Under review as a conference paper at ICLR 2025

PRIVATECHAT: A SECURE ENCRYPTED COMMUNICA-
TION FRAMEWORK
WITH BLACK-BOX LLMS (TECHNICAL APPENDICES)

Anonymous authors
Paper under double-blind review

In this appendix, we first provide additional details of our method in Section[I] Then, in Section 2]
we describe more experimental details. Finally, in Section [3| we present additional experiments,
including a user study, various ablation studies, and case studies of our PrivateChat.

1 MORE DETAILS OF PRIVATECHAT

Here, we present the details of how we build the client-end encryption module, the client-end de-
cryption module, the system prompt perturbation module and the sample-efficient black-box opti-
mization framework.

1.1 CLIENT-END ENCRYPTION MODULE AND CLIENT-END DECRYPTION MODULE

In our client-end encryption module, we employ various encryption algorithms (e.g., Caesar, AES,
DES, and ChaCha20) to convert the user’s plaintext queries into ciphertext. In our client-end de-
cryption module, we utilize the corresponding decryption algorithms to transform the encrypted
responses back into plaintext. Next, we elaborate on the encryption algorithms used in this paper.

Caesar cipher is a traditional encryption method where each letter in the plaintext is shifted a certain
number of positions up or down the alphabet. This substitution is consistent throughout the entire
message. The key to the Caesar cipher is the number of positions each letter in the plaintext is
moved. For example, if the key is 3, the letter A’ in the plaintext will be replaced by ’D’.

AES (Advanced Encryption Standard) cipher is a widely used symmetric encryption algorithm,
known for its efficiency and robustness in securing electronic data. The core operations of AES
include substitution, shifting rows, mixing columns, and adding a round key (XORing the block
with a key derived from the original key). AES supports multiple key lengths, and the same key is
used for both encryption and decryption.

DES (Data Encryption Standard) cipher is a symmetric encryption algorithm that was widely
used to secure electronic data. During each round of DES, the data blocks are divided into two
halves. The right half undergoes a complex function that involves expansion, substitution, and
permutation, and then it is combined with the left half using an XOR operation. The decryption
process involves applying these steps in reverse order, using the round keys in reverse.

ChaCha20 cipher is a modern stream cipher known for its high performance and security. Unlike
block ciphers like AES and DES that process data in blocks, ChaCha20 operates as a stream cipher.
It generates a long keystream of pseudo-random bits, which is then XORed with the plaintext to
produce ciphertext. In addition to the key, ChaCha20 also uses a nonce and a counter. As with other
symmetric ciphers, the same key is used for both encryption and decryption.

1.2 SYSTEM PROMPT PERTURBATION MODULE

We design a learnable system prompt perturbation model that adaptively perturbs the initial plaintext
prompt IT to generate a private system prompt II. As illustrated in Fig. |1} take the word ‘Caesar’
as an example. Specifically, (i) P¥ = {pZ}6_, represents the perturbation probability distribution,
where each pZ denotes the probability of perturbing the n'”* character 7, in the word ‘Caesar’. Once
this probability pZ exceeds the perturbation threshold ¢, the character 7, is replaced with a corre-

sponding code from the codebook. In this case, characters ‘C’, ‘e’, ‘s’, and ‘r’ require perturbation.
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Figure 1: The pipeline of our system prompt perturbation module.

(ii) B = {pF .}, is the encoding probability distribution, where p[, denotes the probability
that the character 7, should be perturbed as C,. (C, denotes the rth code within a codebook con-
taining a total of R codes). Here, each code in the codebook is a random combination of N, = 2
ASCII characters. For instance, for the original character ‘C’, the code ‘T:” within its corresponding
codebook has the highest encoding probability, so ‘C’ is replaced with ‘T:’. Consequently, using
this system prompt perturbation model, we can perturb the word ‘Caesar’ in the plaintext system
prompt to generate the word ‘T:aC/m a[ ’ in the private system prompt.

1.3 SAMPLE-EFFICIENT BLACK-BOX OPTIMIZATION FRAMEWORK

To enable efficient and economical black-box optimization, we introduce a baseline-based variance
reduction strategy specific to Simultaneous Perturbation Stochastic Approximation (SPSA). This
strategy stabilizes and accelerates the convergence of the original SPSA, enhancing model perfor-
mance while reducing training time and costs. Specifically, we subtract a baseline value b; € R

from the original SPSA gradient estimate to form a variance-reduced gradient estimation g; '~ Psa
follows: ; .
: L~ 1 (R(gs —el?) — R + e’
vr-spsa N — K3 — b
4 @) =7 Z‘; 0@ 2, b W
Jj= i

Lemma 1 below theoretically proves that our baseline-based gradient estimation is unbiased relative
to the original gradient estimation, ensuring that while the variance of the gradient estimates is
reduced, their accuracy in indicating the correct direction for steepest reward ascent is preserved.

Lemma 1. The baseline-based gradient estimation is unbiased to the original one:

E g7 (00)] = g7 ().

AVT_SPSQ

Proof. We first rewrite our baseline-based gradient g, as follows:
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Since u; mm ~ 0.5-U(0.5,1)+0.5-U(—1, —0.5), we compute the expected value of ﬁ as follows:

1 05 1 1 L 1
Ui,m {um} /_1 Uim  —0.5 100 +/0A5 Uim 105000 )



Under review as a conference paper at ICLR 2025

Based on the derivation above, we can obtain E,,, [ui] = 0 and thus E [, (¢;)] = ¢;"°" (¢:).
O

Additionally, we minimize the variance Var(-) of g;"~*"* to derive the closed-form solution for
the optimal baseline b] in Eq. E| through our extensive mathematical analysis. Here, we provide a
detailed derivation of our optimal baseline b .

By, [% (R(¢i — ciwi) — R(¢i + Cz‘ui))]

T e ] ’ @

Proof. We first derive the variance of the baseline-based gradient estimation in Eq. [T}
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To minimize the variance of §;" ~*"*“, we set the derivative of the variance with respect to b; to zero.
Given E,, [ui} = 0 (see Lemma 1), the process is formulated as:
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Algorithm[I]summarizes our SE-SPSA algorithm.
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Algorithm 1 SE-SPSA Algorithm for Black-Box Optimization

Input: the total number I of optimization steps, the total number J of sampled perturbation
vectors in each optimization step, the objective function R(-), the scaling parameter S, and the
stabilization parameter S, for the learning rate a, the scaling parameter .S, and the perturbation
magnitude S;, for the perturbation coefficient c.

Initialize the model parameters ¢g

fori < Oto/—1do

s
i = G¥5.)5a

G = 35
fort <+ 1to J do

Sample random perturbation vector ul?

)

end for
/I Derive the optimal baseline for variance reduction
J €] ()
S —rt7 (R(@i—cu)=R(pi+eu))
—_— 2 2
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i i
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end for

2 MORE DETAILS OF EXPERIMENTAL SETUP

2.1 IMPLEMENTATION DETAILS

In our black-box optimization module, we set the scaling parameter S, = 0.05 and the stabilization
parameter S, = 1.0 to calculate the learning rate a;; we set the scaling parameter S. = 0.2 and
the stabilization parameter S, = 0.1 to calculate perturbation coefficient c; (see Algorithm [I| for
the calculation formula). To ensure a fair evaluation, we introduce an additional system prompt for
each method, such as ”Answer without writing analysis steps”, to prevent the exposure of private
information (e.g., user queries being repeated) in the analysis steps of LLM responses, thereby
improving the accuracy of our privacy assessment.For our method, we include a system prompt like
”Please use Python code to answer my question”, to reduce randomness in LLM responses.

All experiment are implemented using PyTorch with one RTX 3090 GPU. The learnable query
perturbation method we designed for comparison experiments uses the same character-level pertur-
bation strategy as our PrivateChat. This model consists of an embedding layer, an LSTM layer, and
a fully connected layer, and is optimized with our SE-SPSA black-box optimizer. The inputs to
the network are user queries, while the outputs provide the perturbation probability distribution and
encoding probability distribution required by our character-level perturbation strategy.

2.2 METRICS

Local Semantic Protection Degree (P s). Following (Tong et al.| 2023), we adopt the embedding
inversion attack (Qu et al., [2021)) to measure the local, token-wise semantic privacy level of the
perturbed LLM inputs and that of the LLM outputs. Specifically, given the embeddings of tokens
in the private text, the embedding inversion attack (Yue et al., |2021)) aims to find the top 5 nearest
neighbors in the embedding space. The corresponding tokens of these nearest neighbors are then
used to replace the tokens in the private text, inferring the original text. The success rate of this
attack (i.e., the accuracy of token prediction) is denoted as R, g, which is inversely proportional to
the privacy protection capability: the higher the Ry g, the lower the privacy protection. Therefore,
the privacy protection level is defined as Prg =1 — Rpg.

Global Semantic Protection Degree (Pgs). Following (Yue et al.l 2021} |Chen et al., 20234), we
adopt the input inference attack (Yue et al.,|2021) to evaluate the global semantic privacy protection
level of the perturbed LLM inputs. This attack aims to assess how well the original content of
a private text can be inferred using a pre-trained model. Specifically, the attack process involves
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replacing each token in the private text with a [mask] token, one at a time. A pre-trained BERT
model (Devlin et al. 2018) is then employed to predict the original token that was masked. The
success rate of this attack, denoted as R g, is a measure of how frequently BERT accurately predicts
the masked tokens. A higher success rate indicates that the model can more easily infer the original
content, suggesting lower privacy protection. Therefore, the corresponding privacy-preserving level
is quantified as Pgs = 1 — Rgg. Since this metric relies on contextual information to infer text
privacy and LLM responses in classification tasks are typically concise (e.g., It is positive’), it is
not suitable for evaluation using this metric. Hence, we use Pgg only to assess the privacy of the
perturbed LLM inputs.

Rouge: Recall-Oriented Understudy for Gisting Evaluation (Ur,y4.). Following (Xiao et al.,

2023), we adopt Urouge,> URouges aNd URouge; (Lin, 2004) to evaluate the quahty of LLM re-
sponses in the Medical Q/A dataset The set of tokens from the LLM-generated text is represented
by Y, and that from the ground truth text is represented by Y;. The number of overlapping uni-

grams between Y and Yy, is denoted as F,:1(Y, Ygt) and for overlapping bigrams as Fo (Y, Yy¢).
Additionally, the total number of unigrams in Yy, is denoted as U (Y},;) and the total number of bi-
grams as B(Y:). The longest common subsequence shared between Y and Y, is represented by
Fr(Y, Ygt) The formulas for Urouge, » URouges» and Urouge,, are thus formulated as:

Y,Y,
Unona — (( )gt). (10)
B ]-—02(Y th)
URouges = BV (11)
_ BV
URougeL - ma$(|Y|7|Ygt|) (12)

3 ADDITIONAL EXPERIMENTS

3.1 USER STUDY

We conduct a user study on our PrivateChat, highlighting its unique Typle 1: User study on our
advantages over SanText (Yue et al., [2021), CusText (Chen et all privateChat.

2023a)) and HaS (Chen et al., 2023b)). Ten independent participants
are recruited for the study. They are given 100 communication ex- S
amples between users and GPT-4 (OpenAl, |2023)), processed by the 2
above four methods (refer to Fig[5|for the template of the communication examples). They score the
methods on privacy and utility performance (scale of 1 to 5, higher is better). Results are reported
in Tab. (1} Our PrivateChat outperforms the others in both two metrics, showcasing its capability in
safeguarding user privacy and maintaining effective user-LLM communication.

| SanText CusText HaS PrivateChat

2.831 1.556  1.714 4.641
2.204 2,571 2371 4.619

3.2 ABLATION STUDY ON THE CODEBOOK OF THE SYSTEM PROMPT PERTURBATION
MODEL

In our system prompt perturbation model, each code in the Taple 2: Ablation study on code
codebook consists of a random combination of No ASCII char-  Jength N, in codebook.

acters. To assess the impact of N., we evaluate the perfor-
mance changes of our PrivateChat under varying N, settings
on the SST-2 dataset (Wang et al} [2018). As shown in Tab. @ V
increasing IV, significantly improves the privacy of the prompt 7
but reduces the LLM’s comprehension, leading to decreased -
accuracy.

Models | Pgs Prrs Pors Uacc

0.825 0.857 0.999 0.864
0.836 0914 0.958  0.798
0.947 1.000 0.831 0.685

Additionally, we also assess the impact of the number of codes  Taple 3: Ablation study on code-
(termed as R) contained in the codebook on the SST-2 dataset  pook length R.
(Wang et al.,|2018). As shown in Tab. E} if the number of codes
in the codebook is too small (i.e., R = 25), it is difficult for the
network to find the optimal replacement for the perturbation  £=25
. . R =150
characters, thereby reducing performance. Conversely, if there  r— 100
are too many codes (i.e., R = 200), it results in an excessive _£ =200

Models | Pas Prrs Pors Uacc

0.740 0.628 0.762  0.554
0.825 0.857 0.999 0.864
0.837 0.875 0.990 0.798
0.863 0.714 0.782  0.663
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number of parameters that need training, making optimization
difficult and reducing the effectiveness of the prompt. Therefore, we chose the number of codes
R = 50 to achieve a relatively optimal performance.

3.3 ABLATION STUDY ON THE PERTURBATION RANGE

As the most crucial part of the private system prompt is the en-  Taple 4: Results of perturbing
cryption details (i.e., the encryption method and the key), we  only the encryption details.
design a variant of our PrivateChat that only perturbs the en-
cryption details instead of perturbing the entire plaintext system
prompt. As shown in Tab.[d] we test the performance changes % f; 8-;33 8328 (l)-ggg ggg;
of this variant under varying N, settings on the SST-2 dataset " _3 | 0864 1.000 0987 0751
(Wang et al 2018). It is evident that increasing /N, improves
the effectiveness of privacy protection but reduces the accuracy of LLM responses. Compared to
Tab. 2] perturbing only the encryption details, rather than the entire prompt content, leads to better
accuracy in LLM responses. However, it also makes it easier to infer privacy from the context.

Models | Pgs Prrs Pors Uacc

3.4 ABLATION STUDY ON THE PRIVACY REWARD

Our privacy reward function R, consists of a semantic-level Table 5: Ablation study on the pri-
difference function Fier, and a character-level difference func-  yacy reward.
tion F.qr, Where each difference function calculates on both — o P P T
global content (the entire private system prompt) and local con-  T==——=———— 0.;';1 090 5o
tent (the encryption details portions of the prompt). To demon-  Frvaechawro o) | 0816 0572 0548 0822
strate the effectiveness of this design, we compare our method — PrivaieChattwio Foiop) | 0774 0853 0997 0.854
. . . . . . PrivateChat 0.825 0.857 0999 0.864
with four variants: (i) Privacy reward without semantic-level
function (w/o Fgpn,), (ii) Privacy reward without character-level function (w/o Fp,qr), (iii) Privacy
reward without local reward (w/o Fj,.) and (iv) Privacy reward without global reward (w/o Fyi0)
on the SST-2 dataset (Wang et al.l 2018). As shown in the Tab. |§|, our method achieves the best
privacy and utility relative to these four variants, showing the effectiveness of each component.

3.5 ABLATION STUDY ON THE BLACK-BOX OPTIMIZATION FRAMEWORK
We assess the impact of the number J of == privacy i
sampled perturbation vectors on the SST-2 e
dataset (Wang et al [2018). FigZ] (a) dis- 0s
plays the privacy and utility performance of 01
our PrivateChat under different J values.
Fig[2] (b) shows the number of API calls o
required for the model to converge under Number of sampled perturbation vectors ) Number of sampled perturbation vectors
different sampling numbers J. The results  Fjgure 2: Ablation Study on the sampling number .J.
show that as J increases, utility and privacy

improve. When J exceeds 5, the improvements become marginal in Fng (a) while the number of
API calls required for optimization increased in Fig[2](b). Therefore, to achieve better results with a
small number of training samples, we choose J = 5 in our experiments.

(b)

Value
Number of API calls

g

3.6 CASE STUDY

In Fig. 3] Fig. @ and Fig.[5] we give more communication examples with GPT-4 (OpenAl, 2023) on
SST-2 (Wang et al.| 2018)), QNLI (Wang et al., 2018)) and medical Q/A (Liu et al., 2023)) datasets,
respectively. It is obvious that differential privacy methods (i.e., CusText (Chen et al., 2023a) and
SanText (Yue et al., 2021)) induce incoherence in text, thereby complicating the processing and
accurate response generation by LLMs. Anonymization method (i.e., HaS (Chen et al.|[2023b))) only
protects partial privacy entities and destroys the original meaning of the user queries and become
ineffective when the task is related to the protected privacy entities, as shown in Fig. @ and Fig.[3}
In contrast, our PrivateChat does not cause information loss or disrupt the original semantics of
user queries, and it enables privacy protection at both the user input and LLM output ends (i.e.,
end-to-end encrypted communication).
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Method SST-2 dataset

System prompt: Answer the question correctly:

User query: Based on the emotional tendencies of the following sentences, determine whether it is
PlainText positive or negative. Question: moore 's performance impresses almost as much as her

work with haynes in 1995 's safe. Answer: It is (positive/negative)

LLM response: It is positive.

System prompt: Answer the question correctly:

Based on the emotional tendencies of the following sentences, determine whether it is
User query: positive or negative. Question: mor 's shows infuriates throughout iike considerably

CusText+ iike sa collaborate utilizes scholz pour 1999 's assured. Answer: It is (positive/negative)

The provided text does not contain clear emotional tendencies or explicit sentiments
LLM response: that would allow me to determine whether it is positive or negative.

System prompt: Answer the question correctly:

Based on the emotional tendencies of the following sentences, determine whether it is
SanText User query: positive or negative. Question: mimics gluing performance oeuvre planned singularly
much as her 270 with haynes in 1790 impression safe. Answer: It is (positive/negative)

LLM response: It is negative.

System prompt: Answer the question correctly:

Based on the emotional tendencies of the following sentences, determine whether it is
HaS User query: positive or negative. Question: Johnson's performance impresses almost as much as
her work with Smith in 1995's safe. Answer: It is (positive/negative)

LLM response: It is positive.

S . We wOll us6 ad_@crhd3=en@rjZptioXl s)Y3Lnderd v*Q; J~ommu{L-_cate. I uill
ystem prompt: prsfiide the k{y, iriti9 {:v:ctor and eM {ryp9id ouestiKn )ncoded in besSTs {xeyof{Tr.

7U0YaNYaddPXmmZhvbuCluQ==JhebvgRRedpw7Ej6kHOdK A==pD1g/aOyAcjladb
5el9zYF8jD0crdiE6btoncstSORRRV ValiSDPUIIJ4/iusIKSIVKHRZHGY V+1jBg4ssl
EgTbKX7zigKB+Rzcoe4eGsHNk8qUpvQgtjBUfdSZ5Dy0xjtKIPnIlwc9 1pLLL2fY T
RnnJwZRHumsEYITIMCjZ1HZf4rSnDIOWNAtSKjDtkY q+nwLcqfFF5QUQGcRh+X
z2HOLvnNy9QzLZktcVxixUKb7iVoCAIuIFIZ4+wGVmXbvdmw2 ARK57eOxsRkK
ysIGn3SkKY gliONASkri6i2Kp37DRMXvgMKWpZcDyFEIHPY+3d

Our PrivateChat User query:

LLM response: I5f0DzipDS20/vsSO524vg==

Decrypted response: It is positive.

Figure 3: Communication examples with GPT-4 (OpenAl [2023) on the SST-2 dataset (Wang et al.,
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3.7 DISCUSSION

Here, we provide more discussion of our ablation studies in the main text and the societal impact
of our work. As shown in Tab.2 within the main content, our learnable private system prompt out-
performs those prompts generated by the differential privacy method (DP-based Prompt) and the
anonymization method (Anon-based Prompt). The possible reasons are: (i) The DP method and
anonymization method can only perturb or replace partial words in the plaintext prompt, which
increases the risk of attackers inferring encrypted details from the remaining unchanged words,
thereby reducing privacy. (ii) Since they complete the privatization process before sending the sys-
tem prompts to the LLM and do not use LLM feedback to adjust parameters, they cannot ensure
that the LLM can effectively understand the generated private prompts. Moreover, their word-level
perturbation or replacement further disrupts the coherence of the overall sentence, leading to the
LLM’s inability to process and thus failing to generate accurate responses, resulting in reduced
utility. Tab.2 within the main content also shows that our character-level perturbation strategy has
advantages over word-level and token-level perturbation strategies. The potential reasons include:
(1) Character-level perturbation strategy allows for finer-grained modifications to the text without
disrupting the basic structure and grammar of the prompt. Therefore, the model can still understand
and process these modified prompts, generating accurate responses. (ii) Word-level and token-level
perturbation strategies may miss some sensitive words, allowing attackers to infer key information
from the remaining parts. Character-level perturbations can more comprehensively obscure sensitive
content, reducing the risk of information leakage.

As shown in Tab.3 within the main content, our SE-SPSA optimizer achieves the best performance
compared with other black-box optimizers. Random search (Bergstra & Bengio, |2012) performs
poorly because it does not consider the results of previous evaluations, resulting in a very low
probability of sampling near-optimal solutions, especially in high-dimensional parameter spaces.
Similarly, the exploration strategy used by the reinforcement learning method (e.g., DDPG (Lilli-
crap et al., 2015)) is insufficient to effectively explore the potential solution space, resulting in high
training time and costs. The one-sided gradient optimization method (e.g., BAR (Tsai et al.,[2020)),
which has fixed perturbation directions, is susceptible to noise in high-dimensional spaces, leading
to instability and inaccuracy. Although SPSA (OpenAl [2023) is effective for optimizing high-
dimensional parameters, the process is unstable and each iteration requires multiple evaluations,
making it costly for tasks that depend on expensive API calls for evaluation. Despite improvements
by BlackVIP (Oh et al.,|2023) in updating parameters to mitigate the impact of poor gradient esti-
mates, it does not fundamentally address the issue of unstable convergence due to high variance in
gradient estimates. Our SE-SPSA constrains this variance, aligning gradient estimates more closely
with the correct gradient direction, thus stabilizing and speeding up the optimization process. This
results in enhanced performance, as well as reduced training time and costs.

Tab.4 within the main content shows the performance of our method under various cloud LLMs. To
demonstrate the model’s generalization capability, we tested the results on different LLMs with the
private system prompt trained on GPT-4 (OpenAll [2023). As a result, the privacy of the input (i.e.,
Pgs and Pr_ps) remains unchanged, while the privacy and utility of the output (i.e., Po_rs and
Uacc) vary. However, our method consistently demonstrated strong privacy and robust utility and
significantly outperforms other methods.

Our method has certain positive societal impacts. The privacy issues associated with cloud LLMs
have always been a concern in society, and some countries and governments have even banned
their use due to privacy leaks from these large models. Our approach introduces a new paradigm
for secure communication with cloud LLMs, helping users protect their privacy in an effective and
economical way without compromising normal usage. Our method is also an inspirational work,
bringing potential inspiration and contributions to future privacy protection efforts.
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Method QNLI dataset

System prompt: Answer the question correctly:

Task: determine if the context sentence contains the answer to the question. respond
with "entailment" if the sentence contains the answer, or "not entailment" if it does
PlainText not. Question: “Which network broadcasted Super Bowl 50 in the U.S.?” Answer:

User query: CBS broadcast Super Bowl 50 in the U.S., and charged an average of $5 million for
a 30-second commercial during the game.” Does the statement contains the answer
to the question? output: (entailment/not entailment)

LLM response: entailment

System prompt: Answer the question correctly:

Task: determine if the context sentence contains the answer to the question. respond
with "entailment" if the sentence contains the answer, or "not entailment" if it does

CusText+ User query: not. Question: ‘Which web ermts Super Bowl_874 in the U.S.?” Answer: ‘CBS
broadcasted Super Bowl 439 in the U.S., and impeached an averages of $5 mio for a
30-second merchant during the game.” Does the statement contains the answer to the
question? output: (entailment/not entailment)

LLM response: not entailment

System prompt: Answer the question correctly:

Task: determine if the context sentence contains the answer to the question. respond
with "entailment" if the sentence contains the answer, or "not entailment" if it does
SanText User query: not. Question: “Which network Danko Hayes Bowl 50 in Product U.S?” Answer:
query: ‘CBS broadcast Super Oldfield 50 Nene the U.S. , celibacy charged thru average of
$ 5 million for a 30 - second partnering during the Worldwide.” Does the statement
contains the answer to the question? output: (entailment/not entailment)

LLM response: not entailment

System prompt: Answer the question correctly:

Task: determine if the context sentence contains the answer to the question. respond
with "entailment" if the sentence contains the answer, or "not entailment" if it does
not. Question: ‘Which network broadcasted World Cup Final in the UK?” Answer:
‘ABC broadcast UEFA Champions League in the UK., and charged an average of $7
million for a 45-second commercial during the match.” Does the statement contains
the answer to the question? output: (entailment/not entailment)

HaS User query:

LLM response: not entailment

Un&S$r@rstaP#dLFmC” enO_ury;fted quhFstio*OO; Enc2rypLj yo#Pr a@_swer
System prompt: usin<2 a?$c#2esO.n| c@X[+?je/b with af;8seFc c+f tc8rV$e

Wdvn: ghwhuplgh li wkh frqwhaw vhqwhqth frqwdlqv wkh dqvzhu wr wkh txhvwlrq.

uhvsrqg zlwk "hgwdlophqw" li wkh vhqwhqth frqwdlqv wkh dqvzhu, ru "qrw hqwdl-

. ophgw" li Iw grhv qrw. Txhvwlrq: ‘Zklfk ghwzrun eurdgfdvwhg Vxshu Erzo 50 1q w-
Our PrivateChat  User query: kh X.V.2’ Dqvzhu: ‘FEV eurdgfdvw Vxshu Erzo 50 lq wkh X.V., dqg fkdujhg dq dyh-
udjhri $5 ploolrq iru d 30-vhfrqg frpphufldo gxulqj wkh jdph.” Grhv wkh vwdwhphg-

wirqwdlqv wkh dqvzhu wr wkh txhvwlrq? rxwsxw: (hqwdlophqw/qrw hqwdlophqw)

LLM response: irxempqirx

Decrypted response:  entailment

Figure 4: Communication examples with GPT-4 (OpenAl| 2023) on the QNLI dataset
2018).
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Method Medical Q/A dataset
System prompt: Answer the question correctly:
User query: What causes Ewing's sarcoma?
PlainText Ewing's sarcoma is primarily caused by a genetic mutation, specifically a translocation
LLM response: between chromosomes 11 and 22, which creates an abnormal fusion gene known as
EWSRI1-FLI1.
System prompt: Answer the question correctly:
User query: ing" P
CusText+ query ‘What reason Ewing's sarcoma?

Ewing's sarcoma is primarily caused by genetic mutations, specifically translocations

LLM response: between chromosomes 11 and 22.
System prompt: Answer the question correctly:
SanText User query: teen causes Brugada' sarcoma?
LLM response: It seems there might be a misunderstanding or confusion in your question.
System prompt: Answer the question correctly:
HaS User query: What causes Johnson's sarcoma?
LLM response: The specific causes of each individual's condition are not provided in the question.
System prompt: WA wiDI Nse adveS8ed en@ryttiBn stan>aGdg(> c#mgqnicate. I 3illp rovide Jhe ke[,
ystem prompt: injtial veOtol and encr(rled qulQtion ndcodqd un kaee teiCry-de3.
SVDBUNMGTV2PLZUZTBXWSYEIXE=—====EYLZXPQEKF45U4HMIJID5JA7
User query: ISRACS =55T2QS6QZB3LI1766BTA64SDVXUDINCRM35QEHDMXS5DLHSL

PHK72
Our PrivateChat
JLOGAKS5BTXHK37Y4CLF4VSCZKUUKWX7APQ6YRZD3D6ASL25424EQ4FS
WIZDW2PDTKA73YFQO52ELZVPIIWRKPA3KY27HKMLHWZF6SILRY SOEO
LLM response: KX3GGCMZOTCN3KHMMPLQXSP604RMMXFOCDNZKAEUPQEBMOISRY
QEAJOSNOXDIIDFIIWMEOA====

~ Ewing's sarcoma is caused by a genetic anomaly involving a translocation between
Decrypted response:  chromosomes 11 and 22.

Figure 5: Communication examples with GPT-4 (OpenAl, [2023)) on the medical Q/A dataset
2023).
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