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This supplementary material provides more details and results that are not included in the main
paper due to space limitations. The contents are organized as follows:

e Section A provides more analysis of aliasing degradation.
e Section B compares the aliasing score with confidence-based hard pixel type identification.

e Section C discusses the equivalent sampling rate when the kernel size and stride differ in
height and width dimensions.

e Section D provides more implementation details of training.

e Section E includes an additional ablation study for the Frequency Mixing (FreqMix) mod-
ule.

e Section F provides visualization of the frequency response of existing blur filters and
demonstrates the advantage of the proposed de-aliasing filter.

e Section G provides additional experimental results combined with segmentation boundary
refinement methods.

e Section H provides an analysis of the orthogonality of downsampling filters.

e Section I provides a detailed visual analysis, illustrating how aliasing degrades features
and leads to three types of errors, and how DAF and FreqMix effectively address aliasing
degradation.

e Section K analyzes the feature map in the frequency domain.
e Section L discusses the aliasing for the transformer-based architecture.

A ALIASING DEGRADATION

We have chosen ResNet (He et al., 2016), Swin Transformer (Liu et al., 2021), and ConvNeXt (Liu
et al., 2022) to perform a quantitative analysis of the correlation between aliasing scores and errors.
Our analysis has been concentrated on the results obtained at object boundaries, where the majority
of challenging pixels are found, as mentioned in (Li et al., 2017; Gu et al., 2020). ResNet is a
well-established and widely used backbone, whereas Swin Transformer and ConvNeXt represent
the latest transformer-based and CNN-based backbones, respectively. Despite the differences in
their model structures, our findings, illustrated in Figure 1, reveal a consistent pattern: boundary
pixels with higher aliasing scores tend to demonstrate higher cross-entropy errors, indicating that
they are more prone to misclassification. These results highlight the pervasive issue of aliasing-
induced degradation within modern deep neural networks. This observation underscores the need for
comprehensive solutions to mitigate and address this problem, especially in the context of computer
vision and other applications where accurate pixel-level information is crucial.

B COMPARING WITH THE PREDICTION CONFIDENCE METHOD

Previous research efforts (Li et al., 2017; Gu et al., 2020) have identified hard pixels based on pre-
diction confidence. Here, we compare the prediction confidence method with the aliasing-based
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Figure 1: Illustration depicting the relationship between aliasing scores and hard pixels at boundaries. These
results demonstrate the degradation caused by aliasing affecting three different widely-used models.
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Figure 2: Left: Statistically correlated curve of cross-entropy error for three types of hard pixels with respect
to prediction confidence (Li et al., 2017). Right: Distribution of the three types of hard pixels.

method for hard pixel identification. As illustrated in Figure 2, aliasing scores exhibit a more con-
sistent trend than confidence-based results, especially when considering the effectiveness of distin-
guishing three types of errors: displacement errors, false responses, and merging mistakes. This
finding underscores the potential of aliasing for categorizing errors effectively.

Notably, these errors display distinct characteristics when analyzed in the context of aliasing, and
their importance varies across different scenarios. For instance, displacement errors tend to cluster
in regions with high aliasing scores. In critical applications such as robotic surgery or radiation
therapy, even a slight displacement of just two or three pixels from vital organs like the brainstem
or the main artery can result in catastrophic consequences. Conversely, false responses and merging
mistakes, which carry greater significance in autonomous driving scenarios, are more commonly
found in areas with relatively low aliasing scores.

This analysis not only provides insights into distinguishing between the three error types but also
offers valuable guidance for designing error-correcting methods tailored to specific scenarios.

C EQUIVALENT SAMPLING RATE

In the main paper, we provide the calculation of the equivalent sampling rate when the downsam-
pling kernel and stride are the same in the height and width dimensions, which is the most common
situation in existing modern deep neural networks (He et al., 2016; Liu et al., 2021; 2022; Wang
et al., 2023). Here, we discuss the equivalent sampling rate when the kernel size and stride in the
height and width dimensions are different.
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Table 1: Ablation study for Frequency Mixing (FreqMix) module.
Method mloUT | BloUT BAcct | FErrl MErr] DErmr| | #FLOPs  #Params

FreqMix w/ decomposition 79.6 58.6 74.7 23.5 529 263 | 423.69G 39.64M
FregMix w/o decomposition 79.7 58.8 74.9 24.0 52.8 26.1 | 298.67G  31.54M

Similarly, we consider both the kernel size and feature size (channel, height, and width), rather than
just the downsampling stride. We introduce a simple equation for the equivalent sampling rate in the
height and width dimensions (ESR*, ESR") to calculate the actual sampling rate as follows:

. [ Clout Hout
ESRH = mln(de({wn, W) X ﬁ7

. [ Clout 1y out
ESRW = n’lln(I{ngn7 a) X W,

where C', H, and W are the size of the channel, height, and width. “in” and “out” indicate the
input and output features. KJ KV  present the downsampling kernel size in height and width

dimensions. g—(::‘, VV‘{;—T are equal to downsampling stride in height and width dimension, which

aligns with (Grabinski et al., 2022). min(K £, 1/ S+ ), min(K}Y, 1/ S+ ) indicates the influence

of the downsampling kernel size K9%°"" and channel expansion. Notice that we make the common
assumption that the impact of channel expansion works for both height and width dimensions, using
the square root to calculate the impact for both dimensions.

)

D MORE IMPLEMENT DETAILS

For the Cityscapes dataset, we employ a crop size of 768768, a batch size of 8, and a total of 80K
iterations. For the PASCAL VOC dataset, we utilize a crop size of 512x512, a batch size of 16, and
a total of 40K iterations. On the ADE20K dataset, we adopt a crop size of 512x512, a batch size of
16, and a total of 80K iterations. We also set the channel of the feature pyramid to 128. We employ
stochastic gradient descent (SGD) with a momentum of 0.9 and a weight decay of 5e-4. The initial
learning rate is set at 0.01. During training, we adjust the learning rate using the common ‘poly’
learning rate policy, which reduces the initial learning rate by multiplying (1 — ﬁ)o'g. We apply
standard data augmentation techniques, including random horizontal flipping and random resizing
within the range of 0.5 to 2.

For PointRend (Kirillov et al., 2020) and Mask2Former (Cheng et al., 2022) on the LIS dataset, we
adopt the same training settings as described in the paper (Chen et al., 2023). We use random flip
as data augmentation and train with a batch size of 8, a learning rate of le-2 for 12 epochs, with a
learning rate dropping by 10x at 8 and 11 epochs, respectively. To make the model quickly adapt to
low-light settings, we use COCO pre-trained model as initialization following (Chen et al., 2023).

E ABLATION STUDY

In this section, we present an additional ablation study focused on the Frequency Mixing (FreqMix)
module. In the main paper, we describe our approach to predicting weighting values. Specifically,
we decompose the prediction of three-dimensional frequency weighting values A%, AT€¢ RE*H*W
into channel-wise components A}, Ale R¥*W and spatial-wise components A}, Ale RE*W,
Where A' represents the weighting values for frequencies below the Nyquist frequency, and AT
represents those above Nyquist frequency. As shown in Table 1, the prediction of three-dimensional
frequency weighting values can be computationally intensive for prediction. It directly introduces
an additional 7.2 million parameters and requires an extra 125.1 GFLOPs of computational cost.
Interestingly, despite this increase in complexity, the overall results are largely similar to the decom-
position solution. This highlights the efficiency of our proposed method.
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Figure 3: Visualization of the frequency response of existing blur filters, including Blur (Zhang, 2019),
AdaBlur (Zou et al., 2020), FLC (Grabinski et al., 2022), and our proposed methods. The top row shows the
frequency response in two dimensions. We shift the low frequency to the center, and the four corners indicate
high frequency, with brighter areas representing higher response. The bottom row displays the frequency
response in one dimension, where the left side represents lower frequency, and the right side represents higher
frequency. The red line indicates the Nyquist frequency.

Table 2: Combination with boundary refinement methods on the Cityscapes (Cordts et al., 2016)
validation set. Results are reported from the original paper (Yuan et al., 2020).

Method DeepLabv3 +GUM +DenseCRF +SegFix +SegFix+O0urs
arxiv2017) (Chen et al., 2017)  Bvvc201s) (Mazzini, 2018)  (Newrtes] (Kridhenbiihl & Koltun, 2011)  (gccv20201 (Yuan et al., 2020) (Ours)
mloU 79.5 79.8 79.7 80.5 81.1

F VISUALIZATION OF VARIOUS BLUR FILTERS

For better comparison, we also illustrate the visualization of the frequency response of existing blur
filters, including Blur (Zhang, 2019), AdaBlur (Zou et al., 2020), FLC (Grabinski et al., 2022), and
our proposed methods in Figure 3. The top row shows the frequency response in two dimensions.
We shift the low frequency to the center, and the four corners indicate high frequency, with brighter
areas representing higher response. The bottom row displays the frequency response in one dimen-
sion, where the left side represents lower frequency, and the right side represents higher frequency.
The red line indicates the Nyquist frequency. We observe that Blur (Zhang, 2019) and AdaBlur (Zou
et al., 2020) cannot entirely eliminate frequencies higher than the Nyquist frequency. Conversely,
due to an underestimation of the Nyquist frequency, FLC (Grabinski et al., 2022) excessively re-
moves frequencies below the Nyquist frequency, resulting in information loss. In contrast, our
proposed de-aliasing filter effectively and precisely removes the frequency power above the Nyquist
frequency, which explains its effectiveness.

G COMBINATION WITH BOUNDARY REFINEMENT METHODS

In this section, we integrate our proposed method with SegFix (Yuan et al., 2020), a previously
effective approach for semantic segmentation boundary refinement. SegFix significantly improves
segmentation results by refining predictions, particularly at boundaries where most hard pixels oc-
cur. Our proposed method operates independently from SegFix, enhancing models by optimizing
intermediate features, precisely removing frequencies leading to aliasing (via the de-aliasing filter),
and adjusting frequencies using the encoder block (Frequency Mixing Module).

The synergy between these techniques is evident in the results presented in Table 2, where our
method enhances SegFix by an additional 0.6 mIoU. This improvement highlights the effectiveness
of our approach in addressing complex segmentation challenges.
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Table 3: Orthogonality analysis for downsampling filters in ResNet (He et al., 2016), Swin Trans-
former (Liu et al., 2021), ConvNeXt (Liu et al., 2022), HorNet (Rao et al., 2022), and DiNAT (Has-
sani & Shi, 2022). Their weights are obtained by training on ImageNet. A higher absolute cosine
similarity value indicates greater similarity in filter weights, suggesting a lower degree of orthogo-
nality (0.0 = totally orthogonal, 1.0 = identical filters).

Model ResNet-18 ConvNeXt-T Swin-T  HorNet-T DiNAT-L
Abs. CosSim. 0.067 0.072 0.06 0.069 0.046
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Figure 4:  Orthogonality degree analysis of filters for downsampling in ResNet (He et al., 2016), Swin
Transformer (Liu et al., 2021), ConvNeXtcitep2022convnet, HorNet(Rao et al., 2022), and DiNAT (Hassani &
Shi, 2022). We illustrate the absolute cosine similarity matrix, where each element indicates the absolute cosine
similarity between different filters. A brighter color indicates a higher similarity in filter weights, suggesting a
lower degree of orthogonality. We observe the matrix showing dark colors, with bright colors only appearing
along the diagonal (self-to-self), indicating that the filters are essentially orthogonal.

H DOWNSAMPLING FILTERS ORTHOGONALITY ANALYSIS

The introduced calculation of the equivalent sampling rate is based on the assumption that down-
sampling filters are orthogonal. In this section, we quantitatively analyze the orthogonality degree
of downsampling filters in widely used models, including ResNet (He et al., 2016), Swin Trans-
former (Liu et al., 2021), ConvNeXt (Liu et al., 2022), HorNet (Rao et al., 2022), and DiNAT (Has-
sani & Shi, 2022). Their weights are obtained by training on ImageNet.
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(a) Image & (b) Original (c) 2x downsampled  (d) 2x downsampled (e) 4x downsampled  (f) 4x downsampled
Ground truth Feature Feature Feature w/ DAF Feature Feature w/ DAF

Figure 5: Visualization for DAF. We mark some high aliasing score areas in the feature with a red box.
Without DAF in (c¢) and (e), the downsampling of features exhibits a severe “jagged” phenomenon (Zou et al.,
2020; Qian et al., 2021), resulting in the degraded representation of object boundaries. The response of some
objects is faded or lost in the 4x scale in (e). By directly removing the high frequency leads to aliasing
degradation, the proposed DAF can largely relieve the “jagged” phenomenon (Zou et al., 2020; Qian et al.,
2021), making the boundaries more clear in the (d) and (f). Furthermore, DAF largely preserves the object
responses, as shown in (f), compared to (e).

(a) Heatmap for (b) Heatmap for (c) Feature map (d) Feature map (e) Feature frequency (f) Feature frequency
low-frequency high-frequency w/o FreqMix w/ FreqMix w/o FreqMix w/ FreqMix

Figure 6: Visualization for FreqMix. In (a) and (b), the heatmap shows a brighter color for object boundaries
and a darker color for object centers and backgrounds, especially for high-frequency components, where a
brighter color indicates a high value. Thus, FreqMix not only reduces the overall high-frequency content
responsible for aliasing degradation in (f) but also preserves the high frequency of object boundaries. This
preservation is crucial for making the boundaries clear in (d), ensuring accurate segmentation, and lowering the
occurrence of three types of errors.

As shown in Table 3 and Figure 4, we use the absolute cosine similarity as the quantitative mea-
surement of the orthogonality degree. A higher absolute cosine similarity value indicates greater
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Figure 7:  Visualization of how the proposed DAF and FreqMix address aliasing degradation and im-
prove the feature and final segmentation. We randomly select image patches with a high aliasing score from
Cityscapes (Cordts et al., 2016) dataset validation set. Zoom in for better view.

similarity in filter weights, suggesting a lower degree of orthogonality. As depicted in Table 3 and
Figure 4, the quantitative measurements indicate that the downsampling filters are predominantly
orthogonal (with an average absolute cosine similarity ranging from 0.046 to 0.072), thereby sup-
porting the introduced equivalent sampling rate in Section C. The proposed equivalent sampling rate
is designed as a heuristic for selecting the cutoff frequency, and we think that exploring how to finely
adjust the equivalent sampling rate based on the orthogonality of the filter is a very interesting and
important problem that is worth further investigation.

I VISUALIZED ANALYSIS FOR DAF AND FREQMIX

To investigate how the proposed DAF and FreqMix address aliasing degradation and enhance deep
neural networks, we visualize the deep features in the model and randomly select some examples in
Figures 5 and 6. Furthermore, in Figures 7, we visualize three types of errors and demonstrate how
the proposed DAF and FreqMix alleviate these errors: 1) false responses, 2) merging mistakes, and
3) displacements.

I.1 VISUALIZATION FOR DE-ALIASING FILTER (DAF)

As depicted in Figures 5(c) and (e), we indicate some areas with a high aliasing score in the feature
with the red box, they exhibit a severe “jagged” phenomenon (Zou et al., 2020; Qian et al., 2021),
leading to the degraded representation of object boundaries. Moreover, in comparison with the
original feature in Figure 5(b), the response of some objects is lost in the 4 x downsampling in Fig-
ures 5(e). It is noteworthy that widely used state-of-the-art models, such as Swin Transformer (Liu
etal., 2021) and ConvNeXt (Liu et al., 2022), adopt a total downsampling stride of 32, potentially
leading to an even more severe loss of response.

By directly removing the high frequency leads to aliasing degradation, the proposed DAF can largely
relieve the “jagged” phenomenon (Zou et al., 2020; Qian et al., 2021), making the boundaries more
clear in the Figures 5(d) and (f). Furthermore, DAF largely preserves the object responses, as shown
in Figure 5(f), compared to Figure 5(e), resulting in a more accurate segmentation prediction and a
lower occurrence of the three types of errors shown in the left column Figure 7.
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w/o DAF w/ DAF w/o FreqMix w/ FreqMix

Figure 8: Visualization of the averaged frequency distribution of features. The center indicates low frequency,
and the corners indicate high frequency. A brighter color indicates more corresponding frequency components.
The DAF directly removes the frequency above the Nyquist frequency, while FreqMix suppresses the high
frequency.

1.2 VISUALIZATION FOR FREQUENCY MIXING MODULE (FREQMIX)

FreqMix improves the model by decomposing features into low frequency and high frequency us-
ing a Nyquist frequency threshold and dynamically selecting them in a spatial-variant manner. We
visualize the heatmap for selecting low frequency and high frequency in Figures 6(a) and (b), where
a brighter color indicates a high value. The heatmap shows a brighter color for object boundaries
and a darker color for object centers and backgrounds, especially for high-frequency components.
Thus, FreqMix not only reduces the overall high-frequency content (see Figure 6(e) and (f)), re-
sponsible for aliasing degradation, but also preserves the high frequency of object boundaries. This
preservation is crucial for making the boundaries clear (see Figure 6(c) and (d)), ensuring accurate
segmentation and a lower occurrence of three types of errors. Further visualization in the right
column Figure 7 verifies that FreqMix reduces the occurrence of the three types of errors.

1.3 VISUALIZATION OF THREE TYPES OF ERRORS

As illustrated in Figure 7, we randomly selected image patches with a high aliasing score from the
Cityscapes (Cordsts et al., 2016) dataset validation set.

We observed that aliasing leads to a “jagged” phenomenon (Zou et al., 2020; Qian et al., 2021),
disrupting object shapes and boundaries, resulting in false responses (Figures 7(b) and (1)) and
displacement errors (Figures 7(c), (d), and (e)). DAF and FreqMix relieve this phenomenon and
improve the feature representation thus resulting in lower false responses and displacement errors.

When high-frequency information is aliased, it transforms into false low-frequency information. For
example, when two objects are close to each other, their high-frequency boundaries can be aliased
to lower frequency during downsampling, causing the two objects to appear connected and their
boundaries to be merged. This leads to merging errors (Figures 7(a), (g), and (j)). DAF/FreqMix
solve this by removing/suppressing these high frequencies during downsampling/encoder block,
leading to lower merging errors.

Moreover, high-frequency components in the object center or background can result in false re-
sponses (Figures 7(i) and (k)). FreqMix addresses this issue by suppressing the high frequency in
the object center or background while preserving the high frequency at the boundaries.

J FEATURE FREQUENCY ANALYSIS

We present a feature frequency analysis in Figures 8 and 9. The DAF directly eliminates frequencies
above the Nyquist frequency, while the FreqMix suppresses high-frequency components, alleviating
aliasing degradation.
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Figure 9: Visualization of the frequency distribution of features.

K FEATURE FREQUENCY ANALYSIS

We present a feature frequency analysis in Figures 8 and 9. The DAF directly eliminates frequencies
above the Nyquist frequency, while the FreqMix suppresses high-frequency components, alleviating
aliasing degradation.

L DISCUSSION ABOUT ALIASING IN A TRANSFORMER-BASED
ARCHITECTURE

As for recent transformer-based architectures, aliasing remains a concern. Taking the renowned
Vision Transformer (ViT) as an example, ViT (Dosovitskiy et al., 2020) tokenizes images by splitting
them into non-overlapping patches, which are then fed into transformer blocks. The tokenization
and self-attention operations performed on these discontinuous patch embeddings can be viewed as
downsampling operations, introducing a potential side effect of aliasing. It is essential to note that
this downsampling operation is virtually unavoidable due to the spatial redundancy nature of the
image (He et al., 2022) and huge computational costs without downsampling (increasing by 256 x
without downsampling in ViT).

Several existing studies have acknowledged this concern. A straightforward solution to alleviate
aliasing is to increase the sampling rate. Similar trends are observed in vision transformers, where
the use of overlapped tokens (Yuan et al., 2021) and smaller patch sizes (Caron et al., 2021) con-
tributes to improved performance. However, escalating sampling rates incur quadratic computational
costs. Consequently, I hypothesize that integrating appropriate anti-aliasing filters into the ’attend-
ing’ process could offer a viable solution. In fact, existing work has empirically explored blending
anti-aliasing filters into the vision transformer, reporting observed improvements Qian et al. (2021).

In conclusion, aliasing persists as a potential concern in transformer-based architectures, and prior
studies have endeavored to address it empirically by enhancing the sampling rate or integrating anti-
aliasing filters into the attention mechanism. Our work represents a step forward in quantitatively
assessing and addressing aliasing in contemporary models, supported by theoretical foundations.
This issue still presents ample opportunities for further investigation and exploration.
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