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Appendix A. Training strategy for image-text pair training
data

In our approach, we propose to use terrain-specific text as a
segmentation prompt to enhance the efficiency and feasibility of
using the model in practical scenarios. When using text as a prompt
for Martian terrain segmentation, we need to handle situations
where the used text, such as "big rock", does not correspond to the
actual content of the Mars surface image being processed, in which
case the model’s output would be a blank mask. However, if the
model is trained solely on image-label (text) pairs that contain valid
segmentation regions, it is likely to struggle with such cases. To
address this issue, we adopt the following training strategy during
the training process: assuming there are M possible Martian terrain
categories, for each Mars surface image, even if it does not contain
all terrain categories, we generate M sets of corresponding image-
text pairs, and set masks to blank for terrain categories that are
not present in the image. This strategy significantly improves our
model’s ability to generate correct masks even if the target terrain
is not actually present in the image.

Appendix B. Loss function of model training
To address the potential severe data imbalance issue caused

by generating M image-text pairs for each image during training,
which can lead to a large number of blank labels, we employ the
focal loss for training. The focal loss is defined as follows

𝐿𝑓 𝑜𝑐𝑎𝑙 =
1
𝐵

𝐵∑︁
𝑖=1

𝐻𝑊∑︁
𝑗=1

𝐿𝑖 𝑗 (1)

where

𝐿𝑖 𝑗 =

{
−𝛼 (1 − 𝑝)𝛾 𝑙𝑜𝑔(𝑝), if 𝑦 = 1
−(1 − 𝛼) (𝑝)𝛾 𝑙𝑜𝑔(1 − 𝑝), if 𝑦 = 0

(2)

here, 𝐿𝑖 𝑗 represents the loss associated with pixel 𝑗 in image 𝑖 , 𝑝
denotes the predicted probability of being 1, and 𝑦 represents the
true pixel label. 𝐵 denotes the batch size,𝐻 denotes the height of the
mask, and𝑊 denotes the width of the mask. The hyperparameters
𝛼 and 𝛾 need to be determined through a validation process.

Appendix C. Additional qualitative analysis
Figure 1 provides supplementary qualitative analysis of Martian

terrains segmentation on the AI4Mars [5] dataset. For other models
that do not rely on external text prompts (UNet [4] and UNext [6]),
the models output segmentation maps for each class. To perform
the final class-level mask comparison, we follow this formula:

𝑚𝑎𝑠𝑘𝑖 =

{
1, argmax (𝑂 (𝐶)) = 𝑖

0, otherwise
(3)

here, 𝑖 represents the class index, and 𝑂 represents the output of
the segmentation model. Assuming the shape of 𝑂 is 𝐶 × 𝐻 ×𝑊 ,
where 𝐶 denotes the number of classes, 𝐻 represents the height of
the mask, and𝑊 represents the width. It is particularly noteworthy
that when a specific Martian terrain is not present in the image,
our method can accurately output a blank mask (as shown in the
third row of Figure 1), however, other methods give false positive
segmentation results.

Figure 1: Qualitative Performance on the AI4Mars Dataset
(supplementary).

On the ConeQuest [3] dataset, to better observe the performance
of our model in different regions, we additionally provide separate

Figure 2: Qualitative Performance on the ConeQuest in the
Isidis Planitia (IP) region (supplementary).
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Figure 3: Qualitative Performance on the ConeQuest in the
Acidalia Planitia (AP) region (supplementary).

Figure 4: Qualitative Performance on the ConeQuest in the
Hypanis (HP) region (supplementary).

visual comparisons for each region, as shown in Figure 2, Figure 3,
and Figure 4, respectively. Here, we compare our model with the
benchmarked methods including UNet [4], DeepLabV3 [1] and FPN
[2].
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