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Figure 1: CNN can learn sparse functions efficiently. In this experiment, both short (left) and long
(right) range interactions are considered and d = 4096,n = 400 and the noise is zero. Adam optimizer
is used and no reqularization is applied. For CNN, the filter size is s = 4 and as a result, the depth is
L =log,(d) = 6; the number of channels is set to C' = 4 across all layers. As a comparison, we also consider
fully-connected networks (FCNs) whose architecture is given by d — 10 — 1 and ordinary the least linear
regression (OLS). Observation: We can see that even without any explicit sparsity regularization, CNN
can still learn sparse interactions efficiently for both short and long range cases. In contrast, FCN and
OLS fail.
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Figure 2: The sample complexity separation for CNNs and FCNs. A numerical comparison
between fully-connected networks (FCNs) and CNNs for learning f*(z) = Zjﬁ 72— Z?:d 241 .CC? The
x-axis and y-axis denote the input dimension d and sample complexity n.(d) (defined as the number of
samples required to achieve the target error ¢), respectively. In experiments, we set e=1e-3. We observe
that when increasing d, n.(d) keeps nearly unchanged for CNNs but increases significantly for FCNs. These

results align well with our theoretical predictions.



