumulative discounted reward, given by the value func-
tion V π(s) = E [

∑∞
t=0 γ

tR(st, at) | s0 = s, at ∼ π( |st)],
where the expectation is taken over the sequence of states
and actions encountered by following the policy π. The
optimal policy π∗ is the one that satisfies V π∗

(s) ≥ V π(s)
for all s ∈ S and any other policy π.

Invariance and Equivariance. Invariance and equivariance
are foundational concepts in understanding how functions
respond to symmetries of their inputs. In RL, equivari-
ance and invariance properties are imposed on the actor and
value networks, e.g. in (Wang et al., 2023) on top of SAC
(Haarnoja et al., 2018). Before defining these concepts, we
introduce some notation. The function f maps elements
from space S to S ′ and g denotes an individual transfor-
mation in a symmetry group. The functions ρ(g) and ρ′(g)
describe the action of g on spaces S and S ′, respectively,
e.g. ρ(g) · s signifies applying a transformation ρ(g) on an
element s of S.
Invariance: A function f is invariant with respect to a set
of transformations (symmetry group) if the application of
any transformation from this set to its input does not change
the function’s output. Mathematically, this is expressed as:
f(ρ(g) · s) = f(s) for every transformation g. Equivari-
ance: A function f is equivariant if, when a transformation
is applied to its input, there is a corresponding and pre-
dictable transformation of its output. This relationship is
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captured by the equation: f(ρ(g) · s) = ρ′(g) · f(s) for
every transformation g in the symmetry group.

Attention mechanisms. Recently, conventional self-
attention have been employed in the context of RL agents
(Tang & Ha, 2021). The permutation invariant self-attention
layer (Lee et al., 2019) uses a fixed Q-matrix (queries). The
original ViT architecture (Dosovitskiy et al., 2020) natu-
rally admits permutation invariance (PI) due to use of token
embeddings. PI is only broken by using the positional em-
bedding (Romero & Cordonnier, 2021; Fuchs et al., 2020).
The standard attention is given by

Att(K,V,Q) = softmax
(

1√
df

QKT
)
V , (1)

where K, V , and Q denote the keys, values, and queries
respectively. They are derived from the input X: K =
XW k, V = XW v, Q = XW q, where W q, W k, and W v

are the corresponding weight matrices. The keys and values
are constructed based on the input data, which is segmented
into P patches. Consequently, the matrices K, V , and Q
have dimensions RP×df , where df represents the feature
dimension for each patch.

Graph neural networks and graph attention have been ex-
tensively explored in terms of their symmetries (Veličković
et al., 2018; Satorras et al., 2021b). At a high-level, the
graph attention mechanism (GAT) determines the relation-
ships between nodes in a graph using attention. The atten-
tion matrix equation 1 is masked with the adjacency matrix
G to ensure that the attention coefficients are only computed
for nodes that are connected in the graph

GAT (K,V,Q) = softmax
(

1√
df

QKT
)
G V, (2)

with K,V,Q being the feature vectors of the nodes, multi-
plied with weight matrices. A symmetrisation of the score
matrix may be added.1 to ensure that connections between
nodes are bidirectional, meaning their importance is consis-
tent regardless of direction.

3. GSA: Symmetry-Invariant and Equivariant
Attention

In this work, we propose a modification of the permutation
invariant attention layer (Lee et al., 2019). This adaptation is
specifically designed to respect the inherent symmetries of
a square two-dimensional grid, which serves as our underly-
ing graph structure. These symmetries include translations,
rotations, and flips, as depicted in Figure 2. Our approach
is an evolution of the rotary embedding method (Su et al.,

1Symmetrisation over the node / vertex indices given by
symmetric(M) = Mij + Mji for i, j = 1, . . . , P for a square
matrix M ∈ RP×P .

2021). Our Graph Symmetric Attention (GSA) layer is con-
ceptually similar to a traditional graph-adjacency matrix.
Our graph topology matrix G is the analog of the adjacency
matrix in equation 2 ; however, its trainable weights are
uniquely constrained to abide by certain symmetry condi-
tions, which we discuss later. While our discussion centers
on the 2D grid, GSA may be adapted to 1D data where it
ensures shift-symmetry (optionally flip-symmetry), see A.1.

For clarity, imagine a 9× 9 pixel image. When segmented
into 3 × 3 pixel patches, we get 9 distinct patches. In the
local GSA setup, each graph vertex corresponds to an indi-
vidual pixel, suggesting that in Figure 2, the term "patches"
is synonymous with pixels. In contrast, the global GSA
interprets the image as a collection of 3× 3 patches, where
each patch’s central point is symbolized by a graph vertex,
aligning with the conventional ViT perspective. Taking in-
spiration from self-attention in graphs, we propose Graph
Symmetric Attention (GSA):

GSA(K,V,Q) = softmax
(

1√
df

Γ(Q,K)
)
Gv V (3)

with the attention score matrix given by

Γ(Q,K) = symmetric
( (

Gq Q [ Gk K ]T
)
⊙ G

)
,

where ⊙ is the point-wise Hadamard product. Here, Γ is in-
terpreted as the attention graph matrix of the underlying 2D
pixel grid. Analogous to equation 2, the grid symmetries are
imposed by a graph topology matrix G which breaks permu-
tation invariance of the standard self-attention (equation 1).
Assuming that the image is split into P patches, the graph
matrices Gk,v,q ∈ RP×P×df and G ∈ RP×P×# heads are
to be chosen for each feature/head from either of the differ-
ent symmetry preserving graph matrices depicted in Figure
2. The matrix and point-wise multiplication in equation 3 is
applied per each feature and head dimension, respectively.

In Figure 2, we highlight variants of a 2D grid topology
matrix G preserving different symmetries, where same col-
ors represent a shared weight. For example, when using
horizontal in 2a, vertices and edges of the same color are
transformed into each other, creating a symmetry. Other
transformations do not produce this effect. Now, we define
G formally. For more technical details, see Appendix A. As-
sume that the distances are measured w.r.t. a specific vertex,
e.g. the center one in Figure 2, and edges can be viewed as
vectors. Then, pick G ∈ RP×P such that a shared weight is
present in G:

• 2(a). When horizontal component of edges have the same
magnitude (Horizontal flip-preserving)

• 2(b). When the magnitude of the edges is same (Horizon-
tal and vertical flip-preserving)

• 2(c). When the distance between vertices is consistent.
(Rotation preserving)
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G  =
ith row contains 

edges from vertex i to 
all other vertices

(a) Horizontally flip symmetry preserving Graph matrix.
Its ith column is given by the horizontally flip symmetric
graph centered around the ith patch vertex (here i = 5).

(b) Horizontal and vertical flip pre-
serving graph. Additional rotation
invariance requires green = yellow.

(c) Rotation preserving. Flip
symmetry broken by sum over
directed triangle sub-graphs.

Figure 2. Composition choices of the graph matrix G ∈ RP×P for P = 9 to preserve different symmetries. Same colours in G represent
shared weights. In (c) flips change the orientation of directed triangles i.e. clockwise to anti-clockwise while 90◦-rotations preserve it.

Flip symmetry breaking layer which preserves rotation
symmetry. To preserve meaning of the direction of the
agent (Zhao et al., 2023), it is imperative to break flip-
symmetries, as such symmetries interchange the sense of
left / right or up / down. To do so, we consider directed
triangle sub-graphs. In Figure 2(c), flips and rotation acting
are symmetries as they map the graph G to itself. However,
the directed triangle changes orientations from clock-wise
to counter-clockwise for flips, while it remains the same
for rotations. Applying this insight to the attention score
matrix Γ one breaks flip symmetry and preserves the rota-
tion symmetry by summing over distinct directed triangle
sub-graphs

Γrot(Q,K)ij = Θ(i→j→k) Γ(Q,K)ij (4)

+ Θ(j→k→i) Γ(Q,K)jk + Θ(k→i→j) Γ(Q,K)ki ,

where Θ(j→k→i) are shared weights if the triangle angels
are the same; for vertices j, k, i. The resulting new graph
score matrix Γrot distinguishes between flips of the input
data, but is invariant under 90◦ left and right rotations.

Proposition 3.1 (Symmetry Guarantee) The GSA mecha-
nism (equation 3) represents a symmetry-preserving module.
It may be both invariant and/or equivariant w.r.t. symme-
tries of the input. The corresponding symmetry is dictated
by the various graph selections. To achieve rotation invari-
ance, the subsequent application of equation 4 is necessary.
For invariance the token embedding i.e. the artificial (P-
1)th patch is utilized at the output. Due to this mechanism,
self-attention (equation 1) is permutation invariant. Equiv-
ariance is achieved for the P-dimensional patch information
of the output, i.e. not related to the token embedding.

Explicit & Adaptive Symmetry Breaking. The graph ma-
trices G and Gk,v,q at weight initialisation explicitly break
the symmetry of self-attention from permutation invari-
ance (PI) or equivariance (PE) to the respective choice, see
Figure 2. However, PI or PE may be approximately recov-
ered by GSA during training in a self-supervised manner, as

it corresponds simply to the identity matrix G, Gk,v,q,= 1.
E.g. in Figure 2(b), rotation invariance is obtained if the
yellow weights approximate the green ones.

As far as we know, this symmetry-preserving GSA has
not appeared previously. Prior work (Fuchs et al., 2020;
Romero & Cordonnier, 2021) discuss only modification of
the positional embedding. The latter, is entirely omitted by
our approach. Symmetries in (Fuchs et al., 2020; Romero &
Cordonnier, 2021) are imposed by addition of the positional
embedding to the input, however each subsequent attention
layer is still PI invariant w.r.t. to its respective inputs. In
contrast, in our approach each GSA layer is individually
able to reduce PI invariance to graph symmetries and is thus
able to infer spatial 2D information of latent features.

4. Symmetry-Invariant and Equivariant
Transformers

Symmetry invariant transformer (SiT) is a vision trans-
former that employs the GSA mechanism (equation 3), and
optionally equation 4, both locally as well as globally. See
Figure 3 for a visualization. We refer to attention applied to
entire image patches as “global”. On the other hand, “local”
attention is applied to a specific patch or its surrounding
neighborhood.

Invariance is obtained by the same mechanism as the
permutation-invariance of self-attention, i.e. the token-
embedding is added as the (P+1)th patch to the input. Since
the token embedding does not change under transformations
of the input data, the transformer model remains invariant
if only the token embedding is considered at the output.
In contrast, the representation along the patch dimensions
changes under symmetry transformations of the input; how-
ever there is a specific way in which one can trace that
property throughout the transformer model; we refer to the
latter as the equivariant patch-representation. For a more
formal argument, please see appendix E.

Based on the above discussion, an invariant SiT forward
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Divide the P local 
neighborhoods in N local 

Patches (usually N = #pixels)

Token Embedding Local

GSA Block -  (N+1) attention window

Invariant Token Emb. Equivariant N-patches 
GSA Block -  (P+1) attention window

Invariant Token Emb. Equivariant P-patches 

Token Embedding Global

OUTPUT

Choice  and  / or

Choice  and  / or

Globally invariant and/or equivariant 
Locally invariant and/or equivariant 

Local Transformer 

Global Transformer 

INPUT

Divided into P 
patches

For each of the P patches attach 
the neighbouring patches within a 

certain window size

Local 
Transformer 

Local 
Transformer 

Local 
Transformer 

Local 
Transformer 

Local 
Transformer 

Local 
Transformer 

Local 
Transformer 

Local 
Transformer 

Choice  and  / or

Figure 3. SiT model architecture wit local and global GSA modules.

propagates only the symmetry-invariant token embedding
to subsequent layers. In contrast, equivariant SiT (SeT) for-
ward propagates the equivariant patch-representation both
locally and globally. Symmetry-invariant-equivariant Trans-
former (SieTs) is both local and global invariant and equiv-
ariant. The global symmetry are a result of the local at-
tention and the global attention mechanism. For example,
a global 90◦ rotation is can be thought of as the rotation
of the position of the patches (global GSA symmetry) and
additionally local rotation of every single patch on pixel
level (local GSA symmetry), see Figure 10.

SiT with Preservation of Directions. Since all flips alter
the interpretation of left/right and up/down, only local and
global rotation-invariant SiTs maintain the agent’s meaning
of direction. Additionally, Figure 1(c) illustrates that the
agent’s surroundings shift with local patch rotations. To ad-
dress this challenge, we enlarge the local attention window
across multiple patches. This "softly" breaks local symme-
tries, hence, only the global rotation persists as an exact
symmetry in our empirically tested invariant SiT version
in section 5, the one most fitting for RL tasks. Nonethe-
less, local symmetries may be restored during training in a
self-supervised manner.

Graph Symmetric Dropout: A conventional dropout func-
tion - likely required for large SiT models - breaks the
inductive bias explicitly. We introduce graph symmetric
dropout which preserves the symmetry of SiT. A symmetry
preserving dropout for the GSA layer is obtained by setting
specific shared weights in the graph matrices G, Gk,v,q to
zero. This statement follows from proposition 3.1.

4.1. Scalability of SiTs
ViTs are known to require more working memory (RAM)
of the GPU than CNNs, due to the softmax operation (Dao
et al., 2022). The local attention mechanism of SiTs is ap-
plied to larger effective batch-sizes as the actual batch-size
of the input is compounded by the number of total patches of
the global attention. Using a larger local attention window
only increases this overflow. In our current implementation,
SiTs are 2x-5x times slower to execute than ViTs of com-
parable size. However, this limitation is due to our custom
implementation of our neural-net layers (GSA, graph trian-
gulation) and may be resolved by a future custom CUDA
implementation as SiTs can outperform ViTs that contain
much larger number of trainable parameters than SiTs.

Nonetheless, technical obstacles arise when scaling SiTs
to larger image and batch-sizes in image-based RL envi-
ronments such as Procgen. We address these by modifying
the SiT implementation. First, we establish a connection
between graph matrices and depth-wise convolutions with
graph-weights as kernels. Secondly, to accommodate for
an extended local attention window the graph matrix con-
nects pixels over lager distances while the actual attention-
mechanism is focused on a smaller patch.

5. Empirical evaluation
5.1. Gridworld

Environment Details. The LavaCrossing environment is
a standard component of MiniGrid, a Minimalistic Grid-
world toolkit (Chevalier-Boisvert et al., 2019). The primary
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Figure 4. Comparing SiTs with CNNs and ViTs, in terms of
training and generalization performance on LavaCrossing environ-
ments. SiTs substantially outperform both CNNs and ViTs.

Training Testing: rotated observations Testing: new goal positions 

Agent 

Lava Goal 

Figure 5. Train vs. test observations of the Mini-grid Lavacrossing
(easy-N1) environment. We test generalisation of agents to varying
goal and starting positions.

objective of the agent in this environment is to reach the
goal position (green square) without falling into the lava
river (orange squares). The game is procedurally generated
with three levels of difficulty for each map size. Therefore,
this environment is suitable for evaluating the combinatorial
and out-of-distribution generalization of learned policies in
RL. Moreover, we test the generalisation to rotated obser-
vations as well as goal changes, see (Figure 5). For further
environment details see the appendix F.

Evaluation & Results.The experiments with deep Q-
learning (IMPALA (Espeholt et al., 2018)) here focuses
on GSA with graph matrices Gk,v,q. The number of lava
rivers generated in the environment is proportional to the
difficulty level. We evaluate the out-of-distribution general-
ization by training the agent on difficulty level 1 and 2 and
testing it on levels 1 to 3 , and varying goals unseen during
training (Figure 5). As shown in Figure 4, SiTs generalise
better than the CNNs even on tasks which do not include
rotation symmetry. For an ablation see the appendix G.2.

5.2. Scaling SiTs: Procgen, Atari 100k & DM-control
We demonstrate scalability of SiTs in the widely-studied
Procgen benchmark (Cobbe et al., 2020), Atari 100k (Belle-
mare et al., 2013; Kaiser et al., 2020) and DM-control (Tassa
et al., 2018). For details of the latter see the appendix F.4
and F.3, respectively. The Procgen benchmark corresponds

to a distribution of partially observable MDPs (POMDPs)
q(m), and each level of a game corresponds to a POMDP
sampled from that game’s distribution m ∼ q. The POMDP
m is determined by the random seed used to generate the
corresponding level. Following the setup from (Cobbe et al.,
2020), agents are trained on a fixed set of n = 200 levels
(generated using seeds from 1 to 200) and tested on the
full distribution of levels (generated by sampling seeds uni-
formly at random from all computer integers). We evaluate
test performance on 20 different levels.

Table 1 shows the results for SiT, the equivariant SeT as
well as a both invariant & equivariant SieT trained with
PPO (DrAC (Raileanu et al., 2020)) with crop-data augmen-
tation. Sit∗ uses two consecutive sums over triangles of
the attention score matrix. Invariant SiTs perform well in
environments not reflecting the symmetries of the model,
e.g. Starpilot, Fruitbot, Chaser are not rotation invariant.
However, the combination of invariance and equivariance
of SieTs is superior.

Results: SiT almost doubles the performance on the rota-
tion invariant Caveflyer environment w.r.t. to the ResNet
(620k weights) of UCB-DrAC (Raileanu et al., 2020). As
UCB-Drac uses the rotational data-augmentation for train-
ing, we can conclude that SiTs outperform rotational data-
augmentation. Overall, our tested SiTs, SeT and SieT mod-
els (≈ 70k weights ) substantially outperform the CNN and
E2CNN (4-layers) (Weiler & Cesa, 2021) baselines with
similar number of weights while perform comparably to
the UCB-ResNet with 9× parameters (620k weights). No-
tably, all the SiT variants obtain 7 − 9× improvements in
performance compared to ViTs.

Proof-of-concept Atari 100k and DM-control: We eval-
uate our SieT model on 5 common Atari games, SpaceIn-
vaders, Pong, Breakout, KungFuMaster , MsPacman, and
find comparable sample-efficiency to the baseline CNN
(Hessel et al., 2017; Micheli et al., 2023), see Figures 12
and 13 and Table 3. We also test 1D shift-symmetric GSA
in the transformer world-model (Micheli et al., 2023), see
Figure 11. DM-control: We employ SieT on top of SAC
(Haarnoja et al., 2018) on the Walker-walk task. Without
any hyper-parameter and backbone changes compared to
our Procgen setup, SieT has comparable performance to the
ViT baseline with > 1M weights (Hansen & Wang, 2021).

Hyperparameter Sensitivity . The same limited h-
parameter search was performed for SiTs and ViTs. Com-
pared to the ResNet baseline (Raileanu et al., 2020), we
employ larger batch-size 96 (instead 8) and PPO-epoch of 2
(instead 3). SiTs don’t require tuning except for the batch-
size, e.g., a PPO-epoch of 3 works well too. No tuning at
all on DM-control and Atari 100k. ViTs generally exhibit
suboptimal performance in RL, with the notable exception
of (Hansen et al., 2021; Tang & Ha, 2021). We attribute
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Procgen Task CNN E2CNN E2CNN
′ ViT SiT SiT∗ SeT SieT CNN-UCB∗ (9×)

CaveFlyer 4.0% 13.4% 17.7% -1.8% 59.7% 55.5% 4.6% 34.5% 18.0%
StarPilot 36.3% 28.1% 29.4% 6.7% 31.3% 31.0% 38.4% 42.2% 44.6%
Fruitbot 70.8% 64.0% 66.1% 9.7% 69.8% 70.5% 68.9% 76.0% 85.8%
Chaser 10.6% 13.6% 15.6% 9.0% 35.6% 45.6% 50.1% 54.0% 44.6%

Average 30.4% 29.8 % 32.2 % 5.9 % 49.1 % 50.6 % 40.5 % 51.7 % 48.2%

Table 1. CNN/ViT vs. SiTs on Procgen environments: Caveflyer, Starpilot, Chaser, Fruitbot. We train with PPO (DrAC) + Crop
augmentation for SiT (SiT∗, SeT, SieT) and compare to the CNN, and E2CNN with Dihedral symmetry group (Wang et al., 2022a)
(ResNet with model size 79.4k comparable to the SiT - 65.7k; ViT with 4-layers - 216k, E2CNN with 4-layers 70.7k, and E2CNN′ with
4-layers 139.2k (increased features) ). We do not alter the ResNet architecture of (Raileanu et al., 2020) but chose the same hidden-size of
64 as for the SiT as well reduce the number of channels to [4,8,16]. We train over 25M steps. Following Agarwal et al. (2021b), we report
the min-max normalized score that shows how far we are from maximum achievable performance on each environment. All scores are
computed by averaging over both the 4 seeds and over the 23M-25M test-steps. The UCB-DrAC results with Impala-CNN(×4) ResNet
with 620k parameters are taken from (Raileanu et al., 2020).

this that ViTs are less sample-efficient and require different
hyperparameter compared to CNNs. As Vits are compute
extensive hyperparameter search is practically infeasible.
SiTs are applicable to RL tasks as they alleviate both of
these caveats.

Latent representation analysis: In Figure 6, we present a
principal component analysis (PCA) of the latent represen-
tation of the policy SiT model. While local symmetries and
global flips have been dynamically broken during training
exact symmetries of global rotation is preserved, i.e. all
the data-points collapse into (nearly) identical points for the
latter. As by design of SiTs, the local attention patch sym-
metry - local center rot. in Figure 6 - is broken "softly" as it
is relatively close to the original latent representation. Note
that at weight initialisation of SiT, all of the symmetries
except permutation invariance are almost exactly preserved.

5.3. SiTs beyond RL: Vision Task Ablation

We perform an ablation study of SiTs, SieTs compared to
ViTs on a supervised vision task on the CIFAR-10 dataset
(Krizhevsky & Hinton, 2009) see Figure 2b; firstly we com-
pare G in SiT to a conventional position embedding in ViT;
secondly we use our SieT model with Gk,q, Gv, G = 1 to
show improved sample efficiency & performance compared
to ViTs (Dosovitskiy et al., 2020). SiT and SieT use the
horizontal flip symmetry preserving graph matrices.

Results. The permutation invariance in ViTs is broken by
the use of a positional embedding; in SiTs by the graph
matrix G in Equation (3). While removing positional em-
bedding to obtain local and global permutation invariance
substantially degrades performance (56% test accuracy),
using our graph symmetric attention (80% test accuracy)
is superior to using positional embedding globally (76%
test accuracy). Furthermore, Figure 7b shows that SiTs and
SieTs reach same performance as ViTs but using 2 − 5×
less training epochs. We perform extensive ablations studies
on the impact of patch-size changes of SiTs on CIFAR 10

in appendix H.

5.4. Entire Procgen Suite SieT

In this section we evaluate a smaller SieT variant ( 41k
weights) on the entirety of the Procgen suite of 16 games,
see Figure (8). We conclude that SieT outperforms a com-
parable CNN on average over the 16 games. The lower
total score compared to Table (1) is due to two main factors.
First, both the tiny SieT and CNN variant do not perform on
several environments in combination with DrAC. Second,
the game selection in Table (1) reflects a collection of very
successful environments of DrAC.

5.5. Limitations of SiTs

Equivariant CNN based networks (Wang et al., 2022a) have
shown promise in particular in environments which admit
symmetry but also where latent dynamics admit symmetries
(Wang et al., 2023). At the core we provide a Transformer
based alternative which outperforms E2CNN for compara-
ble model sizes see Table (1). Thus in general Sit will offer
benefits over CNNs in environments where at least some
remnant symmetries other than shift symmetries are present
- this is in accordance with our findings. Additionally, we
observed benefits of SiTs in terms of their generalization
performance due to unseen tasks, while performance in
single-task RL on the same training and test task settings
seem to be comparable to CNNs. It is worth noting that
except for the Caveflyer environment, other environments
in ProcGen do not admit strong symmetry properties, which
would favor SiTs over CNNs off the shelf.

From our ablation studies on Minigrid see appendix Ta-
ble (5) we conclude that local GSA is of significant im-
portance to get the performance benefits. However, as we
discuss in section 4.1 “Scalability of Sit” the local GSA
layer poses compute and memory challenges for application
to larger model sizes and complex tasks.
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original 
observation

2D PCA 

Figure 6. PCA of latent space representation of the trained SiT model after 25M steps on Procgen CaveFlyer. We display the PCA of the
difference of the latent representation of augmented observations and original ones. 3D-view (left and center) - vertical separation for
illustration purposes - 2D-view i.e. from above (bottom-right).
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(b) SiTs and SieTs are much more sample efficient than
ViTs (Dosovitskiy et al., 2020). The SieT model has 4 local
GSA layers and 8 global ones.

Figure 7. SiTs are comparable to CNNs in terms of sample efficiency on Procgen (a) and outperform conventional ViTs (b).

Let us stress that we have evaluated SiTs (and SieTs) on a
large variety of tasks, namely Minigrid, Procgen, Atari, DM-
control, and CIFAR10. The major limitaion to Sits currently
are the compute and memory expenses that arise in the SiT
architecture from the local GSA. With increased compu-
tational cost for each local GSA layer added. The latter,
trade-offs for improved sample-efficiency see Figure (7b).
Our work serves as a proof-of-concept for the approach and
work while more efficient future custom implementation of
SiTts may alleviate some of the computational cost.

One specific example of failure is Procgen in the new re-
buttal study see section 5.4 is that both the SieT and CNN
variant do not learn the BossFight task very well. However,
on the CNN side when adding more convolutional layers
adequately the model starts to learn well.

6. Related Work
Symmetry is a prevalent implicit approach in deep learn-
ing for designing neural networks with established equiv-

ariances and invariances. The literature on symmetries in
Vision Transformers (ViTs) (Fuchs et al., 2020; Romero
& Cordonnier, 2021) is relatively limited compared to
CNNs (Zhang & Sejnowski, 1988; LeCun et al., 1989;
Zhang, 1990), recurrent neural networks (Rumelhart et al.,
1986; Hochreiter & Schmidhuber, 1997), graph neural net-
works (Maron et al., 2019; Satorras et al., 2021a), and cap-
sule networks (Sabour et al., 2017). PI in attention mech-
anisms and ViTs has been examined in (Lee et al., 2019)
and (Tang & Ha, 2021). In contrast, the SiT variants admit
different adaptive symmetries other than PI.

The Region ViT method (Chen et al., 2022) divides the
feature map into local areas, where each region has tokens
that attend to their local counterparts. We use global tokens
and use local attention in a neighbouring subset. The method
in (Wang et al., 2021) combines local and global attention to
reduce complexity, focusing globally on specific windows.
For us "global" means standard attention, while "local"
pertains to attention within a window.
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(a) Mean episode test reward averaged over 16 games, and 4 seeds, respec-
tively.

(b) Normalized mean episode test reward averaged over 16
games, and 4 seeds, respectively.

Figure 8. Empirical evaluation on entire Procgen suite i.e the reward is averaged over 16 games and standard error of SieT model ( 41k
weights) and a CNN ( 40k weights) on top of DrAC with crop augmentation over 18M training steps. The CNN consist of 4 convolutions
layers with channel dimensions [4, 8, 16, 32], respectively. The SieT model contains two local GSA layers with features [16, 32], and to
global ones with 64 features, respectively. both the CNN and SieT policy have a hidden-size of 64.

Conventionally sample efficiency is enhanced by data aug-
mentation (Krizhevsky et al., 2012). Simple image aug-
mentations, such as random crop (Laskin et al., 2020) or
shift (Yarats et al., 2021a), can improve RL generalisation
performance; in particular when combined with contrastive
learning (Agarwal et al., 2021a). SiTs are complementary
to data-augmentation.

Algebraic symmetries in Markov Decision Processes (MDP)
were initially discussed in (Balaraman & Andrew, 2004)
and recently contextualized within RL in (van der Pol et al.,
2020). Symmetry-based representation learning (Higgins
et al., 2018) refers to the study of symmetries of the en-
vironment manifested in the latent representation and was
extended to environmental interactions in (Caselles-Dupré
et al., 2019). These concepts were recently extended in
(Rezaei-Shoshtari et al., 2022; Mondal et al., 2022). In
(Weissenbacher et al., 2022), symmetries of the dynamics
are inferred in a self-supervised manner; (Cheng et al., 2023)
discusses time-reversal symmetry. These approaches are
mostly complimentary to employing SiTs with equivari-
ance/invariance which may aid the former.

Numerous prior works have demonstrated the exceptional
sample efficiency of RL achieved through equivariant meth-
ods with CNNs (van der Pol & Welling, 2019; Wang & Wal-
ters, 2022). Steerable Equivariant CNNs named E2CNNs
(Cohen & Welling, 2016; Weiler & Cesa, 2021) have been
widely applied to RL (Mondal et al., 2020; Wang et al.,

2022a). In contrast, SiTs belong to ViT paradigm, i.e. a
distinct new approach to achieve invariance as well as equiv-
ariance both locally and globally. Approximately equiv-
ariant networks (Wang et al., 2022b) offer a flexible and
adaptive approach by imposing constraints on the weights
via a regularizer. Rotation invariance steerable convolution
in toy-examples is discussed in (Zhao et al., 2023). SiTs
start from a manifest PI and describe an implicit adaptive
mechanism of breaking it and scale to relevant tasks in RL.

7. Conclusions
In this work, we introduced the Graph Symmetric Atten-
tion (GSA) mechanism, a symmetry-preserving attention
layer that adapts the self-attention mechanism to maintain
graph symmetries. We combine GSA with ViTs to propose
the novel SiT architecture. By leveraging the interplay of
local and global information, SiT achieves inherent out-of-
distribution generalization on RL environments.

Transformers have significantly advanced natural-language-
processing and vision tasks, particularly in scalability. Our
work may pave the way for applying these benefits to image-
based RL. Additionally, transformers facilitate integration
with Large Language Models (LLMs) for multimodal ar-
chitectures, highlighting their potential in future vision and
language-based RL research.
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A. Overview of Definitions: Graph Symmetric
Attention Mechanism

We propose the following Graph Symmetric
Attention (GSA) mechanism in equation 11. Where
G, Gk,v,q, Gkq,b ∈ RP×P being the graph ma-
trices described in figure 2 and σ is an activation
function . The color coding refers to different
conceptual implementations, which may be used
in combination. When using token embeddings
K, V, Q, ∈ RP+1×df thus Gk,v,q ∈ RP+1×P+1×df

and G, Gkq,b ∈ RP+1×P+1×#heads. In particular, that
implies that we apply a different set of graph weights to
the feature and head dimensions. See Figure (9) for a
visualisation.

Moreover, we propose the a second variant of the
GSAa−sym of our attention mechanism which replaces the
attention matrix as

softmax
(

1√
dq

sym
(
Γ(Q,K)

))
(6)

+ softmax
(

1√
dq

a-sym
(
Γ(Q,K)

) )
where we symmetrise and anti-symmetrises over the patch
indices of Γ(Q,K) respectively, the latter is as in equa-
tion 3; and a-sym refers to replacing the symmetrisation in
equation 11 by anti-symmetrisation. Anti-symmetrisation
of a matrix M refers to Mij → Mij −Mji.

Empirical Evaluation Omission Overview:

• On our grid-world environment experiments we found
qualitatively that the variants Gkq,b, G required more
h-parameter tuning to show comparable performance
to the CNN baseline. We thus removed a quantitative
analysis from the paper.2

• Adding the anti-symmetrisation equation 6 to the ar-
chitecture increased generalisation performance on the
grid-world environment. However, it requires two soft-
max operation, which renders it hard to scale; we thus
removed a quantitative analysis from the paper.

More formally of can define e.g. G in Figure 2
(c). Pick G ∈ RP×P such that it admits a shared
weight if the distance between vertices is the same. For
more technical details see the appendix A More formally,
Gij = θ(κ) , i, j = 1, .., P with weights θ with labels
κ = 1, ..,#(unique edge lengths of 2D grid graph). The ele-
ment Gij corresponds to the edge between the ith and jth

vertex, i.e. the assigned weight index κ is identical if and

2Let us stress that both G and Gv,k,q are indeed sufficient to
break symmetries, respectively, i.e. to achieve the desired equivari-
ance.
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Figure 9. GSA module architecture (left), and equivalence of graph matrix and depth-wise convolutions (right). The GSA layer includes
Layer-Norm and additive skip connection in addition to the GSA module. We display the GSA variant Gk,v,q with Gk,v = 1.

GSA(K,V,Q) = softmax
(

1√
dq

Γ(Q,K)
)
Gv V (5)

with Γ(Q,K) = symmetric
(
σ
(
Gqk

(
Gq Q [ Gk K ]T

)
+ Gb

)
⊙ G

)
.

only if the distance between the ith and jth vertex is the
same.

Rotational Symmetry. To ensure that the layer solely
possesses rotational symmetry, it is essential to disrupt the
flip symmetry. This can be accomplished by selecting flip
and rotational graph matrices, as depicted in fig. 2 (c),
and summing over distinct directed subgraphs with three
vertices, i.e., triangles, while assigning weights to each
contribution see equation 7.

In essence, this implies that for any component of
Γ(Q,K)edge, two additional entries are added, all weighted
with Θ′s. The Θ′s are trainable parameters, which will
be shared if the angle between two edges of the triangle is
identical.

In equation 4, the third vertex of the triangle is chosen
as a function of i, j 7→ k = T (i, j) for a unique map
T ; the weights Θ′s are shared if the angle between edges
of the triangle in the square grid is identical. The label
(i → j → k) denotes the angle at the jth vertex i.e. between
the (ij) and (jk) edge. In essence, this implies that for any
of the P 2-components of Γ(Q,K), two additional entries
are added, all weighted with Θ′s.

A unique triangulation of the square grid is be chosen as
follows. Disregarding the heads-dimension for the time
being, any entry of the matrix Γ(Q,K) can be construed as
a connection between a specific patch and another, thereby
enabling the drawing of an edge from the former to the latter.
This forms the initial directed edge of the triangle, linking
two vertices. From the end of the latter, we opt to turn right
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GSArot(K,V,Q) = softmax
(

1√
dq

3P 2∑
triangle edge = 1

Θtri. edge Γ(Q,K)tri. edge

)
V (7)

= softmax
(

1√
dq

Γrot(Q,K)
)
V , where

Γrot(Q,K)ij = Θ(i→j→k) Γ(Q,K)ij + Θ(j→k→i) Γ(Q,K)jk + Θ(k→i→j) Γ(Q,K)ki , (8)

and proceed to the nearest vertex in the grid, constituting
the third vertex of the triangle. The direction of the edges
is determined by traversing the triangle. Notably, as flips
modify left/right and/or up/down, the aforementioned sum
is not invariant under flips; however, it preserves left/right
rotations, which transform the grid into itself.

Duality to convolutional kernels. See Figure (9) and (2)
for a visualisation. The shared nature of the graph-matrix
elements make them identical to a 2D-convolutional layer
if the kernel size = 2 ∗ image size + 1, for a square
image. If a specific kernel size is chosen it corresponds
to the graph matrix with zero entries for vertices of larger
distance than the kernel size, see Figure (9).

A.1. One-dimensional Data / Sequential Data

While our discussion centers on the 2D grid, GSA may be
adapted to 1D data where it ensures shift-symmetry and an
optional flip-symmetry.

One may define G formally for the 1D case as. The data
points in the 1D data are consider vertices, then assume that
the distances are measured w.r.t. a specific vertex, and edges
can be viewed as vectors. Then, pick G ∈ RP×P such that
a shared weight is present in G:

1. When horizontal component of edges have the same
magnitude ( flip-preserving)

2. When the magnitude of the edges is same, but direction
left/right i.e. the sign is accounted for which results in
shift-symmetry.

Points (1) and (2) above are completely analog to the more
complicated 2D case which is proofed in section E. Flip-
preserving 1D GSA (1) for sequential data implements time-
reversal symmetry, recently discussed in the context of RL
(Cheng et al., 2023).

Application of Transformers in RL on Sequence data:
The rise of Transformers in model-based RL (Chen et al.,
2021; Micheli et al., 2023) opens up another direction which
may adapt our approach.

B. Overview: Symmetry-invariant
Transformer

See Figure (3) for a schematic overview of the SiT architec-
ture and for details on the symmetry of SiTs Figure 10. The
local attention window’s are processed by a GSA, which
then passes only the token embedding dimension onto the
global GSA layers. Since the token embedding dimension
is invariant under the respective symmetries the global GSA
receives a symmetry-invariant input of the local patches.

C. Algorithm details
The implementation of the rotation symmetry breaking is
a bit lengthy however straightforward. We omit details of
how to compute the angles of triangles of vertices on the
square grid, and just assert the function "rot_grid_to_idx"
here.

Lastly, in order to achieve scalability of SiTs we need to
establish a connecting between graph matrices and depth-
wise convolutions with graph-weights as kernels. The latter
implementation is significantly more memory efficient. We
note here that the below code is equivalent to multiplication
of graph matrix given in Lisitng 1.

D. GSA - Graph Symmetric Attention
In the following K, V , and Q denote the keys, values,
and queries respectively. They are derived from the in-
put X: K = XW k, V = XW v, Q = XW q, where
W q, W k, and W v are the corresponding weight matrices,
i.e. Via =

∑df

=1 XixW
v
xa The permutation invariant self-

attention layer (Lee et al., 2019) is given by

Att(K,V,Q) = f(Q,K) X W v (9)

with f(Q,K) = 1√
dq

softmax
(
Q [X W k]T

)
,
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Figure 10. Illustration on exact global symmetries of SiTs; obtained as a result of the combined effect of local and global GSA modules.

which can be rewritten using explicit indices. One finds

Att(K,V,Q)q a =

P∑
i=1

softmax
(

1√
dq

f(Q,K)q i

)
Vi a

with f(Q,K)q i =

#heads∑
a=1

Qq a[K]Ta i , (10)

For the original self-attention mechanism (Dosovitskiy et al.,
2020) one simply needs to use a non-fixed Q = X W q in
equation 10 as

Att(K,V,Q)q a =

P∑
i=1

1√
dq

softmax
(
f(Q,K)q i

)
Vi a

with f(Q,K)q i =

#heads∑
a=1

Qq a [K ]Ta i ,

We propose the following three variants of Graph
Symmetric Attention (GSAention) layer - all of which sepa-
rately preserves the identical symmetries -

GSA(K,V,Q) = softmax
(

1√
dq

Γ(Q,K)
)
Gv V

withΓ(Q,K) = symmetric
(
Gq Q [Gk K ]T

)
,(11)

and

GSA(K,V,Q) = softmax
(

1√
dq

Γ(Q,K)
)
V (12)

withΓ(Q,K) = symmetricσ
(
Gqk

(
Q [K]T

)
+ Gb

)
,

and moreover

GSA(K,V,Q) = softmax
(

1√
dq

Γ(Q,K)
)

V W v

with Γ(Q,K) = symmetric
(
Q [K ]T

)
⊙ G ,
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class GraphSymmetricAttention(Module):
def __init__(self, dim, num_patches, num_heads):

self.num_heads = num_heads
self.qkv = Linear(dim, dim * 3) # Fully-connected layer
# Generate shareable graph weights
self.G_weights, self.G_idxs = graph_function(num_patches, dim * 3)

def qkv_SymBreak(self,x):
# Select indices of weights along dimension
G = index_select(self.G_weights , 1, self.G_idxs)
# Matrix mulitply with G; omit token embedding dimension
y = G@x[:,1:,:]
return cat([x[:,0:1,:], y],dim=1)

def forward(self, x):
B, N, C = x.shape
qkv = self.qkv_SymBreak(self.qkv(x))
qkv = qkv.reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3,

1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q @ k.transpose(-2, -1))
# symmetric attenion (if used)
attn = attn + attn.transpose(-2, -1)
attn = attn.softmax(dim=-1)
return (attn @ v ).transpose(1, 2).reshape(B, N, C)

Listing 1. Pseudocode for GSA (PyTorch-like). Changes relative to self-attention in brown.

def graph_function(num_patches, in_features):
#compute simple ditance of vertices in square grid
for k in range(0,num_patches):

for l in range(0,num_patches):
for i in range(0,num_patches):

for j in range(0,num_patches):
I = k*num_patches+l
J = i*num_patches+j
dist[I,J] = sqrt((k-i)**2 + (l-j)**2)

#identify equal ditances and associate unique index
unique = dist.flatten().unique()
dim = unique.shape[0]
for i in range(dim):

mask = (dist == unique[i])
idxs[mask] = i

#initialise independent weights
weights = Parameter(Tensor(in_features,dim))
return weights , idxs

Listing 2. Pseudocode for shared weight graph indices (PyTorch-like).

In index notation equation 11 resutls in equation 13. More-
over, equation 12 in detailed index notation is given by

Γ̄(Q,K)q i = σ
(#heads∑

a=1

P∑
j=1

Gqkqj Qja [K ]Ta i +Gbqi

)
.

E. Proofs of Invariance
Permutation matrices P are orthogonal matrices. An orthog-
onal matrix is a square matrix whose transpose is equal to its
inverse, i.e. PT = P−1. A permutation matrix is a square
matrix obtained by permuting the rows and columns of an
identity matrix. It represents a permutation of the elements
in a vector or a rearrangement of the columns and rows of
another matrix. Since permuting the rows and columns of
an identity matrix results in swapping rows and columns,

17



Title Suppressed Due to Excessive Size

class GraphSymmetricAttention(Module):
def __init__(self, dim, num_patches, num_heads):

self.rot_SymBreak = Rotation_Symmetry( num_patches, num_heads)

# ... we only highlight the differnces in the forward pass

def forward(self, x):
B, N, C = x.shape
qkv = self.qkv_SymBreak(self.qkv(x))
qkv = qkv.reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3,

1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q @ k.transpose(-2, -1))
# symmetric attenion (if used)
attn = attn + attn.transpose(-2, -1)
attn = self.rot_SymBreak(attn)
attn = attn.softmax(dim=-1)
return (attn @ v ).transpose(1, 2).reshape(B, N, C)

class Rotation_Symmetry(Module):
def __init__(self, num_patches, num_heads):

#compute unique angles of triangles in square grid
idxs, idxs_angles, dim = rot_grid_to_idx(num_patches)
self.idxs = idxs
self.idxs_angles = idxs_angles
#initialise independent weights
self.angles = Parameter(Tensor(num_heads,dim))

def forward(self, x):
bs, heads, ps, ps= x.size()
#index only non-token dimensions
y = x[:,:,1:,1:].flatten(-2)[:,:,self.idxs]
#preserve rotation/translation invariances, break flip invariances
angles = index_select(self.angles,1,self.idxs_angles.flatten())
#multply vertex with corresponding weight and sum over triangle
y = (y*angles).reshape((bs, heads, ps-1, ps-1,3)).sum(-1)
#attach token dimension
y = cat([ x[:,:,:,0:1],cat([x[:,:,0:1,1:], y],dim=2)],dim=-1)
return y.reshape(x.shape)

Listing 3. Pseudocode for GSA with rotation symmetry(PyTorch-like). Changes relative to self-attention in brown.

the transpose of a permutation matrix is equal to its inverse.
Therefore, permutation matrices are orthogonal matrices.

The main theoretical claims of this work are summarized in
proposition 3.1 , repeated here

Proposition E.1 (Symmetry Guarantee) The GSA mech-
anism (equation 3) represents a symmetry-preserving mod-
ule. It may be both invariant and/or equivariant w.r.t. sym-
metries of the input. The corresponding symmetry is dictated
by the various graph selections. To achieve rotation invari-
ance, the subsequent application of equation 4 is necessary.
For invariance the token embedding i.e. the artificial (P-
1)th patch is utilized at the output. Due to this mechanism,
self-attention (equation 1) is permutation invariant. Equiv-
ariance is achieved for the P-dimensional patch information
of the output, i.e. not related to the token embedding.

First of all let us emphasise that we have implicitly empiri-
cally tested the validity of this claim in the various RL and
supervised experiments in this work Let us discuss above
claims in several steps:

The attention mechanism equation 1 is permutation
invariant (PI). Let P be a permutation of the input,
i.e. Q,K, V → PQ,PK,PV as in equation 16. with
[PK]T = KT PT = KT P−1 na d by using that the per-
mutation matrix can be pulled out of the softmax-function as
it is not affected by it results in equation 17. where we have
used that

∑P
i=1 P

−1
mi Pij = δmj , where δ is the Kronecker

delta function, i.e. a formal way of writing the identity ma-
trix. We have showed that the attention mechanism is
permutation equivariant. Invariance follows form the
observation that when a token embedding is added it is
not affected by the permutation matrix which only acts
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def graph_function(kernel_size):
dist_Mat = torch.zeros((kernel_size,kernel_size))

#only works correcttly if kernel_size is odd
i0,j0 = (kernel_size -1) //2, (kernel_size -1) //2
for i in range(0,kernel_size):

for j in range(0,kernel_size):
distance = math.sqrt((i0-i)**2 + (j0-j)**2)
dist_Mat[i,j] = distance

unique = torch.unique(dist_Mat)
idxs = torch.zeros(dist.shape)
dim= unique.shape[0]
for i in range(dim):

mask = (dist == unique[i])
idxs[mask] = i

#initialise independent weights
weights = Parameter(Tensor(in_features,dim))
return weights , idxs

class GraphSymmetricAttentionEfficient(Module):
...
def qkv_SymBreak(self,x):

# Select indices of weights
#of shape (in\_features,1, kernel\_size, kernel\_size)
G = index_select(self.G_weights , 1, self.G_idxs)
# depthwise convlution with weights G; omit token embedding dimension
y = conv2d(x, G, padding= (kernel_size-1)//2, groups=in_features)
return y

...

Listing 4. Pseudocode for an efficient GSA (PyTorch-like). Changes relative to Listing (1) and (2) are presented.

on the patches. Thus it remains invariant as

Att(PK,PV,PQ)q=P+1 a = Att(K,V,Q)q=P+1 a

(18)

The graph symmetric attention mechanism equation 3
represents a symmetry-preserving , i.e. it can be both
invariant and equivariant w.r.t. symmetries of the input.
The corresponding symmetry is dictated by the various
graph selections. Let P be a permutation of the input
,i.e. Q,K, V → PQ,PK,PV then one finds equation 19.
First of all note that since P G − G P ≠ 0 , i.e. they
do not commute, thus GSA is not permutation equivariant
(invariant).

Definition 1 (Graph Matrix) The symmetric graph matrix
G ∈ RP × RP are defined as having a shared weight at
entry Gij = Gji if

• the distance of the i-vertex to the j-vertex in the square
grid of the 2D-image have same length. This leads to
a flip and rotation invariant graph matrix.

• the horizontal distance of the i-vertex to the j-vertex
are the same, and the vertical distance is zero. This
leads to a horizontal mirror flip graph.

Thus a permutation Ps does commute with the graph matrix
if and only if it maps shared weights of G to each other;
then Ps G − G Ps = 0. Then one can rewrite the above
expression as in equation 21 The remaining steps are analog
to the one for the conventional attention which is concluded
in equation 22. which states the equivariance of GSA
and invariance when a token embedding is used at di-
mension P + 1 with respect to the symmetry preserving
permutation Ps.

Two remaining points are twofold. First, the derivation
above holds in particular for the symmetrisation (anti-
symmetrisation) of Γ . Second, to see that graphs matrices
with particular choices of shared weights lead to the desired
symmetries of the 2D-grid we refer the reader to a visual
proof given in figure 2. The proof of equivariance for the
setting with Gkq, Gbis analog. The case for G one notes
that a P × P -matrix

∑P
i=1 Ps

kiMij ∗ Gij = Mij ∗ Gij if
and only if Ps only permutes shareable weights of the graph
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GSA(K,V,Q)q a =

P∑
i=1

1√
dq

softmax
(
Γ(Q,K)q i

) P∑
j=1

Gvij Vj a (13)

with Γ̄(Q,K)q i =

#heads∑
a=1

P∑
k=1

Gqqk Qk a

P∑
j=1

Gkij [K]Ta j , (14)

Γ(Q,K)i j = Γ̄(Q,K)i j + Γ̄(Q,K)j i . (15)

Att(PK,PV,PQ)q a =

P∑
i=1

softmax
(

1√
dq

Σ(PQ,PK)q i

) P∑
j=1

PijVj a (16)

with Σ(PQ,PK)q i =

#heads∑
a=1

P∑
l=1

PqlQl a

[ P∑
j=1

PijK
]T
a j

,

Att(PK,PV,PQ)q a =

P∑
i=1

P∑
l=1

Pql

(
1√
dq

softmaxΣ(Q,K)lm

) P∑
m=1

P−1
mi

P∑
j=1

PijVj a

=

P∑
j=1

P∑
l=1

Pql softmax
(

1√
dq

Σ(Q,K)l j

)
Vj a

=

P∑
l=1

Pql Att(K,V,Q)l a (17)

GSA(PK,PV,PQ)q a =

P∑
i=1

softmax
(

1√
dq

Γ(PQ,PK)q i

) P∑
j=1

Gvil

P∑
l=1

Plj Vj a (19)

with Γ(PQ,PK)q i =

#heads∑
a=1

P∑
k=1

Gqqk

P∑
l=1

Pkm Qma

P∑
j=1

Gkij

P∑
l=1

Pjl [K]Ta l , (20)

GSA(PsK,PsV,PsQ)q a =

P∑
i=1

softmax
(

1√
dq

Γ(PsQ,PsK)q i

) P∑
l=1

Ps
il

P∑
j=1

Gvlj Vj a

with Γ(PsQ,PsK)q i =

#heads∑
a=1

P∑
l=1

Ps
qk

P∑
k=1

Gqkm Qma

P∑
l=1

Ps
ij

P∑
j=1

Gkjl [K]Ta l , (21)

GSA(PsK,PsV,PsQ)i a =

P∑
l=1

Ps
ij GSA(K,V,Q)j a (22)

GSA(PsK,PsV,PsQ)i=P+1 a = GSA(K,V,Q)i=P+1 a (23)
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matrix, i.e. thus Ps needs to obey the symmetry properties.
The rest of the steps to conclude the proof are analog as
above.

To achieve rotation invariance, the subsequent applica-
tion of equation 4 is necessary. Let Γij be graph P × P -
matrix obeying rotation and flip symmetries of an under-
lying square grid, and let T (i, j) 7→ k be unique mapping
for every tuple (i, j) to the vertex k; i.e. such that (i, j, k)
forms a triangle in the grid. Moreover T is such that the
angles of the resulting triangle only depend on the distance
between i-j., and the orientation in clock-wise starting from
i → j → k → i. The weights Θ(ij, jk) are shared if the
angles in the triangle are equal.

Γrot(Q,K)ij = Θ(i→j→k) Γ(Q,K)ij (24)

+Θ(j→k→i) Γ(Q,K)jk + Θ(k→i→j) Γ(Q,K)ki ,

The notation is such that Θ(i→j→k) means correspond-
ing to the angle between the edges i-j and j-k. Then
we may rewrite the expression from the main text more
concisely as where T (i, j) = k. Any transformation
which maps equal distance edges to each other will leave
Γ(Q,K)ij ,Γ(Q,K)jk,Γ(Q,K)ki invariant, respectively.
However more specifically flip transformation change the
meaning of clock-wise and anti-clockwise and thus

• Θ(i→j→k) 7→ Θ(k→i→j),

• Θ(j→k→i) 7→ Θ(j→k→i) ,

• Θ(k→i→j) 7→ Θ(i→j→k).

Thus equation 25 does not preserve flip transformation.
While rotations leave the Θ′s invariant. This concludes
the proof of the proposition.

F. Hyper-parameters - Main Experiments
F.1. Minigrid - Lavacrossing

We employ our invariant SiTs on top of IMPALA (Espeholt
et al., 2018) implementation based on torchbeast (Küttler
et al., 2019). For the experiments involving SiTs and ViTs,
we do not employ any hyper-parameter tuning compared
to the CNN baseline (Jiang et al., 2021) - hyperparameters
can be found in that reference. We use the stated number
of local and global GSA with an embedding dimension of
64 and 8 heads. The attention window of the global GSA is
the entire image, i.e 14× 14 (pixels) which corrsponds to
P = 196 patches ; while locally we choose patch-size of 5
(pixels), i.e. a attention window of 5x5 (pixels) or P = 25
patches. We use rotation invariant GSA both on the local as
well as on the global level.

While, MiniGrid environments are partially observable by
default we configure our instances to be fully observable; as
well as change the default observation size 9×9 pixel to 14×
14 pixel. The latter is done by rendering the environment
observation and then down-scaling to the respective size.
Moreover, the default action space only allows the agent
to turn left, turn right, or move forward, which requires
the agent to keep track of its direction while navigating.
To make the environment more accessible , we modify the
action space, enabling the agent to move in all four candidate
directions i.e. to move left, right, forward and backward.

For Minigrid, we selected a 14x14 global image size as
this is the minimum resolution at which the direction of the
triangular shaped agent can be discerned when downscaling
the RGB rendering of the environment. Smaller resolutions
fail to capture this detail, while larger ones are feasible but
not necessary. The local neighborhood size in Minigrid (in
pixels) is required to be odd, so 3x3 and 5x5 are the smallest
viable options.

Architecture Details. For the CNN baseline, we use two
convolutions layers two fully connected ones. The ViT
and SiT and architectures both employ a skip connection
x → x + Att(x) and x → x + GSA(x), respectively.
As in (Beyer et al., 2022), we modify the Vi architecture
of (Dosovitskiy et al., 2020) by not using a multi-layer
perceptron (MLP) after each attention layer. Our goal is to
encounter the most simple functional setting incorporating
the attention mechanism. We use one embedding fully-
connected layer and use a patch-embedding. We employ
our invariant SiTs on top of IMPALA (Espeholt et al., 2018)
implementation based on torchbeast(Küttler et al., 2019).
For the experiments involving SiTs and ViTs, we do not
employ any hyper-parameter tuning compared to the CNN
baseline (Jiang et al., 2021). Qualitatively, even when trying
to tune ViTs by running a hyper-parameter sweep, we could
not improve their performance by more than a factor of two.

F.2. Procgen experiments

We train with PPO (DrAC) + Crop augmentation for SiT
(Sit∗, Set, Siet) and compare to the CNN (ResNet with
model size 79.4k comparable to the SiT - 65.7k; ViT with
4-layers - 216k ). For parameter details see table (2).

We do not alter the ResNet architecture of (Raileanu et al.,
2020) but chose the same hidden-size of 64 as for the SiT
as well reduce the number of channels to [4,8,16]. We
train over 25M steps. Following Agarwal et al. (2021b),
we report the min-max normalized score that shows how
far we are from maximum achievable performance on each
environment. All scores are computed by averaging over
both the 4 seeds and over the 23M-25M test-steps. We also
report UCB-DrAC results with Impala-CNN(×4) ResNet
with 620k parameters, taken from (Raileanu et al., 2020).

21



Title Suppressed Due to Excessive Size

F.3. DM control

We train SieT - Without any hyper-parameter and backbone
changes compared to our Procgen setup - wit SAC (Haarnoja
et al., 2018) for 500k steps. No data-augmentation is used.
SieT has comparable performance to the ViT baseline with
> 1M weights (Hansen & Wang, 2021). For parameter
details see table (2).

F.4. Proof of sample-efficiency: Atari 100k

The Atari 100k benchmark (Kaiser et al., 2020), compris-
ing 26 Atari games (Bellemare et al., 2013), spans various
mechanics and evaluates a broad spectrum of agent capa-
bilities. In this benchmark, agents are restricted to 100k
actions per environment, approximating 2 hours of human
gameplay. For context, typical unconstrained Atari agents
undergo training for 50 million steps, signifying a 500-fold
increase in experience.

Current standards in Atari 100k for search-based methods in-
clude MuZero (Schrittwieser et al., 2020) and EfficientZero
(Ye et al., 2021), and recently a transformer based world-
model approach (Micheli et al., 2023). Image-based SiTs
may compliment those methods. In particular the latter may
benefit from GSA, see our discussion in section A.1. We
just provide a proof-of concept for using shift symmetric
GSA instead of positional embedding in the world-model
transformer of IRIS (Micheli et al., 2023).

See Figure 11 for the results on KungFuMaster averaged
over a hyper-parameter search for varying world-model
training steps for 7 run for values in [50, 200] (with default
of 200). This illustrated the hyper-parameter insensitivity
of GSA and suggests improved sample-efficiency over posi-
tional embedding.

Sample-efficiency: See Figure 12 and Figure 13 for results
on KungFuMaster and MsPacMan, respectively. Here we
have replaced the CNN in the actor by a smaller SieT model
with 1 local and 2 global layers. To speed up training we
have reduced the number of local features to 32 ( 64 global
features). One infers that although the final training per-
formance is lower than the one obtained by the baseline
(IRIS + CNN) that IRIS + SieT is sample efficient, i.e. it
reaches it peak quite early in training within 200 epochs
which corresponds to about 40k exploration steps. Note
that we have only tested one SieT model and performed no
hyper-parameter search. The goal here is not to improve on
Iris which had optimized h-parameters for their CNN actor
model but to show that SieT admits the capability to learn
from a small sample size; which is inferred from Figure 12
and Figure 13.

Our goal here is not to show a comparison to state-of-the-art
on Atari 100k in terms of sample-efficiency but that SiTs
may be trained with ease on-top of standard algorithms.

Human

100k 
steps

Figure 11. Results on KungFuMaster with 1D GSA in (Micheli
et al., 2023) averaged over a hyper-parameter search for varying
world-model training steps in [50, 200] (with default of 200). 500
Epochs correspond to 100k exploration steps.

IRIS

100k 
steps

Figure 12. Results on KungFuMaster with SieT in actor instead of
CNN in (Micheli et al., 2023), averaged over 3 seeds. The IRIS
performance after 100k steps is marked by a blue horizontal bar.

Thus, for our Atari 100k experiments we use the unchanged
hyper-parameter setting of Rainbow (Hessel et al., 2017),
both for the baseline model - data-efficient CNN - as well as
the algorithm for both CNN and our SieT. The Siet model
is the same as in the Procgen experiments but with one less
local GSA layer and increased embedding dimension, see
Table 2. The baseline CNN has approximately 3x more
weights than SieT. See Figure 14 for example training
curves.

F.5. Technical improvements

Moreover, another minor modification to the architecture
lead to a compute speed-up, which is not to use a token
embedding in the local attention layer but rather use a depth
wise graph-like convolution with kernel-size and stride equal
to the patch-size as a last layer. This is common practice
for ViTs i.e. by using normal convolutions that way. It is
easy to see that our choice also preserves the symmetries of
the graph-matrix. So, concludingly using a token embed-
ding is not the only architectural choice which leads to a
preservation of symmetries in SiTs.

First, we establish a connection between graph matrices
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Suite / Algorithm Model Layers Channels hidden dim.

Procgen

(Raileanuet al., 2020)

CNN 3 ResNet ((Raileanu et al., 2020)) [4,8,16] 64
ViT 4 Attn. Layers ((Hansen & Wang, 2021)) 64 64

E2CNN 4 E2CNN Layers ((Wang et al., 2022a)) [2,4,8,8] 64
E2CNN

′
4 E2CNN Layers ((Wang et al., 2022a)) [2,4,8,16] 64

SiT 2 local GSA, 2 global GSA 64
SiT∗ 2 local GSA, 2 global GSA 64 64
SeT 2 local GSA, 2 global GSA 64 64
SieT 2 local GSA, 2 global GSA 64 64

UCB-CNN 3 ResNet ((Raileanu et al., 2020)) [16,32,32] 256

DM−control

(Hansen&Wang, 2021) SieT 2 local GSA, 2 global GSA 64 64

Atari 100k

(Hesselet al., 2017)
CNN data-efficient (Hessel et al., 2017) [32,64] ( ≈ 880k) 256
SieT 1 local GSA, 2 global GSA 128 (≈ 309k) 256

Table 2. Architecture and hyper-parameter choices for Procgen and DM-control. UCB-CNN is taken from (Raileanu et al., 2020). All Sit
variants contain one initial conv. layer with shared graph weights and a subsequent max. pooling layer to reduce the dimensionality of the
problem. For the Atari experiments we use the unchanged hyper-parameter setting of Rainbow (Hessel et al., 2017).

IRIS 100k 
steps

Figure 13. Results on MsPacMan with SieT in actor instead of
CNN in (Micheli et al., 2023), averaged over 3 seeds. The IRIS
performance after 100k steps is marked by a blue horizontal bar.

and depth-wise convolutions with graph-weights as kernels.
The latter implementation is significantly more memory
efficient and faster. Secondly, in order to accommodate for
an extend local attention window we do use a graph matrix
which connects pixels over lager distances while keeping
the actual attention-mechanism focused on a smaller patch.

Thirdly, rather trivially one may scale down the original
image size from 64×64 pixels to 32×32. This can be done
by simple scaling the image, or by using one initial depth-
wise convolutional layer with graph-like weights to preserve
symmetry plus a subsequent Max-Pooling operation, or by
simply using every second pixel of the input-image.

Given the dominance of ViTs in Vision and Transformers in
NLP, it’s plausible that improvements in Transformer tech-
nology will similarly revolutionize vision-based RL, with
ViTs becoming predominant. Recent technical advance-
ments, such as efficient Transformers (Dao et al., 2022),

Rainbow - data-efficient

Atari Game CNN SieT

SpaceInvaders 344 366.3
BreakOut 4.3 4.97
Pong -19.07 -20.04

Table 3. CNN vs. SiTs on Atari 100k benchmark environments:
SpaceInvaders, BreakOut, Pong. We train with Rainbow (Hes-
sel et al., 2017) and compare to the data-efficient CNN (≈ 880k
weights ) about 3× larger than our SieT - ≈ 309k. The num-
ber model parameters vary for different environments, however
the factor in between CNN baseline and SieT is consistently
≈ 3×. We present absolute scores, averaged over evaluation
after 80k,90k,100k train-steps and 3 seeds, respectively.

which offer up to a 10x performance boost may lead the way
to a brad adaption of SiTs in RL. As the latter ensures that
our sample efficient symmetry-invariant vision transformer
becomes rather light-weight.

CIFAR10 - supervised ablation study: For the baseline we
use a ViT (Dosovitskiy et al., 2020) , embedding dimension
of 512 , 4 layers, 16 heads, and one local attention layer
with the same settings. The SiT has a the graph matrix G
added.

G. Additional Experiments and Ablations
G.1. Ablation: Local and Global Symmetries in

Attention for Image Understanding

In this section we present an ablation study which ad-
dresses the impact of local attention fields in SiTs, see
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CNN SieT

Figure 14. Example evaluation curves of Rainbow during training
of SpaceInvaders seed 124 on top of rainbow - data efficient -.

results in Figure 15. For the performance comparison of
the attention mechanism with both symmetrisation and anti-
symmetrisation (Equation 6) in SiTs, we restrict ourselves
to provide qualitative results. Performing several experi-
ments with two global layers, of either symmetrisation and
anti-symmetrisation or both present, we conclude that in-
deed the later admits the best relative performance as well
as generalisation to the hard task, of all SiT setup with only
global layers. However, due to the second softmax in the
attention it is more memory consuming and thus applying it
in combination with a the local layers is not feasible. Mem-
ory efficient attention mechanism (Dao et al., 2022) have
been developed recently thus our better architecture may
become technically available in the future.

Finally, we compare the impact of the employment of graph
matrices in the values of the attention mechanism. We
set Gv, = 1 and use one local and two global symmetric
attention modules (Equation 6) with rotation invariance,
see Figure 16. The graph matrix Gv, leads to a decrease
in generalisation performance on goal change tasks and
an increase in performance on the difficult environment
involving many lava-crossings. Conceptually, the graph-
matrix Gv, admits some similarities to convolutions, which
are known to preform better on limited sample size (Hassani
et al., 2022). Thus it may be easier for this architecture to
identify two-dimensional information while setting it to the
identity restores some degree of permutation invariance.

G.2. Minigrid - Lavacrossing

In this section we briefly provide the details with error bars
to the experiment provided in the main text. The tables 4, 5
contain the mean rewards averaged over 200 test episodes
after 20M time-steps.

H. Additional Evaluations & Ablations
H.1. Patch-size Ablation on CIFAR 10

In this section, we perform an ablation study on the sen-
sitivity of Sit (Siet) to the patch-size hyper-parameter. In
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Figure 15. Ablations study SiT for different number of local and
global layers as well as using the symmetric part of SiT∗, defined
in the appendix.
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Figure 16. Ablations for using the symmetric part of SiT∗, defined
in the appendix. We ablate by Gv, by setting Gv, = 1 with one
local and two global symmetric attention modules equation 6 and
rotation invariance.

contrast to the evaluation of Figure (7b) here we employ a
much smaller and faster model with 4 local and 4 global
GSA layers and have reduced the feature dimensions to 64
and 256, respectively.

We perform an ablation study of varying patch-size of SieT
model on CIFAR10 with resolution of 32x32 and 128x128
pixels, see Tables (6) and (7), respectively. Additionally, we
vary the dimension of the graph matrix in the local GSA
for fixed patch-size in selected cases. We conclude that
SieTs can be applied without loss of accuracy performance
to higher-resolution tasks and moreover are relatively insen-
sitive to changes in the patch-size (Beyer et al., 2023).
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Table 4. Details main results for experiment on the Lavacrossing Minigrid environment.

Domain Train Test Task CNN ViT PI-ViT SiT SiT-1

Lavacrossing N1 & N2
medium &easy

train: easy-N1 0.96 ± 0.01 0.23 ± 0.41 0.01 ± 0.0 0.94 ± 13.0 0.90 ± 0.23
train: medium-N2 0.69 ± 0.43 0.25 ± 0.42 0.01 ± 0.0 0.84 ± 0.32 0.70 ± 0.42
hard-N3 0.54 ± 0.47 0.19 ± 0.38 0.01 ± 0.0 0.46 ± 0.48 0.41 ± 0.47
rotations average 0.00 ±0.00 0.15 ± 0.34 0.01 ± 0.0 0.91 ± 0.21 0.91 ± 0.22
goal top-right 0.08 ±0.27 0.21 ± 0.40 0.01 ± 0.0 0.71 ± 0.44 0.90 ± 0.24
goal bottom-left 0.08 ±0.25 0.20 ± 0.40 0.01 ± 0.0 0.71 ± 0.44 0.90 ± 0.24
random goal 0.07 ±0.25 0.15 ± 0.35 0.01 ± 0.0 0.24 ±42.0 0.21 ± 0.40

Table 5. Ablations study SiT for different number of local and global layers as well as using the symmetric part of SiT∗, defined in the
appendix.

Train Test Task ViT SiT

2 global 1 loc./2 glob. symmetric 1/1 1 loc./1 glob. 1 loc./2 glob. 2 global

Lavacr.
N1/N2

train: easy-N1 0.08 ± 0.27 0.23 ± 0.41 0.86 ± 0.29 0.90 ± 0.23 0.93 ± 18.0 0.87 ± 0.28
train: medium-N2 0.12 ± 0.31 0.25 ± 0.42 0.88 ± 0.26 0.70 ± 0.42 0.84 ±0.32 0.59 ± 0.46
hard-N3 0.10 ± 0.29 0.19 ± 0.38 0.45 ± 0.43 0.41 ± 0.47 0.46 ±0.48 0.03 ± 0.16
rotations avg. 0.03 ± 0.16 0.15 ± 0.34 0.88 ± 0.27 0.91 ± 0.22 0.95 ± 0.1 0.91 ± 0.21
goal top-right 0.03 ± 0.15 0.21 ± 0.40 0.81 ± 0.35 0.90 ± 0.24 0.71 ± 0.44 0.60 ± 0.48
goal bottom-left 0.02 ± 0.13 0.20 ± 0.40 0.81 ± 0.35 0.90 ± 0.24 0.71 ± 0.44 0.60 ± 0.48
random goal 0.08 ± 0.27 0.15 ± 0.35 0.26 ± 0.43 0.21 ± 0.40 0.28 ± 0.44 0.12 ± 0.32

Table 6. CIFAR 10 - 32x32 Results. Ablation study of varying patch-size of SieT model on CIFAR10 with resolution of 32x32 pixels.
Additionally, we vary the dimension of the graph matrix in the local GSA, see x-axis. Gray bars indicate non-available cases, i.e. the
combination of graph-matrix size with patch-size has not been conducted.

GSA Layers Patch-Size Global Patch-Size Local Graph Matrix Size Batch-Size Test Accuracy 25 Epochs Test Accuracy 200 Epochs

4loc-4glob 8x8 4x4 8x8 64 66% -
4loc-4glob 4x4 8x8 16x16 64 62% -
4loc-4glob 16x16 2x2 4x4 64 66% -
4loc-4glob 4x4 8x8 8x8 64 58% 75%
4loc-4glob 16x16 2x2 8x8 64 67% 81%
4loc-4glob 8x8 4x4 6x6 64 65% -
4loc-4glob 8x8 4x4 8x8 64 66% -
4loc-4glob 8x8 4x4 12x12 64 66% -

Table 7. CIFAR 10 - 128x128 Results. Ablation study of varying patch-size of SieT model on CIFAR10 with resolution of 128x128 pixels.
The images are scaled up using AI tools CIFAR-10 128x128. Additionally, we vary the dimension of the graph matrix in the local GSA,
see x-axis. Gray bars indicate non-available cases, i.e. the combination of graph-matrix size with patch-size has not been conducted.

GSA Layers Patch-Size Global Patch-Size Local Graph Matrix Size Batch-Size Test Accuracy 25 Epochs Test Accuracy 15 Epochs

4loc-4glob 8x8 16x16 16x16 48 66% 63%
4loc-4glob 8x8 16x16 32x32 48 69% 64%
4loc-4glob 8x8 16x16 64x64 48 69% 64%
4loc-4glob 8x8 16x16 32x32 16 70% 66%
4loc-4glob 4x4 32x32 64x64 8 69% 66%

25

https://www.kaggle.com/datasets/joaopauloschuler/cifar10-128x128-resized-via-cai-super-resolution

