
A Disparity Metric Definitions566

A.1 Observational Metrics567

False Positive Rate Parity Definition: Ŷ ? A | Y = 0568

Measured as: P (Ŷ = 1 | A = 0, Y = 0)� P (Ŷ = 1 | A = 1, Y = 0)569

False Negative Rate Parity Definition: Ŷ ? A | Y = 1570

Measured as: P (Ŷ = 1 | A = 0, Y = 1)� P (Ŷ = 1 | A = 1, Y = 1)571

Positive Predictive Parity Definition: Y ? A | Ŷ = 1572

Measured as: P (Y = 1 | A = 0, Ŷ = 1)� P (Y = 1 | A = 1, Ŷ = 1)573

Negative Predictive Parity Definition: Y ? A | Ŷ = 0574

Measured as: P (Y = 1 | A = 0, Ŷ = 1)� P (Y = 1 | A = 1, Ŷ = 0)575

Equalized Odds Definition: Y ? A | Ŷ576

Measured as: max
n
FPR(Y,A, Ŷ ),FNR(Y,A, Ŷ )

o
for false positive rate (FPR) and false negative577

rate (FNR) given above.578

A.2 ECP Parity Metric Definitions579

Counterfactual False Positive Rate Parity Definition: Ŷ ? A | Y (D = 1) = 0580

Measured as: PC(Ŷ = 1 | A = 0, Y (D = 1) = 0)� P (Ŷ = 1 | A = 1, Y (D = 1) = 0)581

Counterfactual False Negative Rate Parity Definition: Ŷ ? A | Y = 1582

Measured as: P (Ŷ = 1 | A = 0, Y (D = 1) = 1)� P (Ŷ = 1 | A = 1, Y (D = 1) = 1)583

Counterfactual Positive Predictive Parity Definition: Y (D = 1) ? A | Ŷ = 1584

Measured as: P (Y (D = 1) = 1 | A = 0, Ŷ = 1)� P (Y (D = 1) = 1 | A = 1, Ŷ = 1)585

Counterfactual Negative Predictive Parity Definition: Y (D = 1) ? A | Ŷ = 0586

Measured as: P (Y (D = 1) = 1 | A = 0, Ŷ = 1)� P (Y (D = 1) = 1 | A = 1, Ŷ = 0)587

Counterfactual Equalised Odds Definition: Y (D = 1) ? A | Ŷ588

Measured as: max
n
CFFPR(Y,A, Ŷ ),CFFNR(Y,A, Ŷ )

o
for counterfactual false positive rate589

(CFFPR) and counterfactual false negative rate (CFFNR) given above.590

B Technical Description591

B.1 Margnalisation in DAGs592

Marginalisation Operation Suppose V can be split as V = Ṽ [ Ũ where we are interested in the593

causal structure over Ṽ and do not observe the variables Ũ. We start from a causal graph G, with594

unobserved Ũ we marginalise to get to a graph G0 which is of the form of Definition 1 by doing the595

following:596

1. For all U 2 Ũ, add an edge Z ! Z̃ if the current graph contains Z ! U ! Z̃ and then597

delete any edges Z ! U ,598

2. After completing the first step for all variables in Ũ, delete any U if there exists another599

Ũ 2 Ũ that influences all of the variables U influences.600

Evans [22] showed that there is a structural causal model over the resulting graph which preserves the601

causal structure over the variables Ṽ. Importantly, due to the deletion step, this model has bounded602

number of unobserved variables, regardless of how large the set Ũ is.603

Graphical examples604
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Figure 5: Example of step one in the marginalisation, taken from Evans [22].
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Figure 6: Example of step two in the marginalisation.

B.2 Alternative Causal Graphs for Proxy Bias605

Here we provide the following result demonstrating that a wide variety of Graphs can give the same606

outcome under proxy bias:607

Proposition 1. So long as any additional unobserved variables U 0 satisfy the following:608

1. U 0 does not cause A.609

2. There is no direct arrow from U 0 to Ŷ .610

Then marginalising over U 0 will lead to the same graph as Figure 1a.611

Proof. To show this we need to demonstrate that once we have performed the marginalisation612

operations, no additional edges or nodes will be added to the graph. We do this step by step:613

1. This step will add edges if we have two vertices V, V 0 such that V ! U 0 ! V 0. However,614

if neither of V, V 0 are Ŷ then these vertices will already be adjacent in the graph. As the615

graph is acyclic that means we cannot be adding any edges.616

2. After removing all edges in step one, we will be left so that U 0 has no parents and effects a617

subset of vertices in the graph. However, as U 0 does not cause A, this must be a subset of618

{Ŷ , YP , Y }. As these are the vertices caused by U this will lead to the deletion of U 0.619

620
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Dataset Task Proxy Bias Selection Bias ECP Bias
Adult Synthetic

KDD Census-Income Synthetic
German credit Credit risk 3 3
Dutch census Synthetic

Bank marketing Client 3
Credit card clients Default Risk 3 3
COMPAS recid. Risk prediction 3 3 3

COMPAS viol. recid. Risk prediction 3 3 3
Communities&Crime Neighborhood risk 3 3 3

Diabetes Re-admission risk 3 3
Ricci Promotion Prediction 3 3 3

Student-Mathematics Admissions 3 3 3
Student-Portuguese Admissions 3 3 3

OULAD Admissions 3 3 3
Law School Admissions 3 3 3

Table 2: Analysis of the datasets from Le Quy et al. [43], split by task. The explanation for the biases
are given in Appendix E.

C Cross Dataset Analysis621

In this section we analyse the datasets presented in Le Quy et al. [43] for the three biases we present622

in Section 3. We describe each dataset, give the task which most closely relates to the use of this623

dataset, and relative to this task we decide if each of the three measurement biases are present or not.624

For each bias we provide a justification of our decision.625

Synthetic tasks The synthetic tasks are hard to discuss since the biases are contextual and these626

tasks are purely theoretical. Given a downstream task they might or might not have the biases we627

discuss. Therefore we drop them from the analysis.628

Bank marketing Dataset The goal here is to target current clients for the bank to open more629

accounts. Since the outcome in this case is exactly what the bank seeks to maximise, this dataset630

does not exhibit proxy or ECP bias. However, contacts we made via phone, so there is selection bias631

in whether people answered the phone.632

German credit and Credit card clients For both of these datasets goal is to predict whether633

customers face default risk. The aim is to use this to decide if applying customers present a risk to the634

bank or not. As a result of this, there will be selection bias due to the fact that since defaults are only635

observed for the firms’ previous customers. Finally as with the example in the main text, this exhibits636

extra-classificatory policy bias since the firm sets the credit limit which impacts the likelihood of637

default.638

COMPAS recid. and COMPAS viol. recid. and Communities and Crime Datasets build off639

COMPAS have been well documented to exhibit all these biases and more [5]. These issues are640

not unique to COMPAS and are exhibited in all other recidivism and crime prediction datasets, as641

such they will also apply to communities and crime, where the aim is to predict number of historical642

crimes per hundred thousand population for a number of states. Moreover, a large degree of missing643

values in this dataset show the issues due to selection bias.644

Diabetes For this dataset, the goal is to predict if a patient will be readmitted in the next 30 days.645

The aim is to use this to decide how much of a health risk a given patient is upon leaving the hospital,646

to decide if they should be kept there. The population is a sample of the patient pool, and so there647

should not be selection bias. Readmissions are different from the underling recurring illness, so this648

does represent a proxy, albeit it a fairly reasonable one. In this case ECP bias is a cause for concern649

due to the differences in quality of care by demographic group [21].650

Ricci The Ricci dataset is an employment dataset, where the goal is to predict the likelihood of a651

promotion based off of a selection of available covariates. A model trained on this data would then be652
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used to predict the potential of applying candidates in order to decide if they are invited to interview653

or do additional tests. This application would fall risk of all the biases we have presented and as such654

strong justification would be required as to the usefulness of the model. Going through one by one,655

proxy bias is exhibited in a similar way to the example presented in the main text, selection bias is656

present as the model is evaluated on a different population to the one it is trained on, and finally the657

firms policies will have an impact on who succeeds and is promoted at the company.658

Admissions datasets The final datasets can all be grouped under admissions to academic institu-659

tions. Similarly to the employment example, these will exhibit all the biases we have outlined. This660

is because of the challenges of having a perfectly objective measure of performance, models being661

used on applying populations but fit on accepted populations, and the universities policies affecting662

the success of students. Therefore, when using these predictors arguments should be made about why663

using such a measure would not induce demographic skew.664

D Additional Results665

D.1 Proxy Label Results666

D.1.1 Plots from Fogliato et al. [26] under varying assumptions667

Figure 7: In this plot, we recreate the results from Fogliato et al. [26], where we are interested in
the false positive rate (FPR), false negative rate (FNR), and positive predictive value (PPV) for a
classifier trained on the COMPAS dataset. In this plot we consider varying for which j we have
P (YP = 1� j | Y = j), and we can see that doing so greatly changes the shape of the sensitivity
set. Moreover, when we pair these assumptions dropping of the red dashed edge in Figure 1a we see
we can identify some of the metrics of interest under any degree of bias. For j = 1 we identify the
FNR and for j = 0 we identify the FPR. We prove these identification results in Appendix D.1.2

.
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D.1.2 Proxy Identification Results668

In the set up in Fogliato et al. [26], the aim is the false positive/negative rate in a group A = a, where669

it is assumed that P (Y = 1, YP = 0) = 0. Now declaring the following parameters:670

pij = P (YP = i, Ŷ = j | A = a)

↵j = P (Y = 1, YP = 0, Ŷ = j | A = a)

↵ = ↵0 + ↵1

Under these assumptions ↵0,↵1 are sufficient to parameterise the distribution, P (Y, YP , Ŷ | A = a).671

Now, following [26] we have that:672

FPRY =
p01 � ↵1

p00 + p01 � ↵

FNRY =
p10 + ↵0

p10 + p11 + ↵

PPVY =
p11 + ↵1

p01 + p11

Now, with the absence of the dashed edge, the DAG in Figure 1a implies the independence Ŷ ? YP |673

Y,A. Therefore we get the following:674

↵j = P (Y = 1, YP = 0, Ŷ = j | A = a)

=
P (Y = 1, YP = 0 | A = a)P (Y = 1, Ŷ = j | A = a)

P (Y = 1 | A = a)

=
↵(p1j + ↵j)

p10 + p11 + ↵

Solving for ↵j , we get ↵j = ↵
⇣

p1j

p10+p11

⌘
. Now, inputting this for ↵0 in the expression for FNRY675

we get:676

FNRY = p10

✓
1 + ↵

p10+p11

p10 + p11 + ↵

◆

=
p10

p10 + p11
= FNRYP

Therefore, under the assumptions given, the true false negative rate is identified and equal to the677

observed false negative rate on the proxy labels. Inputting the value for ↵1 into FPRY we instead678

get:679

FPRY =
p01 � ↵

⇣
p10

p10+p11

⌘

(p00 + p01 � ↵)

As this is a decreasing function of ↵ we can see that for ↵  ↵0, FPRY is bounded as:680

p01
(p00 + p01)

 FPRY 
p01 � ↵

⇣
p10

p10+p11

⌘

(p00 + p01 � ↵)

For PPV, we again input ↵1 to give:681

PPVY =
p11 + ↵

⇣
p11

p10+p11

⌘

p01 + p11
Leading to the bounds:682

PPVYP  PPVY 
p11 + ↵

⇣
p11

p10+p11

⌘

p01 + p11

The statements for the identification of the false positive rate and false negative rate are as follows:683
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Proposition 2. Suppose we have P (YP = 1 | Y = 0) = 0. Then under the conditional independence684

statement Ŷ ? YP | Y,A, for all level of proxy bias P (YP 6= Y ):685

FNRY |A=a = FNRYP |A=a

Where FNRY |A=a is the true false negative rate for the group A = a and FNRYP |A=a is the proxied686

false negative rate.687

Proof. Follows from the above derivations.688

Now the equivalent statement for the false positive ratio:689

Proposition 3. Suppose we have P (YP = 0 | Y = 1) = 0. Then under the conditional independence690

statement Ŷ ? YP | Y,A, for all level of proxy bias P (YP 6= Y ):691

FPRY |A=a = FPRYP |A=a

Where FPRY |A=a is the true false negative rate for the group A = a and FPRYP |A=a is the proxied692

false negative rate.693

Proof. This follows from considering the distribution where Y, YP and Ŷ are all flipped as any694

statement about the false positive rate in the original distribution translates to a statement about695

the false negative rate in the flipped distribution. The assumption P (YP = 0 | Y = 1) in the696

original distribution translates to P (YP = 1 | Y = 0) in the flipped distribution, whereas all other697

assumptions are symmetric to the flipping operation. Therefore we can apply proposition 2 to see698

that the flipped FNR is constant under any degree of proxy noise. This leads us to conclude that699

under these assumptions the FPR in the original distribution must also be constant under any degree700

of proxy noise.701

D.2 Selection Results702

D.2.1 Selective labels under MNAR703

Here we include an experiment applying the framework to selective labels under the missing not a704

random assumption (MNAR)[56]. This supposes that we only see the outcome on a subset of the full705

dataset, with the outcome on the rest of the dataset free to vary arbitrarily.We work with the Dutch706

census dataset Van der Laan [60], first fitting an unconstrained logistic regression, then forming the707

selected population as those who have a predicted probability higher 0.3.708

Once we have formed the selected subset we then train four classifiers, each to satisfy a different709

parity metric. We train to false negative rate parity, false positive rate parity, positive predictive parity710

and negative predictive parity. False negative/positive rate parity are trained using the reductions711

approach [2], whereas for positive predictive parity and negative predictive parity we train 100712

predictors, each weighting different parts of the distribution, taking the one with the lowest parity713

score above a given accuracy threshold. The plots are shown in Figure 8.714

D.2.2 Selection and Proxy Plots715

In this we demonstrate the effect of selection and proxy bias jointly on the adult dataset. We include716

the results in Figure 9, which show that both the occurrence of multiple biases acts differently for717

different parity metrics.718

D.3 ECP bias results719

D.3.1 ECP experimental set up720

For this experiment, we focus on finding the possible ranges for the counterfactual parity metrics721

from the given observational statistics. We use the sensitivity parameter of P (Y (1) 6= Y (0)), adding722

additional causal assumptions such as monotonicity ( Y (1) � Y (0) ) and if the policy is observed or723

not. When simulating the policy we draw ECP ⇠ Ber( 12 + c ⇤A) for c = 0.2 in order to skew the724

policy in one direction. Results show in Figure 10725
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Figure 8: This plot demonstrates a sensitivity analysis for selective labels on the Dutch dataset under
the missing not at random assumption.

Figure 9: In these plots, we can see the effect of doing a sensitivity analysis jointly for selection and
proxy bias. We can see that for the false positive rate parity (FPR) and false negative rate parity (FNR)
the combined bias behaves roughly as the sum of both biases, however for positive predictive parity
(PPP) and negative predictive parity (NPP) the combination behaves differently with the combined
bias amounting a smaller possible range for the metrics than the sum of the range of both biases
individually.

.

D.4 Causal Fairness Experiments726

In this section we give some results on applying our sensitivity analysis framework to causal fairness727

metrics of the variety detailed in [49]. Before doing so, we add some technical comments on these728

types of interventions in FairML, and some nuances of measurement bias in the context of causal729

inference.730

Firstly, we would like to comment that our framework can still be applied to perform sensitivity731

analysis for measurement bias for other fairness metrics without having to consider counterfactuals732

relative protected characteristics such as race or gender, thereby avoiding difficulties with intervention733
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Figure 10: In these plots, we perform a sensitivity analysis for the value of the counterfactual parity
metrics given in Appendix A.2. In each case we work under 3 differing levels of assumption and
information

on such traits [39, 32, 36]. In this case A could be seen as denoting membership to a group and734

indexing different graphs for each group as in Bright et al. [10]. In this case the arrows leading from735

A would only express conditional independence relationships as opposed to causal ones. Notably in736

the graphs we suggest they are unconstrained.737

Secondly, measurement biases and specifically selection bias in causal fairness comes with additional738

problems. This is because almost always, membership of such a dataset is causally downstream739

of the protected attribute, meaning that when conditioning on individuals being in a dataset we are740

introducing selection bias in some form. As Fawkes et al. [25] argue, this means DAG models will be741

unable to correctly capture the causal structure in most datasets we come across in FairML. Failing to742

account for such effects can lead to erroneous causal conclusions.743

Having said this, we will proceed with applying the causal graphs in Figure 1 to do causal fairness744

analysis for the following metrics:745

Counterfactual Fairness (CF) [41] We measure this as PC(Ŷ (A = 1) 6= Ŷ (A = 0)) which is746

equal to 0 exactly when Ŷ is counterfactually fair [24].747

Total Effect (TE) [49] Measured as PC(Ŷ (A = 1))� PC(Ŷ (A = 0)).748

Spurious Effect (SE) [49] Measured as PC(Ŷ (A = a))� PC(Ŷ | A = a).749

Results are show in Figure 11, where we have assumed that counterfactual fairness is identified at750

a particular value. We can see that all causal fairness metrics recover a linear relationship under751

selection in this context.752

E Details of cross dataset bias analysis753

In this section we analyse the datasets presented in Le Quy et al. [43] for the three biases we present754

in Section 3. We describe each dataset, give the task which most closely relates to the use of this755

dataset, and relative to this task we decide if each of the three measurement biases are present or not.756

For each bias we provide a justification of our decision.757
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Figure 11: Causal fairness metrics under selection. We show plots for Counterfactual Fairness
(CF),Total Effect (TE), and Spurious Effect (SE) using graph 1b where we have additionally assumed
that counterfactual fairness is point identified.

Dataset Task Proxy Bias Selection Bias ECP Bias
Adult Synthetic

KDD Census-Income Synthetic
German credit Credit risk 3 3
Dutch census Synthetic

Bank marketing Client 3
Credit card clients Default Risk 3 3
COMPAS recid. Risk prediction 3 3 3

COMPAS viol. recid. Risk prediction 3 3 3
Communities&Crime Neighborhood risk 3 3 3

Diabetes Re-admission risk 3 3
Ricci Promotion Prediction 3 3 3

Student-Mathematics Admissions 3 3 3
Student-Portuguese Admissions 3 3 3

OULAD Admissions 3 3 3
Law School Admissions 3 3 3

Table 3: Analysis of the datasets from Le Quy et al. [43], split by task. The explanation for the biases
are given in Appendix E.

Synthetic tasks The synthetic tasks are hard to discuss since the biases are contextual and these758

tasks are purely theoretical. Given a downstream task they might or might not have the biases we759

discuss. Therefore we drop them from the analysis.760

Bank marketing Dataset The goal here is to target current clients for the bank to open more761

accounts. Since the outcome in this case is exactly what the bank seeks to maximise, this dataset762

does not exhibit proxy or ECP bias. However, contacts we made via phone, so there is selection bias763

in whether people answered the phone.764

German credit and Credit card clients For both of these datasets goal is to predict whether765

customers face default risk. The aim is to use this to decide if applying customers present a risk to the766

bank or not. As a result of this, there will be selection bias due to the fact that since defaults are only767

observed for the firms’ previous customers. Finally as with the example in the main text, this exhibits768

extra-classificatory policy bias since the firm sets the credit limit which impacts the likelihood of769

default.770

COMPAS recid. and COMPAS viol. recid. and Communities and Crime Datasets build off771

COMPAS have been well documented to exhibit all these biases and more [5]. These issues are772

not unique to COMPAS and are exhibited in all other recidivism and crime prediction datasets, as773
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such they will also apply to communities and crime, where the aim is to predict number of historical774

crimes per hundred thousand population for a number of states. Moreover, a large degree of missing775

values in this dataset show the issues due to selection bias.776

Diabetes For this dataset, the goal is to predict if a patient will be readmitted in the next 30 days.777

The aim is to use this to decide how much of a health risk a given patient is upon leaving the hospital,778

to decide if they should be kept there. The population is a sample of the patient pool, and so there779

should not be selection bias. Readmissions are different from the underling recurring illness, so this780

does represent a proxy, albeit it a fairly reasonable one. In this case ECP bias is a cause for concern781

due to the differences in quality of care by demographic group [21].782

Ricci The Ricci dataset is an employment dataset, where the goal is to predict the likelihood of a783

promotion based off of a selection of available covariates. A model trained on this data would then be784

used to predict the potential of applying candidates in order to decide if they are invited to interview785

or do additional tests. This application would fall risk of all the biases we have presented and as such786

strong justification would be required as to the usefulness of the model. Going through one by one,787

proxy bias is exhibited in a similar way to the example presented in the main text, selection bias is788

present as the model is evaluated on a different population to the one it is trained on, and finally the789

firms policies will have an impact on who succeeds and is promoted at the company.790

Admissions datasets The final datasets can all be grouped under admissions to academic institu-791

tions. Similarly to the employment example, these will exhibit all the biases we have outlined. This792

is because of the challenges of having a perfectly objective measure of performance, models being793

used on applying populations but fit on accepted populations, and the universities policies affecting794

the success of students. Therefore, when using these predictors arguments should be made about why795

using such a measure would not induce demographic skew.796

F Details of cross dataset experiment797

For this experiment, we train numerous predictors across a variety of common fairness benchmarking798

datasets [43] to satisfy parity constraints. For each dataset we train 18 classifiers total, where the799

model ML is one of logistic regression, naïve Bayes and a decision tree and the parity constraint is800

false negative rate parity, false positive rate parity, positive predictive parity and negative predictive801

parity, demographic parity and equalized odds. With the exception of positive/negative predictive802

parity we train all classifier to satisfy these constraints using the reductions approach [2]. For803

positive/negative predictive parity, we train 100 predictors, each weighting different parts of the804

distribution, taking the one with the lowest parity score above a given accuracy threshold. We vary805

the sensitivity parameter over a range of realistic values for many real-world settings, computing the806

sensitivity bounds for each level of the parameter. We find that, except for demographic parity, all807

parity measures we evaluate exhibit significant sensitivity over these parameter ranges. This makes808

it hard to understand what satisfying, e.x. equalised odds means on a given dataset. The caveat is809

that equalised odds is only satisfied as long as there are no significant measurement biases in the810

underlying data, which is almost never the case in FairML audits.811

F.1 Analysis of Results812

F.1.1 Correlational Plots813

Here we explore how sensitivity varies according to class imbalance in either A or Y . We find that814

for some metrics (Negative Predictive Parity) class imbalance seems to make little difference to the815

sensitivity of metrics, with next to no correlation observed between imbalance and sensitivity. This816

lies in contrast to other metrics (Positive Predictive Parity) where we can see a much more clear,817

positive, correlation between class imbalance and sensitivity.818

F.1.2 Cross Dataset Analysis819

These results unpack some heterogeneity across datasets. We find that there are not hard and fast820

rules here, each dataset and each bias requires its own analysis. At the same time this is broadly821

consistent with our central contention that complexity goes hand in hand with fragility. In particular,822
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on the Adult New, Adult, Bank, Compas Recid/Viol, Credit, Dutch we see positive predictive parity is823

a standout fragile method across biases, followed by false negative rate pairt and negative predictive824

parity. On the German Credit, Law, and Ricci, Student mat/por we see NPP and FNRP tend to be the825

worst, followed by FPRP and PPP.826
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F.2 Impact Statement827

This works aims to broaden the discussion of measurement biases in FairML and provide practical828

tools for practitioners in the area to use. Our hope is that any potential societal consequences of the829

work will be positive, corresponding to more equitable algorithmic decision making.830
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