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Figure 1: CNN can learn sparse functions efficiently. In this experiment, both short (left) and long
(right) range interactions are considered and d = 4096, n = 400 and the noise is zero. Adam optimizer
is used and no regularization is applied. For CNN, the filter size is s = 4 and as a result, the depth is
L = log4(d) = 6; the number of channels is set to C = 4 across all layers. As a comparison, we also consider
fully-connected networks (FCNs) whose architecture is given by d → 10 → 1 and ordinary the least linear
regression (OLS). Observation: We can see that even without any explicit sparsity regularization, CNN
can still learn sparse interactions efficiently for both short and long range cases. In contrast, FCN and
OLS fail.
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Figure 2: The sample complexity separation for CNNs and FCNs. A numerical comparison

between fully-connected networks (FCNs) and CNNs for learning f∗(x) =
∑d/2

i=1 x
2
i −

∑d
j=d/2+1 x

2
j . The

x-axis and y-axis denote the input dimension d and sample complexity nε(d) (defined as the number of
samples required to achieve the target error ε), respectively. In experiments, we set ε=1e-3. We observe
that when increasing d, nε(d) keeps nearly unchanged for CNNs but increases significantly for FCNs. These
results align well with our theoretical predictions.

1


