Under review as a conference paper at ICLR 2025

Profit
~

%105 5.0 2X10° x10°
—+— eSpark(MAPPO)] 7| —— esparkMapPO) —+— eSpark(MAPPO)
eSpark(IPPO) /*/“ eSpark(IPPO) 2.5 eSpark(IPPO)
—— MAPPO - 151 — wmapro /’A-*\.—' —— MAPPO
—— QTRAN —— QTRAN 2,01 QTRAN
—— IPPO 1.0/ — wro | — PO
— QPLEX T li— QPLEX — QPLEX
i = w15
= =
S 05 <
a a1.0
0.0
0.5
-0.5 0.0
-1.0 —
10000 20000 30000 40000 50000 10000 20000 30000 40000 50000 10000 20000 30000 40000 50000
Episode Episode Episode
(a) Standard (b) 2 echelons (c) 3 echelons
x10° x10%
—— eSpark(MAPPO) —— eSpark(MAPPO)
eSpark(PPO) 4 eSpark(IPPO)
4{ — wmappo —— MAPPO
— QTRAN e s — QTRAN 4]
— 1PPO W 21— IPPO /
2] — QPLEX — QPLEX
= =
= =
13 // 2 o0
a 0 a
2 -2
-4 -4
\
10000 20000 30000 40000 50000 10000 20000 30000 40000 50000
Episode Episode
(d) Lower (e) Lowest

Figure 22: The performance of eSpark and MARL baselines in the MABIM 100 SKUs scenarios.
eSpark(IPPO) refers to the configuration where the underlying MARL algorithm is IPPO, which is
the setup discussed in the main text. eSpark(MAPPO) combines the framework with the MAPPO
algorithm. o and A indicate eSpark collects feedback here and regenerates the exploration function.

—=— eSpark
MAPPO
— IPPO

1

100 200 300 400
Episode
(a) CR-33
—e— eSpark

MAPPO
—— IPPO

il

100 200

Episode

(d) PL-33

300

—a— eSpark
MAPPO
—— IPPO

/\/f/‘

IS

Loss

~

100 200 300 400
Episode
(b) CR-141
—e— eSpark
MAPPO
— IPPO
100 200 300 400
Episode
(e) PL-141

—e— eSpark
MAPPO

0.8
— IPPO
0.6
o
=]
©
& 0.4
0.2 //\J\/\W
0.0
100 200 300 400
Episode
(c) CR-322
0.225{ —* espark
MAPPO
0200 — IPPO
0.175
« 0.150
a
[=}
—0.125
0.100
0.075
0.050
100 200 300 400
Episode
(f) PL-322

Figure 23: The performance of eSpark and MARL baselines in the active voltage control environment.
A higher Control Rate (CR) and lower Power Loss (PL) indicate better algorithm performance. Our
proposed eSpark outperforms all baselines and achieves the best results across all test scenarios. o
indicates eSpark collects feedback here and regenerates the exploration function.

31

Under review as a conference paper at ICLR 2025

GPT’s input:

Consider a resource allocation game with n agents. Each agent has a
discrete action space {0,1,2,3}, representing the amount of resources
allocated in each step. The goal is to maximize the team’s cumulative
utility while satisfying dynamic constraints that evolves over time.

Game Rules:

1. Utility Function: The team’s cumulative utility is the sum of all
agents’ contributions, defined as: U(ai,az2,...,an) =y ., log(l+ a;)

2. Constraints: At each time step t, a global constraint C; limits the
total allocation >.» a; < C

3. Penalty for Violations: If the total allocation exceeds C:, a
penalty proportional to the excess is subtracted from the utility:
P(excess) = —k - (excess)?, where k is a positive constant.

Please write an exploration function that masks invalid bids and bids
likely to lead to inefficient budget usage (e.g., overbidding when the
reward is low) for each agent. The function signature is:

def compute_mask (current_allocations, actions_space, constraints):
return total_mask

current_allocations: Current resource allocation of all agents.
actions_space: Available actions for each agent.

constraints: The dynamic constraint Ci.

GPT’s output:

In this game, the exploration function must account for the following:
1. Dynamic Constraints: Predict whether an action will exceed C; given
the current state and other agents’ possible actions.

2. Utility Contribution: Estimate the marginal utility of each action
and prioritize those with higher expected contributions.

3. Penalty Avoidance: Mask actions likely to trigger penalties due to
constraint violations.

import numpy as np
def compute_mask (current_allocations, actions_space, constraints):
total_mask = []
for action in actions_space:
predicted_allocation = sum(current_allocations) + action

Check if the action violates the constraint
if predicted_allocation > constraints:
total_mask.append(0) # Mask the action

else:
Estimate marginal utility and penalize low
contribution
marginal_utility = np.log(l + action)
penalty = -0.1 % (predicted_allocation - constraints)

*%x 2 1f predicted_allocation > constraints else 0

Mask actions with low marginal utility or high
penalties

if marginal utility + penalty < 0.5: # Threshold
chosen heuristically
total_mask.append (0)

else:
total_mask.append (1)

return total_mask

32

