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ABSTRACT
Martian terrain segmentation plays a crucial role in autonomous
navigation and safe driving of Mars rovers as well as global analy-
sis of Martian geological landforms. However, most deep learning-
based segmentationmodels cannot effectively handle the challenges
of highly unstructured and unbalanced terrain distribution on the
Martian surface, thus leading to inadequate adaptability and gen-
eralization ability. In this paper, we propose a novel multi-view
Martian Terrain Segmentation framework (MTSNet) by developing
an efficient Martian Terrain text-Guided Segment Anything Model
(MTG-SAM) and combining it with a tailored Local Terrain Feature
Enhancement Network (LTEN) to capture intricate terrain details.
Specifically, the proposed MTG-SAM is equipped with a Terrain
Context attention Adapter Module (TCAM) to efficiently and ef-
fectively unleashing the model adaptability and transferability on
Mars-specific terrain distribution. Then, a Local Terrain Feature
Enhancement Network (LTEN) is designated to compensate for
the limitations of MTG-SAM in capturing the fine-grained local
terrain features of Mars surface. Afterwards, a simple yet efficient
Gated FusionModule (GFM) is introduced to dynamically merge the
global contextual features fromMTG-SAM encoder and the local re-
fined features from LTENmodule for comprehensive terrain feature
learning. Moreover, the proposed MTSNet enables terrain-specific
text as prompts resolving the efficiency issue of existing methods
that require costly annotation of bounding boxes or foreground
points. Experimental results on AI4Mars and ConeQuest datasets
demonstrate that our proposed MTSNet can effectively learns the
unique Martian terrain feature distribution and achieves state-of-
the-art performance on multi-view terrain segmentation from both
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the perspectives of the Mars rover and the satellite remote sensing.
Code is available at https://github.com/raoxuefeng/mtsnet.
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1 INTRODUCTION
Since the 1960s, humans have conducted multiple Mars exploration
missions. In recent years, with the advancement of deep space
exploration technology, Mars exploration has once again become
a popular topic. As relevant exploration missions progress, the
increasing Mars data has greatly promoted the application of deep
learning in Mars exploration [3, 12, 31, 33]. In Mars exploration,
Martian terrain semantic segmentation plays a crucial role as the
foundation for autonomous navigation and safe driving of Mars
rovers [13], and can also assist satellites in precisely analyzing
the global geological landforms of Mars, providing support and
decision-making basis for Mars exploration programs.

Currently, semantic segmentation technology has made signifi-
cant progress in fields such as autonomous driving [4, 7], human-
computer interaction [37], and medical image analysis [11, 20].
However, these methods will encounter unprecedented challenges
when applied to the extremely unstructured environments like the
Martian surface [30]. The characteristics of Martian landforms are
highly unstructured, lacking obvious structural features with regu-
lar geometric shapes or texture patterns on the Martian surface [10].
These factors make it infeasible to directly apply existing semantic
segmentation models trained on common datasets to the task of
learning Martian terrain features. Moreover, the images collected
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by Mars rover and orbiting satellite [27] at different locations and
perspectives have distinct shapes and large differences in imaging
scale, further increasing the difficulty of accurate terrain semantic
segmentation with current semantic segmentation methods.

In recent years, the emergence of foundation vision models has
attracted widespread attention [5, 45]. These models, based on deep
learning architectures and trained on large-scale and diverse image
datasets, have acquired powerful feature extraction and zero-shot
generalization capabilities. This means that even for unknown sce-
narios, after appropriate adjustments or transfer learning, they can
still adapt to the semantic knowledge of new scenarios [38]. The
recently emerging Segment Anything Model (SAM) [19], as a foun-
dation model for prompt-based segmentation tasks, can segment
objects of interest given a semantic prompt in the form of bounding
boxes, points, or masks [38]. Several recent works have proposed
strategies to reduce the computation costs of SAM. FastSAM [42]
develops a CNN-based architecture to segment all objects in an
image for efficiency improvement. MobileSAM [44] presents a de-
coupled distillation for obtaining a lightweight image encoder of
SAM. EfficientSAM [48] leverages masked image pretraining, which
learns to reconstruct features from SAM image encoder for effec-
tive visual representation learning. Although SAM has achieved
excellent segmentation performance in general scenarios, due to
the significant difference in data distribution between the source
domain and the target domain, its performance still falls into a
local optimum when applied to specific distribution data of the
Martian surface environment [2, 5]. Besides, SAM and most of its
variants are usually only capable of using prompts in the form of
points, bounding boxes, etc., for semantic segmentation, overlook-
ing the great potential of text prompts, which can greatly reduce
annotation costs and speed up the training process.

To address the above issues, we propose MTSNet framework
shown in Figure 1. While retaining the SAM model and inspired
by various Adapter approaches [8, 16, 35], we present a novel Ter-
rain Context Attention Adapter Module (TCAM) to enhance the
model’s adaptability and generalization capability for Martian im-
ages through fine-tuning strategy. Meanwhile, we construct a Local
Terrain Feature Enhancement Network (LTEN), which captures
local details in Martian terrain through stacks of efficient convo-
lution operators and multi-scale attentions, compensating for the
global contextual terrain features from MTG-SAM encoder and
thus generating refiner segmentation results. To better fuse the
contextual features from MTG-SAM and the local features from
LTEN, we design a Gated Fusion Module (GFM) to dynamically fuse
them through a gating mechanism to realize adaptive and learnable
feature fusion process. Finally, we introduce a text prompt encoder
enabling the model to perform efficient terrain segmentation by
simple terrain text prompts, such as soil, sand, and etc., resolv-
ing the difficulty of using bounding boxes or foreground points as
prompts in the complex and unstructured Martian environment. In
summary, our contributions are as follows:

(1) To the best of our knowledge, our proposed MTSNet is the
first to present and address the multi-view Martian Terrain
Segmentation task with only text prompts and report supe-
rior performance on two representative benchmarks with
significant flexibility and efficiency.

(2) We propose an efficient MTG-SAM encoder equipped with a
lightweight Terrain Contextual Attention Adapter Module
(TCAM), which is able to fine-tune the SAM model with
extremely few adapter parameters, allowing it to quickly
and adequately adapt to the target domain data.

(3) We design a lightweight terrain fine-grained feature learning
network with stacks of convolution operators and multi-
scale attention blocks, which can well compensate for the
limitation of the MTG-SAM encoder in terrain detail capture.

(4) For better feature fusion, we designed a simple yet efficient
gated fusion module (GFM) to dynamically fuse contextual
and fine-grained features through an adaptive and learnable
gating mechanism, which exhibits superior effectiveness.

2 RELATEDWORK
2.1 Martian Terrain Segmentation
Martian terrain segmentation is a special and important subset of se-
mantic segmentation, with the goal of segmenting different terrains
from diverse Martian images. Whether it is the analysis of Martian
landforms and terrain by satellites or tasks such as autonomous ob-
stacle avoidance, path planning, and terrain traversability judgment
for Mars rovers [13], all are profoundly influenced by Martian ter-
rain segmentation. In the research of Martian terrain segmentation,
Liu et al. [24] proposed a Hybrid Attention Semantic Segmenta-
tion (HASS) network that combines global intra-class and local
inter-class pixel attention mechanisms. Swan et al. [40] collected a
Martian terrain segmentation dataset called AI4Mars and evaluated
its performance using DeepLabV3 [1]. Zhang et al. [46] proposed a
semi-supervised learning dataset called S5Mars dedicated to Mars
images and introduced a semi-supervised learning framework for
Martian image semantic segmentation. However, current meth-
ods for Martian terrain segmentation generally target processing
Martian images from a specific viewpoint and cannot be applied
simultaneously to semantic segmentation of terrain from multi-
ple viewpoints, such as those of Mars rovers or satellites. Instead,
our proposed MTSNet aims to fully exploits the powerful gener-
alization ability of visual foundation model and the flexibility and
efficiency of text prompt-based fine-tuning mechanism, enabling
the model to simultaneously model the diversity of Mars terrain
from different perspectives within a unified framework, with excel-
lent multi-modal learning capabilities.

2.2 Domain-Specific SAM Applications
Recently, the Segment Anything Model (SAM) [19] has attracted
widespread attention as a foundation model for prompt-based im-
age segmentation tasks. It can segment images based on flexible
and diverse prompts, such as bounding boxes, masks, and points.
However, SAM’s performance is unsatisfactory for some domains-
specific data, such as medical images or images ofMars surface. This
can be attributed to the fact that the data used to train SAM is pri-
marily sourced from general images on the earth, and the imaging
mechanism or structural distribution of these source data are very
different from the target domain data [2, 5, 29]. Nonetheless, some
works attempt to break through this difficulty in transfer learning,
and have successfully applied SAM to domains-specific segmen-
tation tasks by setting tailored learnable modules and fine-tuning
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Figure 1: The overall MTSNet framework: the bottom branch is MTG-SAM encoder equipped with Terrain Contextual attention
Adapter Module (TCAM) and the upper branch is a designated Local Terrain Feature Enhancement Network (LTEN, composed
of multiple LTE Blocks). These two branches are then integrated through a Gated Fusion Module (GFM), along with a text
prompt encoder suitable for text-prompt segmentation. As illustrated, given a Martian terrain image and/or a text prompt
describing the terrain of interest as input, MTSNet can outputs the corresponding segmentation mask.

mechanisms [2, 21, 25]. Ma et al. [25] proposed MedSAM, which
only trains the SAM decoder while freezing the encoder parame-
ters. Chen et al. [2] proposed SAM-Adapter, which incorporates
domain-specific information and visual prompts into the segmenta-
tion network using a simple yet effective adapter technique. Hu et al.
[21] proposed AutoSAM that keeps the encoder frozen but adds an
independent CNN-based trainable prediction head. However, these
methods rely on bounding boxes or foreground points as prompts,
requiring costly annotations on images, which limits their appli-
cation to tasks where data annotation is scarce. Considering the
scarcity and re-annotation cost of Mars terrain dataset, we present
a novel extended SAM model, referred to as MTG-SAM, that can
accept text as prompt input, thus only the terrain text of interest
need to be provided, and the model can predict the corresponding
terrain segmentation mask, which is crucial for the safe landing
and autonomous driving of the Mars rover.

3 METHODS
3.1 Overview
As shown in Figure 1, our proposed multi-view Martian Terrain
Segmentation framework (MTSNet) consist of Martian Terrain text-
Guided Segment Anything Model (MTG-SAM) encoder equipped
with Terrain Contextual attention Adapter Module (TCAM), a Local
Terrain Feature Enhancement Network (LTEN), a Gated Fusion
Module (GFM), a text prompt encoder, and a mask decoder by [18].
As illustrated, given an original Martian Terrain image and a text
prompt describing the terrain of interest as input, MTSNet can
predict the corresponding terrain segmentation mask.

3.2 MTG-SAM Encoder with TCAMModule
In original SAM, the image encoder possesses the majority of model
parameters, and full model training would incur a high computa-
tional cost. Therefore, to integrate Martian terrain knowledge into it
at a lower cost, we adopt the Adapter technique [16, 35]. Specifically,
during the training process, we froze all parameters of the original
image encoder and inserted a lightweight trainable Terrain Context
Attention Adapter Module (TCAM) into each Transformer block.
The TCAM comprises merely 7.64% of the trainable parameters of
the original image encoder and consists of channel-spatial atten-
tion to make the image encoder adapt to the domain knowledge of
Martian terrains, as shown in Figure 1. In the TCAM, there is first a
channel-spatial attention module that learns terrain features from
the channel and spatial dimensions.

In the channel dimension, we separately use global max and
global average pooling to compress the input feature 𝑋 with shape
𝐶 × 𝐻 ×𝑊 into shape 𝐶 × 1 × 1, then pass them through a shared
MLP, respectively. The two pooled channel features are then added
together, and channel-wise weights are obtained via a sigmoid func-
tion and multiplied with the input features. The channel attention
process is shown as

𝑌𝑐 = 𝛼𝑐 ⊙ 𝑋

𝛼𝑐 = 𝜎
(
𝑀𝐿𝑃

(
𝑃𝑎𝑣𝑔 (𝑋 )

)
+𝑀𝐿𝑃 (𝑃𝑚𝑎𝑥 (𝑋 ))

) (1)

where 𝑋 represents the original input features, 𝑌𝑐 represents the
output of channel attention,𝛼𝑐 denotes the channel attention scores,
𝜎 represents the sigmoid function, 𝑃𝑎𝑣𝑔 and 𝑃𝑚𝑎𝑥 denote the global
average pooling and global max pooling, respectively.
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In the spatial dimension, as shown in Eq. 2, we similarly use
two pooling operations to compress the 𝑌𝑐 maps into 1 × 𝐻 ×𝑊 ,
concatenate them along the channel dimension, and recover the
channel dimension through convolution. We then use a sigmoid
function 𝜎 to obtain spatial location weights.

𝑌𝑠 = 𝛼𝑠 ⊙ 𝑌𝑐

𝛼𝑠 = 𝜎
(
𝑓
[
𝑃𝑎𝑣𝑔 (𝑌𝑐 ) ; 𝑃𝑚𝑎𝑥 (𝑌𝑐 )

] ) (2)

where 𝑌𝑠 denotes the output of spatial attention, 𝛼𝑠 denotes the
spatial attention scores, and 𝑓 denotes the convolution operation.

After the channel-spatial attention module, we further employ
convolutional layers to downsample the spatial resolution of the
feature maps by a factor of two, and then use transposed convolu-
tion to restore the resolution while maintaining the same number
of channels as the input, and finally add it to the input feature 𝑋 ,
which can be described as follows

𝑌 = 𝑓 𝑇 (𝐷𝑜𝑤𝑛(𝑌𝑠 )) + 𝑋 (3)

where 𝑌 represents the output of TCAM, 𝑓 𝑇 represents the trans-
posed convolution.
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Figure 2: (a) is one of the Local Terrain Enhancement (LTE)
Block, and (b) illustrates the detailed Efficient Multi-scale
Attention (EMA) module.

3.3 Local Terrain Feature Enhancement
Network

TheMartian surface contains rich geomorphological features, which
exhibit unique geometric and textural characteristics. These local
features play a crucial role in accurate terrain recognition and con-
tribute to generating more refined segmentation results. However,
global context encoder may fail to fully capture these subtle differ-
ences. Therefore, we propose a Local Terrain Feature Enhancement
Network (LTEN) to enhance the learning of local refinements. Tis
composed of the stacks of multiple Local Terrain Enhancement
(LTE) blocks. The structure of each LTE block is shown in Figure 2.
First, we utilize 3x3 convolutional layers to extract image features
while maintaining the image size. After the convolution operation,
we use average pooling for downsampling with a scaling factor of
2. Finally, to fuse important terrain features from different spatial
locations and scales, we apply an Efficient Multi-scale Attention
module (EMA) [26] to improve the model’s ability to recognize and
distinguish various complex terrain structures.

SigmoidSigmoidSigmoid

LTEN MTG-SAM Encoder

Conv, 1x1 Conv, 1x1Conv, 1x1 Conv, 1x1

1-

Sigmoid

LTEN MTG-SAM Encoder

Conv, 1x1 Conv, 1x1

1-

Figure 3: Diagram of the Gated Fusion Module (GFM).

3.4 Gated Fusion Module (GFM)
Conventional feature fusion methods such as Concatenation, Addi-
tion, and Multiplication directly fuse features without considering
the relative importance of the fused features, potentially including
redundant information [22]. To address this issue, when fusing
local terrain features and global context features, we propose a
Gated Fusion Module (GFM) as shown in Figure 3. It can filter out
redundant information for each channel and location during fusion
process, enabling dynamic and adaptive feature fusion. The formula
for GFM is as follows

𝐹 = (1 −𝐺) × 𝐹𝐿 +𝐺 × 𝐹𝑆

𝐺 = 𝜎

(
𝑊𝑇

1 𝐹𝐿 +𝑊𝑇
2 𝐹𝑆

) (4)

where 𝐹𝐿 represents the LTEN features obtained from LTEN, 𝐹𝑆
represents the global context features obtained from the MTG-SAM
encoder, and 𝐺 denotes the gating signal. It is obtained by linearly
transforming the LTEN features and MTG-SAM global features
with weights𝑊1 and𝑊2, respectively, and then applying a sigmoid
function.

3.5 Text Prompt Encoder
As mentioned above, the current applications of SAM use bounding
boxes and points as segmentation prompts. However, in Martian
terrain semantic segmentation, the complex structures of Martian
terrains make it difficult to effectively distinguish different terrains,
and providing prompt annotations requires considerable domain
expertise. Not only is this costly, it is also not feasible in practice.
We believe text prompts can be utilized for terrain segmentation. To
this end, we propose a text prompt encoder on top of the original
prompt encoder, enabling the model to perform segmentation using
text prompts. As shown in Figure 1, in the text prompt encoder,
we first encode the text using text encoder of pretrained CLIP [34]
model, which remains frozen during our training process. Since
CLIP was not trained on terrain terminology, the generated text
embedding have representation limitations. To address this issue,
we introduce a trainable text affine layer (TAL) that takes the text
embedding from CLIP text encoder as input and transforms them
into terrain terminology relevant representations. The relevant
operation is as follows

𝑦 = 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚

(
𝑅𝑒𝐿𝑈

(
𝑊𝑇 𝐸 + 𝑏

))
(5)
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where 𝐸 represents the text embedding from CLIP, 𝑦 denotes the
transformed representations, and𝑊𝑇 and 𝑏 are the weight and
bias of the text affine layer, respectively. By appending the terrain
terminology relevant text embedding to the MTG-SAM prompt
encoder, the prompt encoder is capable of using text prompts for
Martian terrain segmentation

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
We conduct experiments on two Mars datasets to demonstrate the
effectiveness and superiority of our proposed method, namely the
AI4Mars dataset [40] and the ConeQuest dataset [32].

The AI4Mars dataset [40] is the first publicly available large-
scale annotated Mars dataset, with images acquired from the Navi-
gation Cameras (NAVCAM) and Mast Cameras (Mastcam) onboard
the Curiosity rover. It consists of 16,386 annotated images, among
which the training set includes 16,064 annotated images, and the
test set contains 322 annotated images. The pixels in each image are
classified into four terrain classes: soil, bedrock, sand and big rock.
In our study, we focus solely on terrain segmentation. Therefore,
we compute the Dice scores of each class and the Intersection over
Union (IoU) Metric for comparison, which are defined as follows{

𝐷𝑖𝑐𝑒 (𝐺, 𝑆) = { 2∗|𝐺∩𝑆 |
|𝐺 |+|𝑆 | , 𝑖 𝑓 ( |𝐺 | + |𝑆 | ≠ 0 ) ; 1,𝑂/𝑊 .}

𝐼𝑜𝑈 (𝐺, 𝑆) = { |𝐺∩𝑆 |
|𝐺 |∪|𝑆 | , 𝑖 𝑓 (𝐺 ∪ 𝑆 ≠ 0 ) ; 1,𝑂/𝑊 .}

(6)

where 𝐺 represents the ground-truth segmentation mask and 𝑆

represents the predicted segmentation mask.
The ConeQuest dataset [32] is the first publicly available

expert-annotated dataset specifically designed for the task of rec-
ognizing conical landforms on the Martian surface. This dataset
encompasses high-resolution remote sensing images covering three
prominent regions on Mars—Isidis Planitia (IP), Acidalia Planitia
(AP), and Hypanis (HP)—with over 13,000 samples, each accom-
panied by detailed metadata. There are two benchmark tasks on
ConeQuest dataset: Spatial Generalization and Cone-size General-
ization, designated to evaluate a model’s performance in unseen
regions and on cones of different sizes, respectively [32]. In our
study, we follow the evaluation metrics adopted by the Spatial
Generalization benchmark task (BM-1) proposed in the ConeQuest
dataset[32], including Mask Intersection over Union (Mask IoU
or MI), Pixel Intersection over Union (Pixel IoU or PI), Pixel Ac-
curacy (PA), Pixel Precision (PP), and Pixel Recall (PR), to assess
the consistency and accuracy of our MTSNet in conical landforms
segmentation in the perspective of satellite remote sensing, and we
compare our proposed MTSNet with the benchmarked methods.

4.2 Implementation Details
In our experiments, we initialize the image encoder with a pre-
trained SAM ViT-base model from [18]. We perform data augmen-
tation on each training image, including random rotation up to 10
degrees and random saturation and brightness transformations. For
the AI4Mars dataset, we randomly select 2,400 images from the
16,064 training images as the validation set, while the remaining
images are used for training. For the ConeQuest dataset, we follow
the official split for the training, validation, and test sets. Across all

datasets, we resize the images to 512x512 resolution during training,
using a batch size of 8, and train on an RTX 3090 GPU with approx-
imately 14GB of memory required. During training, we employ the
AdamW optimizer and fix the initial learning rate at 1e-4.

4.3 Experimental Results on AI4Mars
For the AI4Mars dataset, the experimental results are shown in
Table 1, where we compute the average Dice scores and IoU scores
across the four classes in the test dataset. We compare our method
with classical convolutional neural network-based segmentation
methods (UNet [36], UNext [43], DeepLabV3 [1]) and Transformer-
based methods (TransUNet [9], MedT [41]). Additionally, We also
use original SAM with text prompt without any training (called
SAM-ZS), and retrain SAM-Adapter [2] and AdaptiveSAM [29] on
two datasets for fair comparison.

As shown in Table 1, general semantic segmentation methods
perform poorly on Mars terrain segmentation. Among the convolu-
tional neural network-based methods, UNet performs moderately
on the "bedrock" and "soil" classes, but excellently on the "big rock"
class with a Dice score of 98.45, though its overall performance is
mediocre. While UNext shows some improvement on "bedrock"
and "soil", it severely fails on the "big rock" class. The performance
of DeepLabV3 is between UNet and UNext. As for the Transformer-
based methods, MedT and TransUNet adopt Transformer encoders,
requiring more data to generate good embeddings. Due to the small
scale and class imbalance of the AI4Mars dataset, their performance
is unsatisfactory. Moreover, we can see that in the zero-shot case,
i.e., SAM-ZS, it is inapplicable to the Mars terrain segmentation
task, while SAM-Adapter and AdaptiveSAM, which employ the
Adapter based fine-tuning technique, exhibit significant perfor-
mance improvements, outperforming conventional segmentation
methods.Even using only TCAM, our method can achieve the high-
est scores in most classes compared to other methods, particularly
excelling in recognizing "sand" and "big rock". When equipped with
LTEN module, the performance is significantly boosted, reaching
an average IoU score of 77.37%, increased by 5.71% and an average
Dice score of 80.36%, increased by 5.68%, respectively.

Figure 4 illustrates the visual comparison of our method with
SAM-Adapter and AdaptiveSAM. It can be observed that the re-
sults of our method are closest to the ground truth annotations,
with occasional partial prediction errors. In contrast, the results of
SAM-Adapter and AdaptiveSAM exhibit over-prediction or under-
prediction of terrain features, as well as blurred boundaries in
terrain prediction. Using only TCAM in our method, the aforemen-
tioned issues are significantly improved. With the introduction
of LTEN, it can be seen that the predictions become even more
aligned with the ground truth. In addition, MTSNet runs at about
16 frames per second in our experimental environment, which can
basically meet the real-time requirements. Although the CNN-based
methods have lower computational complexity and faster inference
speed, its performance is too weak compared to MTSNet and cannot
solve the Martian terrain segmentation task well. Compared with
other ViT-based models such as MedT, MTSNet achieves signifi-
cant advantages in performance and time efficiency. In future work,
we plan to explore more efficient methods such as FastSAM [42],
EfficientSAM [48], etc. to further improve computational efficiency.
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Table 1: The results on the AI4Mars dataset. Bold: best results, underline: second best results.

Method Dice Score IOU Score
bedrock soil sand big rock avg bedrock soil sand big rock avg

UNet [36] 55.91 53.42 65.84 98.45 68.41 55.91 53.42 65.84 98.45 68.41
Unext [43] 63.80 74.51 65.84 0.07 51.06 58.56 70.15 65.84 0.04 59.62

DeepLabV3 [1] 55.03 45.90 64.91 98.45 66.07 55.03 45.31 64.91 98.45 65.98
MedT [41] 26.18 24.49 65.84 98.44 53.74 22.12 19.13 65.84 98.44 51.39

TransUNet [9] 58.30 68.57 65.86 0.10 49.39 63.03 64.37 65.86 0.05 47.15
SAM-ZS [19] 9.73 20.00 14.33 0.19 11.06 6.86 15.89 11.69 0.19 8.66

SAM-Adapter [2] 59.16 68.04 78.43 93.07 74.68 54.23 63.71 75.73 92.97 71.66
AdaptiveSAM [29] 62.29 67.32 73.35 93.10 74.01 57.33 63.40 70.88 93.03 71.16
Ours (TCAM) 65.86 70.85 75.41 92.97 76.27 60.72 66.87 72.61 92.87 73.27

Ours (TCAM + LTEN) 67.57 78.31 82.62 92.92 80.36 62.23 74.28 80.13 92.82 77.37

Figure 4: The visualization results on the AI4Mars dataset.
From top to bottom, the images of four terrain classes with
corresponding text prompts, i.e. "sand", "soil", "big rock", and
"bedrock", respectively, as illustrated on the left side of image.

Table 2: The results on the ConeQuest dataset in IP region.
Bold: best results, underline: second best results.

Method MI PI PA PP PR
UNet [36] 63.46 62.33 96.27 81.92 76.44
FPN [23] 65.94 67.91 96.62 85.96 78.00

DeepLabV3 [1] 34.08 31.70 93.72 97.37 32.93
MA-Net [6] 59.90 63.50 91.52 91.52 67.92

AdaptiveSAM [29] 52.05 54.69 94.81 77.97 69.34
SAM-Adapter [2] 45.96 49.32 94.87 77.35 64.42
Ours (TCAM) 60.63 69.52 97.00 87.07 79.00

Ours (TCAM + LTEN) 58.88 68.44 96.86 92.52 73.20

4.4 Experimental Results on ConeQuest
On the ConeQuest dataset, we trained on samples from three differ-
ent regions: Isidis Planitia (IP), Acidalia Planitia (AP), and Hypanis
(HP), and separately tested on samples from each region. We com-
pare MTSNet with the official benchmarked models including UNet
[36], FPN [23], DeepLabV3 [1], andMA-Net [6], while also including
SAM-Adapter and AdaptiveSAM for comprehensive comparison.

For the Isidis Planitia (IP) region, the experimental results are
shown in Table 2. UNet, FPN, DeepLabV3, and MA-Net exhibit
varying performances, with FPN achieving relatively high levels in
Mask IoU and Pixel IoU. AdaptiveSAM and SAM-Adapter perform

relatively moderately, and our method also achieve moderate im-
provements in Pixel IoU and Pixel Accuracy. We speculate that the
mediocre performance of MTSNet is mainly due to 1) the sample
and region imbalance of IP region data and 2) the ViT’s inherent in-
ability to learn from extremely imbalanced data [49]. The IP region
data contains 91% positive samples and only 9% negative samples,
which is extremely imbalanced. We believe that proper feature fu-
sion [28], semi-supervised feature learning [39] and tailor-made
re-balancing loss functions may alleviate the model’s performance
degradation on such data.

In the Acidalia Planitia (AP) region, as shown in Table 3, bench-
marked models like UNet fluctuates in performance, but FPN main-
tains a good segmentation accuracy. AdaptiveSAMand SAM-Adapter
still perform sub-optimally. On the contrary, our method achieves
significant improvements across several metrics, attaining the best
scores of 53.21 in Mask IoU, increased by 3.26% and 54.93 in Pixel
IoU, increased by 0.88%, respectively. For the Hypanis (HP) region
in Table 4, we observe that all methods encounter greater chal-
lenges. Compared to other regions, UNet, FPN, DeepLabV3, and
MA-Net exhibited declines across various metrics. AdaptiveSAM
and SAM-Adapter are more limited in this region. Notably, although
our method also faces substantial challenges, it demonstrates adapt-
ability and performance improvement, achieving the best results in
Mask IoU, Pixel IoU, Pixel Accuracy, and Pixel Recall, improving
Pixel IoU by 2.89% and Pixel Recall by 6.78%.

Figure 5 presents the comparison of the results from our method
and other methods on three regions. In the Isidis Planitia region
(first row) and the Acidalia Planitia region (second row), for cases
where multiple conic landforms exist, other methods exhibit se-
rious missed detection problem, whereas our method ensures no
omissions, despite some errors in details. In the Hypanis region
(third and fourth rows), compared to other methods, our method
does not suffer from recognition errors, while also achieving higher
segmentation accuracy.

Through the above experimental results, we can see that bench-
marked models like UNet, FPN, DeepLabV3, and MA-Net exhibit
varying degrees of performance differences on conical landforms,
performing well only in some regions. However, in other regions,
when handling unseen distribution features, their generalization ca-
pabilities are significantly limited. AdaptiveSAM and SAM-Adapter
perform moderately, with metrics noticeably lower than other mod-
els. In contrast, our method demonstrates a breakthrough in gener-
alization ability, achieving more outstanding results in the spatial
generalization task.
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Figure 5: Qualitative performance of our method and other methods on the ConeQuest dataset.The first row is from region
Isidis Planitia (IP), the second row is from region Acidalia Planitia (AP) and the last two rows are from region Hypanis(HP).

Table 3: The results on the ConeQuest dataset in AP region.
Bold: best results, underline: second best results.

Method MI PI PA PP PR
UNet 47.82 42.56 95.99 82.38 47.09
FPN 48.26 45.91 96.51 87.12 47.09

DeepLabV3 37.78 40.50 95.91 86.91 45.30
MA-Net 49.94 54.05 97.20 83.96 59.85

AdaptiveSAM 26.72 24.08 93.18 66.04 34.55
SAM-Adapter 21.34 20.03 93.25 69.89 28.66
Ours (TCAM) 29.64 33.84 95.07 74.75 38.57

Ours (TCAM + LTEN) 53.21 54.93 97.10 87.62 63.75

Table 4: The results on the ConeQuest dataset in HP region.
Bold: best results, underline: second best results.

Method MI PI PA PP PR
UNet 43.28 45.23 92.14 79.73 55.20
FPN 48.39 49.13 92.98 82.66 58.38

DeepLabV3 37.93 39.83 91.63 81.11 49.48
MA-Net 42.44 44.13 92.46 82.88 51.18

AdaptiveSAM 37.19 38.13 80.79 70.68 53.67
SAM-Adapter 36.28 38.20 90.40 69.60 51.97
Ours (TCAM) 39.41 44.38 92.45 74.04 53.51

Ours (TCAM + LTEN) 48.56 52.02 93.03 74.25 65.16

4.5 Ablation Study
To investigate the influence of different model components, we
conducted ablation experiments on the proposed model using the
AI4Mars dataset, with the following details.

Effectiveness of the text affine layer (TAL) : Table 5 shows
the performance comparison between the model with TAL and the
model without TAL. The results demonstrate that incorporating the
TAL as a text domain adapter significantly improves the segmen-
tation performance across various terrain types. Specifically, with
the TAL, we observed an average increase of 0.87% in Dice scores
and 1.00% in IoU scores. These results validate our approach of

Table 5: Ablation study of text affine layer (TAL) on the
AI4Mars dataset. Bold: best results.

Modules Dice Score IOU Score
TCAM LTEN TAL bedrock soil sand big rock avg bedrock soil sand big rock avg
✓ ✓ × 66.60 74.49 81.90 94.96 79.49 61.63 70.36 79.12 94.86 76.37
✓ ✓ ✓ 67.57 78.31 82.62 92.92 80.36 62.23 74.28 80.13 92.82 77.37

using a learnable text affine layer to bridge the gap between CLIP’s
general text embeddings and the specialized domain knowledge
required for Martian terrain segmentation. Effectiveness of the
Gated Fusion Module (GFM) : When exploring feature fusion
strategies, we compared three traditional fusion methods (Addi-
tion, Concatenation, Multiplication) with our proposed GFM. The
experimental results in Table 6 show that, compared to traditional
fusion strategies, GFM achieves the optimal results in feature fu-
sion, especially yielding significant improvements in the "bedrock"
and "soil" classes, as well as the overall performance. Specifically,
GFM improves the Dice scores and IoU scores by 1.99% and 0.85%
over Addition fusion, 1.87% and 2.02% over Concatenation fusion,
and 2.29% and 2.19% over Multiplication fusion, respectively. These
results demonstrate the clear advantage of GFM in feature fusion.
When fusing local features and MTG-SAM global features, GFM
comprehensively considers both types of features, selectively filter-
ing information from each channel and position, thereby effectively
fusing useful information to improve the accuracy of Mars terrain
segmentation.

Effectiveness of Channel-Spatial Attention in TCAM: In
TCAM, to validate the effectiveness of channel-spatial attention, we
compared different attention mechanisms, including Pyramid Split
Attention (PSA) [15], Coordinate Attention [14], Efficient Multi-
scale Attention (EMA), as well as applying spatial attention and
channel attention separately. It should be noted that here we fo-
cus on evaluating the impact of different attention mechanisms on
the TCAM module, without additionally introducing LTEN. The
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Figure 6: Visualized comparison of different attention mech-
anisms in TCAM. EMA: Efficient Multi-scale Attention; CA:
Coordinate Attention; PSA: Pyramid Split Attention.

Table 6: Ablation experiments with different feature fusion
strategies. Bold: best results, underline: second best.

Fusion Method Dice Score IOU Score
bedrock soil sand big rock avg bedrock soil sand big rock avg

Addition 65.58 76.69 82.83 93.02 79.53 60.26 72.53 80.19 92.92 76.47
Concat 62.35 76.50 82.17 92.99 78.50 56.83 73.37 79.32 92.90 75.35

Multiplication 65.68 76.14 81.08 90.20 78.28 60.21 71.88 78.51 90.10 75.18
GFM 67.57 78.31 82.62 92.92 80.36 62.23 74.28 80.13 92.82 77.37

experimental results in Table 7 show that although various atten-
tion mechanisms improve the model’s performance to some extent,
our channel-spatial attention achieves the optimal results. Specifi-
cally, compared to PSA, our method significantly improves the Dice
scores and IoU scores across all classes and overall. Compared to
Coordinate Attention or EMA, although there are some differences
in individual classes, our method has a certain advantage in overall
performance. Moreover, applying spatial attention and channel at-
tention separately yields inferior overall performance compared to
channel-spatial attention, indicating that handling complex Mars
terrain features requires simultaneously considering both spatial
position information and cross-channel dependencies.

Figure 6 presents a visualized comparison among different atten-
tion mechanisms in TCAM. We generate the heatmap in Figure 6
from the output of the last Transformer block’s TCAM. It can be ob-
served that for "sand" and "big rock", the channel-spatial attention
more effectively captures the salient features. When dealing with
"soil" and "bedrock", the Coordinate Attention, PSA, and channel-
spatial attention all exhibit better focusing capabilities. Overall, the
channel-spatial attention appears more balanced, demonstrating
relatively better performance and stability under various terrain
conditions.

Effectiveness of EMA in LTE Block: In LTEN, to enhance the
learning capability of local terrain features, we incorporated Effi-
cient Multi-scale Attention (EMA) after each LTE Block. To validate
the effectiveness of EMA, we designed corresponding experiments,
using Pyramid Split Attention (PSA) [15], Coordinate Attention
(CA) [14], SE (Squeeze-and-Excitation) [17], and CBAM [47] for
comparison. The experimental results in Table 8 show that different
attention mechanisms perform variably across terrain classes, but

Table 7: Ablation study with different attention mechanisms
in TCAM. Bold: best results, underline: second best.

Attention in TCAM Dice Score IOU Score
bedrock soil sand big rock avg bedrock soil sand big rock avg

PSA [15] 61.25 66.45 70.54 91.74 72.50 56.47 62.37 68.53 91.64 69.75
Coordinate Attention [14] 64.08 71.28 76.84 92.72 76.23 58.74 67.41 74.01 92.73 73.20

EMA [26] 64.06 69.77 77.78 92.59 76.05 58.95 65.99 75.19 92.51 73.16
Spatial Attention 64.35 69.08 71.18 92.71 74.43 59.23 65.45 68.60 92.62 71.48
Channel Attention 64.55 67.99 73.11 92.09 74.43 59.56 64.05 70.85 91.99 71.61

Channel-Spatial attention 65.86 70.85 75.41 92.97 76.27 60.72 66.87 72.61 92.87 73.27

Table 8: Ablation study with different attention mechanisms
in LTEN. Bold: best results, underline: second best results.

Attention in LTEN Dice Score IOU Score
bedrock soil sand big rock avg bedrock soil sand big rock avg

PSA [15] 64.91 76.16 82.28 93.92 79.32 59.49 72.19 79.77 93.82 76.32
CA [14] 65.77 77.02 82.28 93.01 79.52 60.40 72.76 79.65 92.29 76.43
SE [17] 65.47 76.46 82.75 93.91 79.65 60.19 72.30 80.02 93.81 76.58

CBAM [47] 66.37 76.00 82.84 92.48 79.42 60.93 71.96 80.42 92.39 76.42
EMA 67.57 78.31 82.62 92.92 80.36 62.23 74.28 80.13 92.82 77.37

overall, EMA exhibits the most significant advantage, particularly
in the "bedrock" and "soil" classes. Specifically, while PSA excels in
recognizing "big rock", and Coordinate Attention, SE, and CBAM
perform well in some metrics, but their overall performance is
surpassed by EMA. In summary, benefiting from its cross-spatial
multi-scale attention mechanism, EMA can better capture local
terrain features than other attention methods.

5 CONCLUSION
In this paper, we propose a novel text-guided multi-view Martian
Terrain Segmentation framework, called MTSNet, which consists
of a Martian Terrain text-Guided Segment Anything Model (MTG-
SAM) equipped with a lightweight Terrain Contextual Attention
Adapter Module (TCAM), a Local Terrain Feature Enhancement
Network (LTEN), a simple yet efficient gated fusion module (GFM),
a CLIP-based text prompt encoder and a segmentation mask de-
coder. MTG-SAM is presented to facilitate domain-specific transfer
learning from source to target domain data, TCAM is able to fine-
tune the MTG-SAM with extremely few adapter parameter, LTEN
can well compensate for the limitation of the MTG-SAM encoder in
terrain detail capture. GFM enables to dynamically fuse contextual
and fine-grained features through an adaptive and learnable gating
mechanism. Comprehensive experiments demonstrates that our
proposed MTSNet can effectively perform the Mars terrain and
cone segmentation with the data acquired from Mars rover and
satellite remote sensing, and achieves state-of-the-art performance,
providing a more efficient and adaptive solution for Martian ter-
rain segmentation. In the future, we will further lightweight the
proposed MTSNet framework and extend it to more general and
diverse image segmentation scenarios.
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