
A APPENDIX
Here we provide additional implementation details and results.

A.1 Dynamic Replanning Algorithm
Our dynamic replanning algorithm (Alg. 1) unfolds as follows: for a
given agent 𝐿 , we !rst initialize the character embeddings for team-
mates from past trajectories, if available. We also initialize empty
queues for the observation history, 𝑀, and the planned sequence of
observations, 𝑁plan.

At each step, after the agent makes a new observation in the
environment, we check if replanning is needed (line 4). If a plan
has been previously generated and is not depleted, we compute
the mean squared error between the current observation and the
observation predicted in the plan, i.e., we set 𝑂obs ω →𝑃 (𝑄𝐿) ↑
𝑃 (𝑄𝐿)→2, where 𝑃 : ω ↓ [0, 1] is an observation normalizer detailed
in Sec. A.5.2.

If the observation di"erence is greater than 𝑅 = 0.2, we generate
a new plan (lines 5–11). First, the mental embedding is computed
from the current trajectory, and all conditioning variables—any
combination of returns (𝑆𝐿 (𝑁𝐿)), observer pro!le (𝑇𝐿), character em-
bedding (𝑈char), mental embedding (𝑈ment)—are concatenated into
𝑉 (𝑁𝐿) (line 5). We then generate a new plan through conditional
sampling, starting with 𝜴𝑀 ↔ N(0, 𝜶). At each di"usion step 𝑊 , the
portion of the observer agent in 𝜴

𝑁 is “in-painted” with the corre-
sponding current observation and 𝑋 steps of observation history
(line 8). We iteratively re!ne (denoise) trajectories 𝜴𝑁 using the
perturbed noise 𝑌 following [1, 31], where 𝑌𝑂 (𝜴𝑁 ,𝑊) is the uncondi-
tional noise, 𝑍 is a scalar for extracting the distinct portions of the
trajectory that exhibit 𝑉 (𝑁𝐿), and denoise is the noise scheduler
predicting the previous sample, 𝜴𝑁↑1, from 𝜴

𝑁 by propagating the
di"usion process from 𝑌 .

Once the !nal, denoised trajectory, 𝜴0, is generated, we discard
the !rst 𝑋 + 1 steps—since they were only used to condition the
generation process—and extract agent 𝐿’s portion, 𝑁𝐿 , re-initializing
the plan queue, 𝑁plan (line 11). The agent then retrieves an action by
using the inverse dynamics model 𝑎𝑃 on consecutive observations
extracted from the plan (line 12).7

A.2 Agent Pro!les
The pro!les used in our experiments are listed in Table A.1, where
for each pro!le (column)we list theweight𝑏𝑁 (row value) associated
with each feature 𝑐𝑁 . Drop, Pickup, and Delivery correspond to
binary features indicatingwhether the agent’s action at the previous
timestep triggered the corresponding event, while Potting Onion
assesses whether an onion was put in a pot by the agent (again
corresponding to agent’s previous action). X and Y are numeric
features corresponding to agent locations and relative distances
to the teammate in the gridworld, and Path Dist is the Manhattan
distance to the teammate. Task Rew Frac is the fraction of the task
reward received by the agent, corresponding to a reward of 𝑆task =
20 if any agent successfully delivers a soup at timestep 𝑑 , and 0
otherwise.

7Here the dequeue function extracts observations from the queue in a FIFO manner.

A.3 Multiagent RL Training
For training, we adopted the PPO algorithm [23] implementation in
Ray’s RLLib toolkit.8 Each pair was trained for 1 000 iterations with
64 parallel workers.We used a learning rate of 8↗10↑4 and a linearly
decreasing entropy loss coe#cient. At each iteration, a batch of
data was collected from workers, each spwaning the overcooked
environment with the layout shown in Fig. 2, randomizing the
initial locations of agents. Each episode ran for a period of 400
timesteps. We collected 25 600 timesteps per batch, with a mini
batch size of 6 400 for gradient updates, training for 420 iterations
of 8 epochs each.

A.4 ToMnet
A.4.1 Dataset/Feature Preparation. We started with the pairwise
RL agent dataset, D, generated as described above. We sampled
2 000 datapoints for each agent/pro!le to train the ToMnet, where
in each trial we selected a teammate uniformly at random. Each
datapoint consisted of the following: we randomly sampled 𝑒past =
4 trajectories of the agent pair of 𝑓past = 100 steps from D to
serve as “past” trajectories for the Character net; we sampled an
additional trajectory and split it at a timestep, 𝑑 ↔ U(1,𝑓 ↑ 30),
selected uniformly at random. The observation of the observer
agent at 𝑑 was used as the “current” observation to be fed to the
Prediction net, while the past 𝑓cur = 10 timesteps acted as the
“current” trajectory for the Mental net, where the data was reversed
and zero-padded whenever 𝑑 < 𝑓cur. The teammate’s future data in
the current trajectory (a minimum of 30 timesteps) was used for
calculating various ground-truth targets against which to train the
Prediction net. Namely, we used the following prediction targets: (a)
the teammate’s next step action, modeled as a discrete distribution,
ε(𝑔); (b) the sign of each of its pro!le reward weights, 𝑏𝑁𝐿 , modeled
as a distribution over {↑1, 0, 1}; and (c) the successor representation
(SR), corresponding to statistics of the teammate’s future behavior.
In particular, SR consisted of three types of data: (i) binary features—
whether the closest pot is empty, cooking or ready and similarly
for the next closest pot (total 6 features), encoded as Bernoulli
distributions; (ii) categorical features—relative frequency of the
teammate carrying an onion, soup, dish, tomato or nothing (total 1
feature), encoded as a discrete distribution; (iii) numeric features—
mean path distance to the teammate and and 𝑉 locations in the
environment (total 3 features), encoded as a multivariate Gaussian
distribution. To obtain the SR means, we used discounted averaging
over the teammate future data with a discount factor of 0.99.

A.4.2 Training and Losses. The ToMnet architecture consisted of
three networks as detailed in Sec. 3.2—a Character Net, a Mental Net
and a Prediction Net. The Character andMental Nets consisted of an
LSTM layer of hidden size 64 (dropout of 0.2) that produces an initial
embedding (!nal hidden state of the LSTM). The Character Net
takes 𝑒past trajectory data each of length 𝑓past = 100 as input, and
to calculate the Character embedding, 𝑈char, we !rst concatenated
the LSTM’s embedding with the observer’s pro!le weights, sending
the result through a dense/linear layer to obtain an embedding
of size |𝑈char | = 8. The Mental Net takes the current trajectory
of length 𝑓cur = 10 as input, where we masked out incomplete

8https://docs.ray.io/en/latest/rllib/index.html

Table A.1: The di"erent reward pro!les used in our experiments.

Feature, 𝜷𝜴 Cook Server Helper Far Helper Follower Sparse Random

Onion Drop ↑5.00 1.00 0.00 0.00 0.00 0.00 0.00
Onion Pickup 1.00 ↑5.00 0.10 0.10 0.00 0.00 0.00
Dish Drop 1.00 ↑5.00 0.00 0.00 0.00 0.00 0.00
Dish Pickup ↑5.00 1.00 0.10 0.10 0.00 0.00 0.00
Potting Onion 5.00 ↑1.00 10.00 10.00 0.00 0.00 0.00
Soup Delivery 0.00 5.00 0.00 0.00 0.00 0.00 0.00
Soup Drop 1.00 ↑5.00 ↑20.00 ↑20.00 0.00 0.00 0.00
Soup Pickup ↑5.00 10.00 15.00 15.00 0.00 0.00 0.00
Self Pos X 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Self Pos Y 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Dist To Other Player X 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Dist To Other Player Y 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Path Dist To Other Player 0.00 0.00 0.00 0.01 ↑1.00 0.00 0.00
Task Rew Frac 1.00 1.00 1.00 1.00 0.00 1.00 0.00

timesteps of a trajectory. To calculate the Mental embedding, 𝑈ment,
we concatenated the LSTM’s embedding with the pro!le’s weights
and 𝑈char before passing the result through a dense layer, resulting
in an embedding of size |𝑈ment | = 8.

Finally, to obtain the di"erent predictions, we !rst concatenated
both embeddings with the observer’s pro!le weights and the cur-
rent observation to obtain the prediction input. This is then sent
through the di"erent prediction heads to produce probabilistic
predictions for the di"erent targets, i.e., , next action, pro!le, SR
features detailed earlier. Each prediction head consists of a dense
layer of size 64 (dropout of 0.2) with output dimension equaling
the number of possible outputs for that prediction, namely, |𝑔| = 6
for the next action, |𝜸 𝑄 | ↗ 3 = 39 for the pro!le sign prediction, 6
for the SR binary features, 5 for the SR categorical features, and 3
for the SR numeric features. We used the negative log-likelihood
(NLL) loss for the next action and pro!le predictions, binary cross-
entropy loss for SR binary predictions, cross-entropy loss for SR
categorical prediction, and a Gaussian NLL loss for SR numeric
features’ predictions.

For training the ToMnet, we used the 2 000 datapoints generated
as explained above for each agent type, resulting in 1 400 datapoints,
using a train-validation split of 80%-20% respectively. We used an
Adam optimizer with weight decay of 5 ↗ 10↑4. We trained the
model for 2 000 epochs via mini-batch gradient descent with batch
size of 128 and learning rate of 5 ↗ 10↑4, using an early stopping
criterion based on a validation loss (maximum number of steps
without improvement set to 10 and a maximum tolerance of 0.01).

A.5 MADi"
A.5.1 Trajectory Augmentation. To train the MADi" component,
we sampled joint trajectories similarly to how we trained the ToM-
net, but augmented trajectories by computing the ToM embeddings
for each timestep using the previously-trained ToMnet as explained
in Sec. 4.2. We used the same data parameters used to train the
ToMnet, i.e., , 𝑒past = 4 past trajectories of 𝑓past = 100 steps each
and 𝑓cur = 10. We then generated trajectories to train the MADi"

module by consecutively sampling from the augmented trajecto-
ries in a sliding window manner, using 𝑋 = 16 steps to constrain
trajectory generation using in-painting, and the subsequent 𝑖 = 64
steps as the planning horizon. Trajectories were zero-padded at
the beginning (𝑑 < 𝑖)) and end (𝑑 > 𝑓 ↑ 𝑖) of each augmented
trajectory during sampling.

A.5.2 Training. For each sampled trajectory (length𝑖 +𝑋) we aug-
mented the observer agent’s observations by including the one-hot
encoding of the teammate’s actions and then performed Cumula-
tive Density Function (CDF) based normalization, corresponding to
function 𝑃 in Alg. 1. For returns conditioning, we computed the dis-
counted cumulative task reward in the original trajectory starting
from the timestep in which the MADi" trajectory was sampled and
then divided it by the maximum task reward that agents can receive,
i.e., 20 in our case corresponding to a soup delivery. The reason for
considering the whole episode instead of just the forward horizon
for computing returns is that this way we denote the future poten-
tial of the sampled trajectory in achieving the task’s goal (delivering
soups), and not just what happens within the sample window it-
self. For the other conditioning variables, i.e., observer pro!le, and
character and mental embeddings, we normalized them using CDF
similarly to observations. In summary, a single datapoint used for
training the di"usion model consisted of a window of augmented
observations, a return, an observer pro!le vector, and a character
and a mental embedding.

We trained the MADi" model with a history 𝑋 = 64, horizon
𝑖 = 16, and 𝑗 = 200 di"usion steps, and an embedding and hidden
dimensions of 128 and 256, respectively. We used epsilon noise
prediction and loss computed as in Eq. 1. We used dropout for
conditions with a dropout rate of 0.25 and conditional guidance
with a factor of 𝑍 = 1.2. We used 42 000 episodes, corresponding
to 2 000 episodes per team (total of 21 agent pairs). We used Adam
optimizer with a batch size of 32, learning rate of 2 ↗ 10↑4 and
trained each MADi"models for a total of 106 training steps. For the
di"erent experiments reported in the paper, each MADi" model
was trained with di"erent conditioning variables, 𝑉 (𝑁𝐿).

A.5.3 Losses. The integrated MADi" model, including the noise
model 𝑂 and inverse dynamics model 𝑘 , is trained to optimize the
loss L(𝑂, 𝑘) [31]:

L(𝑂, 𝑘) = LDi" (𝑂) + LDyn (𝑘) (1)

LDi" (𝑂) = E𝑁,𝜶0,𝑅
[
→𝑌 ↑ 𝑌𝑂 (𝜴𝑁 , (1 ↑ 𝑙)𝑉 (𝑁0𝐿) + 𝑙↘,𝑊)→2

]
(2)

LDyn (𝑘) = E(𝑆𝐿 ,𝑇𝐿 ,𝑆 ≃𝐿)⇐D
[
→𝑚𝐿 ↑ 𝑎𝑃 (𝑄𝐿 ,𝑄≃𝐿)→2

]
(3)

where 𝐿 ↔ U(𝑒) is the observer, 𝜴0 ⇐ D is a joint trajectory sample
where 𝑁0𝐿 is the observer’s portion of it, 𝑙 ↔ Bern(𝑛) balances
conditional (𝑉 (𝑁0𝐿)) and unconditional (↘) di"usion training, and
𝑌𝑂 is the noise model optimizing the surrogate loss [11], which
estimates the noise 𝑌 ↔ N(0, 𝜶) added to sample 𝜴0 at denoising
step 𝑊 ↔ U(1,𝑗).

A.6 Experiments
Table A.2 presents the numeric data of the plots in Figs. 4a and 4b
of the replanning experiment.

Table A.2: Impact of various replanning schemes on the
agents’ cumulative task and individual rewards.

Condition Plan Count Task Rwd Indiv. Rwd

Always 200.00 ± 0 22.72 ± 2.95 ↑1.08 ± 6.65
10 Steps 23.00 ± 0 18.24 ± 2.58 ↑21.29 ± 9.06
Horizon 4.00 ± 0 13.76 ± 2.07 ↑28.20 ± 9.15
Dynamic 64.89 ± 3.82 23.52 ± 2.89 ↑1.74 ± 6.90

	Abstract
	1 Introduction
	2 Related Work
	3 ToMCAT
	3.1 Preliminaries
	3.2 Theory-of-Mind Reasoning
	3.3 Multiagent Diffusion Policies
	3.4 Dynamic Replanning

	4 Experiments & Results
	4.1 Data Collection
	4.2 Model Training
	4.3 Model Analysis
	4.4 Agent Experiments

	5 Conclusions & Future Work
	References
	A Appendix
	A.1 Dynamic Replanning Algorithm
	A.2 Agent Profiles
	A.3 Multiagent RL Training
	A.4 ToMnet
	A.5 MADiff
	A.6 Experiments

