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1 ADDED NEW DEFINITION1

Definition 100 (Causal representation). The causal representation X̂ represents the computed values2

of causal variables when constructing a causal model, i.e., the quantified values from causal variables.3

Causal representations should meet the following two conditions:4

• Correlation Condition: For any two causal variables that are not independent, their corre-5

sponding causal representations must be correlated.6

• Causation Condition: For any two causal variables that have direct causal relationship,7

their causal representations should contain not only the information about their correlation8

but also information about the causal relationship.9

For example, in SCM, information about the noise terms can be included, where correlation rela-10

tionship can be determined by fitting or comparing measures (such as cosine similarity), and causal11

relationship can be determined by examining the residuals Σ of the fitted model (Chen et al., 2023a).12

• ΣX ⊥⊥ Y,ΣY ⊥̸⊥ X ⇒ Y → X13

• ΣX ⊥̸⊥ Y,ΣY ⊥⊥ X ⇒ X → Y14

• ΣX ⊥̸⊥ Y,ΣY ⊥̸⊥ X ⇒ L→ X,L→ Y15

• ΣX ⊥⊥ Y,ΣY ⊥⊥ X ⇒ X → L, Y → L16

The difference between causal representation and ordinary deep representation lies in the “Causation17

Condition” mentioned in Definition 100. In general, deep representation can only meet the Correlation18

Condition, meaning it can only identify correlations. However, causal representation can identify not19

only correlations, but also causal relationships.20

We noted that some reviewers also had questions about the causal structure. By causal structure, we21

mean causal diagrams, which we believe is a widely recognized term.22

2 THE DETAILS ABOUT CAUSAL CONSISTENCY23

Let’s illustrate the concept of causal inconsistency using a simple example: Consider a simple causal24

structure A← C → B, from the structure, we can see that A and B are correlated. This is due to25

P (A,B|C) = P (A|C)∗P (B|C)⇒ A ̸⊥⊥ B(A ⊥⊥ B|C). In the case of single-valued variables, we26

can conduct independence tests on all samples of A and B to ascertain whether they are correlated. If27

they are, we then conclude that the causal structure and representation are consistent; otherwise, they28

are inconsistent. For multi-valued variables (such as deep representation satisfying Definition 100),29

one method to approximate this “correlation” is using cosine similarity or mean squared error (MSE).30

If the representations of A and B are similar, we also consider the structure and the representation to31

be consistent.32

Hence, we use a similarity matrix to measure this “inconsistency.” To continue with the example33

above, we hypothesize two similarity matrices for the structure and representation respectively,34

Sims ∈ R3∗3 and Simr ∈ R3∗3. In these, Sims
i,j = P (i|j), and Simr

i,j = cossim(i, j). The MSE35

between these two similarity matrices Sims and Simr is used to measure inconsistency - if the MSE36

is close to 0, it indicates that Sims is approximately equal to Simr, i.e., the causal structure and the37

causal representation are essentially consistent, otherwise they are inconsistent.38
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Figure 100: We compared the consistency of different methods in 3 data paradigms (if available). The
consistency was represented by the MSE of the similarity matrices for structure and representation.
The filled markers represent methods being in their default data forms, while the hollow markers
signify that they are in extendable but non-default data forms.

3 MODIFIED SECTION: WHY CAUSAL INCONSISTENCY ARISES?39

Figure 100 visualizes evaluation results of causal consistency via tested 5 methods: PC (Kalisch &40

Bühlman, 2007), ACD (Löwe et al., 2022), DAG-GNN (Yu et al., 2019), CAE (Chen et al., 2023a),41

and biCD (Chen et al., 2023b). They represent prevalent methods in specific data forms, respectively.42

Two conclusions can be obtained from Figure 100:43

• The strongest causal inconsistency is found in indefinite data forms (M > 1, D > 1), while44

definite data (M = 1, D = 1) performs the weakest causal inconsistency.45

• When existing methods are applied to non-default data forms (hollow markers), their46

consistency performance is always inferior to the native methods for that data form.47

In addition to experimental results, we also provide comprehensive theoretical analysis for three48

different data paradigms:49

• Definite Data (M=1 and D=1): The causal strength f is fixed and can be recovered through50

statistical properties in the data (for example, independent tests, independent component51

analysis, rank of covariance, etc.). Therefore, the estimated causal representation X̂ = X52

(D=1), and the causal strength f̂ = f (M=1). The subtle inconsistencies in Figure 100 arise53

from biases or confounding in the sampling process.54

• Semi-Definite Data (D>1 and M=1): According to Definition 100, there are differences55

between the causal representation X̂ and the input representation X , therefore we can’t56

directly optimize causal representation through loss(X̂,X). Fortunately, in this situation, f57

is fixed, so we can map X̂ to a unique f̂ without parameters, and then optimize the process of58

causal discovery through loss(f̂ , f). Thus, f̂ is the projection of X̂ and inherently consistent.59

The effectiveness of X̂ comes from: X̂ ⇔ f̂ = f ⇔ X . The slight inconsistencies in60

Figure 100 result from biases of projection.61

• Semi-Definite Data (M>1 and D=1): The estimated causal strength f̂ can be viewed as62

distribution determined by X and encoder parameter φ, denoted as f̂ = h(X,φ), and is63

optimized through loss(f̂ , f). X̂ can be estimated via inverse function h−1, because when64

the causal variable does not need to be quantified into a deep representation, there exists65

an error loss(X̂,X) such that X̂ = X . From this, we can get the equivalent equation:66

f̂ = f ⇔ X = X̂ (⇔ is because of the ground-truth information). Thus, f̂ and X̂ are67

consistent. The minor inconsistencies in Figure 100 arise from biases existing after the68

convergence of the two losses.69
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Figure 101: The boxplot showing the MSE of predicted similarity matrices to ground truth. The
left clustering is the results from strucure to the ground truth, and right clustering is results from
representation. The similarity matrices are computed via Equation 17 and 18, respectively.

Table 100: Results of Scalability on Causalogue Dataset. “aurocS”, “aurocR”, and “aurocC” represent
the AUROC of Causal Strucutre, Causal Representation and Causal Consistency, respectively.

Methods 20% Trainset 40% Trainset 60% Trainset 80% Trainset 100% Trainset
aurocS aurocR aurocC aurocS aurocR aurocC aurocS aurocR aurocC aurocS aurocR aurocC aurocS aurocR aurocC

ACD 0.15 0.22 0.12 0.49 0.45 0.19 0.67 0.68 0.31 0.79 0.85 0.44 0.84 0.85 0.51
DAG-GNN 0.08 0.26 0.16 0.36 0.44 0.25 0.49 0.65 0.33 0.54 0.88 0.45 0.56 0.90 0.50
DAG-DisC 0.07 0.24 0.08 0.38 0.39 0.24 0.57 0.63 0.31 0.64 0.81 0.46 0.68 0.88 0.52
DAG-DIR 0.10 0.26 0.14 0.47 0.48 0.29 0.51 0.63 0.28 0.63 0.84 0.46 0.67 0.89 0.51

ACCD 0.13 0.19 0.12 0.45 0.46 0.27 0.61 0.65 0.39 0.74 0.87 0.46 0.79 0.93 0.60
biCD 0.16 0.25 0.18 0.53 0.49 0.26 0.74 0.69 0.37 0.84 0.82 0.57 0.91 0.86 0.64

OursSSM 0.21 0.44 0.18 0.52 0.61 0.35 0.75 0.79 0.69 0.88 0.90 0.89 0.94 0.94 0.95

• Indefinite Data (M>1 and D>1): For multi-structure scenarios, f̂ = h1(X,φ), and70

for multi-value variables, X̂ = h2(X, f̂). And D > 1 makes loss(X̂,X) ineffective.71

Therefore, when only loss(f̂ , f) exists, we can get f̂ = fand f ⇔ X . However, we cannot72

guarantee X̂ ⇔ f̂or X = X̂ , thus severe inconsistencies exist.73

4 VARIANCE OF LEARNING RESULTS74

In Table 3, we only show the evaluation results between structure (graph) and representation. To75

further demonstrate the benefits of our SSL framework to the model, we additionally focus on the76

error of the similarity matrices of structure to the ground truth, and representation to the ground truth,77

respectively. Figure 101 shows the box plots of the errors in structure and representation. OursSSM78

evidently outperforms other methods in terms of structure, even those specifically designed to handle79

multi-value data (ACCD, biCD). In addition, the variance of intervention-based methods (DAG-DisC,80

DAG-DIR) is extremely large, which aligns with our previous conclusion that intervening by negative81

examples leads to the additional variance from the batch size. On the representation side, almost all82

methods performed well. As indicated in our definition 100, nearly all methods can satisfy Correlation83

Condition, hence the error can be reduced to a certain extent. Nevertheless, the remaining stubborn84

error is due to ”pseudo-correlation” caused by the inability to fully satisfy Causation Condition due85

to causal inconsistency. The significantly smaller variance of our method demonstrates that CCC can86

further help representation more completely determine Causation Condition.87

5 SCALABILITY88

We evaluate scalability by scaling the training set. Table 100 shows that our method performs best89

under any scale of datasets, especially in terms of structure. This is because, when the sample size is90

insufficient, intervention methods can extract more causal information contained in the samples. At91

the same time, the various real datasets in Appendix G also indirectly reflect our method’s adaptability92

to datasets of different scales.93
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