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1. Introduction 
    Universal machine learning interatomic potentials 
(uMLIPs) [1–5] offer ab initio accuracy in energy and 
force calculations at minimal computational cost, 
making them invaluable for materials modeling. 
Although pre-trained on extensive ab initio datasets, 
uMLIPs often exhibit systematic softening [6] and 
require fine-tuning using compound-specific data for 
optimal performance. Key questions are how many 
ab initio data points are needed for fine-tuning, and 
whether uMLIPs can achieve high accuracy consistent 
with experimental benchmarks. 
 
2. Approach 
    We fine-tune uMLIPs using Density Functional 
Theory (DFT) data, progressively increasing the 
dataset size, and evaluate uMLIP performance against 
both DFT and experimental benchmarks. For 
experimental validation, we derive theoretical EXAFS 
spectra (extended X-ray absorption fine structure) 
from molecular dynamics (MD) simulations [7]. 
EXAFS, being sensitive to thermal fluctuations in 
bond lengths and angles, provides a robust 
benchmark for validating uMLIP accuracy. We first 
apply this approach to layered 2Hc-WS₂ and 2Hc-
MoS₂ dichalcogenides (Fig. 1), which offer a balance 
between high symmetry and structural complexity 
due to their van der Waals gaps, making them ideal 
model systems. 
 
3. Results 
    Our results reveal a clear softening of the original 
uMLIP [2], as evidenced by both DFT and EXAFS data, 
particularly, the Fourier Transform (FT) of the EXAFS 
spectra derived from uMLIP–MD (Fig. 2). EXAFS 
effectively detects uMLIP softening, as seen in the 
underestimation of the FT amplitudes. Fine-tuning 
with compound-specific ab initio data corrects this 
systematic softening, resulting in excellent agreement 
between MD-derived and experimental EXAFS 
spectra. 
    Using one to ten DFT frames for fine-tuning, as 
suggested in Ref. [6], improves the original uMLIP. 
However, achieving accurate EXAFS spectra and force 
predictions comparable to DFT requires 
approximately fifty structures in our case (Fig. 3). 
This difference is likely due to the increased 
complexity of the structure (vdW), which demands a 
larger DFT dataset. Thus, benchmarking against both 
DFT and experimental EXAFS data strengthens 
confidence in uMLIP reliability and helps determine 
the optimal dataset size for fine-tuning. 
 
4. Outlook 
    In this ongoing work, we aim to extend our 
approach to complex materials, such as oxides with 
Jahn–Teller distortions, and assess uMLIP 
performance in modeling their thermal disorder and 

structural relaxations. Specifically, we will explore 
how fine-tuning with advanced exchange-correlation 
functionals improves agreement with the 
experimental EXAFS data, advancing uMLIP 
validation and bringing us closer to achieving 
experimental-level accuracy for complex materials. 
 

 
 
Fig. 1: Crystallographic structure of layered 2Hc-W(Mo)S2 

dichalcogenides [8]. The vdW gap, zvdW, is about 3.02 Å. 

 

 
 

Fig. 2: Fourier transforms (FT) of the experimental and MD-
derived EXAFS spectra of W L3-edge (χ(k)k2), highlighting 

the evident softening of the vanilla CHGNet uMLIP [2]. 
 
 

 
Fig. 3: Performance of the fine-tuned uMLIP as a function of 
DFT frames. Left axis: Mean squared error (MSE) relative to 

the experimental EXAFS spectrum. Right axis: Mean 
absolute error (MAE) of forces compared to DFT. 
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