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Abstract

Imperfect-Information Extensive-Form Games (IIEFGs) is a prevalent model for
real-world games involving imperfect information and sequential plays. The
Extensive-Form Correlated Equilibrium (EFCE) has been proposed as a natural
solution concept for multi-player general-sum IIEFGs. However, existing algo-
rithms for finding an EFCE require full feedback from the game, and it remains
open how to efficiently learn the EFCE in the more challenging bandit feedback
setting where the game can only be learned by observations from repeated playing.

This paper presents the first sample-efficient algorithm for learning the EFCE
from bandit feedback. We begin by proposing K-EFCE—a generalized definition
that allows players to observe and deviate from the recommended actions for
K times. The K-EFCE includes the EFCE as a special case at K = 1, and is
an increasingly stricter notion of equilibrium as K increases. We then design
an uncoupled no-regret algorithm that finds an e-approximate K-EFCE within

O(max; X; AKX /?) iterations in the full feedback setting, where X; and A; are the
number of information sets and actions for the ¢-th player. Our algorithm works by
minimizing a wide-range regret at each information set that takes into account all
possible recommendation histories. Finally, we design a sample-based variant of

our algorithm that learns an e-approximate K -EFCE within O (max; X JAKTL )
episodes of play in the bandit feedback setting. When specialized to K = 1, this
gives the first sample-efficient algorithm for learning EFCE from bandit feedback.

1 Introduction

This paper is concerned with the problem of learning equilibria in Imperfect-Information Extensive-
Form Games (IIEFGs) [29]. IIEFGs is a general formulation for multi-player games with both
imperfect information (such as private information) and sequential play, and has been used for
modeling and solving real-world games such as Poker [23, 32, 7, 8], Bridge [39], Scotland Yard [37],
and so on. In a two-player zero-sum IIEFG, the standard solution concept is the celebrated notion of
Nash Equilibrium (NE) [35], that is, a pair of independent policies for both players such that no player
can gain by deviating. However, in multi-player general-sum IIEFGs, computing an (approximate)
NE is PPAD-hard and unlikely to admit efficient algorithms [12]. A more amenable class of solution
concepts is the notion of correlated equilibria [4], that is, a correlated policy for all players such that
no player can gain by deviating from the correlated play using certain types of deviations.

The notion of Extensive-Form Correlated Equilibria (EFCE) proposed by Von Stengel and Forges
[40] is a natural definition of correlated equilibria in multi-player general-sum IIEFGs. An EFCE is a
correlated policy that can be thought of as a “mediator” of the game who recommends actions to each
player privately and sequentially (at visited information sets), in a way that disincentivizes any player
to deviate from the recommended actions. Polynomial-time algorithms for computing EFCEs have
been established, by formulating as a linear program and using the ellipsoid method [24, 36, 26],
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min-max optimization [16], or uncoupled no-regret dynamics using variants of counterfactual regret
minimization [11, 20, 34, 2].

However, all the above algorithms require that the full game is known (or full feedback). In the more
challenging bandit feedback setting where the game can only be learned by observations from repeated
playing, it remains open how to learn EFCEs sample-efficiently. This is in contrast to other types of
equilibria such as NE in two-player zero-sum IIEFGs, where sample-efficient learning algorithms
under bandit feedback are known [30, 19, 28, 5]. A related question is about the structure of the
EFCE definition: An EFCE only allows players to deviate once from the observed recommendations,
upon which further recommendations are no longer revealed and the player needs to make decisions
on her own instead. This may be too restrictive to model situations where players can still observe the
recommendations after deviating [34]. It is of interest how we can extend the EFCE definition in a
structured fashion to disincentivize such stronger deviations while still allowing efficient algorithms.

This paper makes steps towards answering both questions above, by proposing stronger and more
generalized definition of EFCEs, and designing efficient learning algorithms under both full-feedback
and bandit-feedback settings. We consider IIEFGs with m players, H steps, where each player ¢ has
X; information sets and A; actions. Our contributions can be summarized as follows.

* We propose K-EFCE, a natural generalization of EFCE, at which players have no gains when
allowed to observe and deviate from the recommended actions for K times (Section 3). At K =1,
the K-EFCE is equivalent to the existing definition of EFCE based on trigger policies. For
K > 1, the K-EFCE are increasingly stricter notions of equilibria as K increases.

* We design an algorithm K Extensive-Form Regret Minimization (/K-EFR) which finds an e-
approximate K-EFCE within O(max; X; AEN /£2) jterations under full feedback (Section 4).
At K = 1, our linear in max; X; dependence improves over the best known (5(maxi X?) depen-
dence for computing e-approximate EFCE. At K > 1, this gives a sharp result for efficiently
computing (the stricter) K-EFCE, improving over the best known O(max; X2AKM /22) jtera-
tion complexity of Morrill et al. [34].

* We further design Balanced K -EFR—a sample-based variant of K -EFR—for the more challenging
bandit-feedback setting (Section 5). Balanced K -EFR learns an e-approximate K-EFCE within

O(max; X; AKX /22) episodes of play. This is the first line of results for learning EFCE and
K-EFCE from bandit feedback, and the linear in X; dependence matches information-theoretic
lower bounds. Technically, our bandit-feedback result builds on a novel stochastic wide range
regret minimization algorithm SWRHEDGE, as well as sample-based estimators of counterfactual
loss functions using newly designed sampling policies, which may be of independent interest.

1.1 Related work

Computing Correlated Equilibria from full feedback The notion of Extensive-Form Correlated
Equilibria (EFCE) in IIEFGs is introduced in Von Stengel and Forges [40]. Huang and von Stengel
[24] design the first polynomial time algorithm for computing EFCEs in multi-player IIEFGs from
full feedback, using a variation of the Ellipsoid against hope algorithm [36, 26]. Farina et al. [16] later
propose a min-max optimization formulation of EFCEs which can be solved by first-order methods.

Celli et al. [11] and its extended version [20] design the first uncoupled no-regret algorithm for
computing EFCEs. Their algorithms are based on minimizing the trigger regret (first considered in
Dudik and Gordon [13], Gordon et al. [22]) via counterfactual regret decomposition [45]. Morrill
et al. [34] propose the stronger definition of “Behavioral Correlated Equilibria” (BCE) using general
“behavioral deviations”, and design the Extensive-Form Regret Minimization (EFR) algorithm to
compute a BCE by using a generalized version of counterfactual regret decomposition. They also
propose intermediate notions such as a “Twice Informed Partial Sequence” (TIPS) (and its K -shot
generalization) as an interpolation between the EFCE and BCE. Our definition of K-EFCE offers a
new interpolation between the EFCE and BCE that is different from theirs, as the deviating player
in K-EFCE does not observe and does not follow recommended actions after K deviations has
happened, whereas the deviator in K-shot Informed Partial Sequence resumes to following after
K deviations has happened. The iteration complexity for computing an e-approximate correlated
equilibrium in both [20, 34] scales quadratically in max;¢[,) X;. Our K-EFR algorithm for the



full feedback setting builds upon the EFR algorithm, but specializes to the notion of K-EFCE, and
achieve an improved linear in max;¢|,,) X; iteration complexity.

Apart from the EFCE, there are other notions of (coarse) correlated equilibria in IIEFGs such as
Normal-Form Coarse-Correlated Equilibria (NFCCE) [45, 10, 9, 18, 44], Extensive-Form Coarse-
Correlated Equilibria (EFCCE) [17], and Agent-Form (Coarse-)Correlated Equilibria (AF(C)CE) [38,
40]; see [33, 34] for a detailed comparison. All above notions are either weaker than or incomparable
with the EFCE, and thus results there do not imply results for computing EFCE.

Learning Equilibria from bandit feedback A line of work considers learning Nash Equilibria
(NE) in two-player zero-sum IIEFGs and NFCCE in multi-player general-sum IIEFGs from bandit
feedback [30, 19, 15, 21, 43, 41, 28, 5]; Note that the NFCCE is weaker than (and does not imply
results for learning) EFCE. Dudik and Gordon [14] consider sample-based learning of EFCE in
succinct extensive-form games; however, their algorithm relies on an approximate Markov-Chain
Monte-Carlo (MCMC) sampling subroutine that does not lead to an end-to-end sample complexity
guarantee. To our best knowledge, our results are the first for learning the EFCE (and K-EFCE)
under bandit feedback.

2 Preliminaries

We formulate IIEFGs as partially-observable Markov games (POMGs) with tree structure and perfect
recall, following [28, 5]. For a positive integer 7, we denote by [¢] the set {1,2,--- ,4}. For a finite set
A, we let A(A) denote the probability simplex over A. Let () denote the binomial coefficient (i.e.
number of combinations) of choosing m elements from n different elements, with the convention
that (") = 0if m > n. We use m A n to denote min {m, n}.

Partially observable Markov game We consider an episodic, tabular, m-player, general-sum,
partially observable Markov game

POMG(m, S, {Xi}icim), {Ai tiemm]s Hy Pos {Pn }nela]s {700 Yiemm) nelH])s

where S is the state space of size |S| = S; Aj is the space of information sets (henceforth infosets)
for the i player, which is a partition of S (i.e., 7; C S for all z; € X;, and S = U,,cx, r; where
LI stands for disjoint union) with size |X;| = X;, and we also use z; : S — A to denote the ith
player’s emission (observation) function; .A; is the action space for the i player with size |A;| = A;,
and we let A = A; x --- A, denote the space of joint actions a = (a1,...,am); H € Z>; is
the time horizon; pg € A(S) is the distribution of the initial state s1; pp, : S x A — A(S) are
transition probabilities where py, (sn+1|sh, an) is the probability of transiting to the next state sj,41
from state-action (sp,a,) € S x A;andr; p, : S x A — [0, 1] is the deterministic' reward function

for the i player at step h.

Tree structure and perfect recall assumption We use a POMG with tree structure and perfect re-
call to formulate imperfect information games?>?, following [28, 5]. We assume that the game has a tree
structure: for any state s € S, there is a unique step & and history (s1,a1,...,8p—1,a5_1,5, = )
to reach s. Precisely, for any policy of the players, for any realization of the game (i.e., trajec-
tory) (%, @}, )ke(m)» conditionally to s; = s, it almost surely holds that [ = h and (s1,...,s)) =
(s1,-..,8n). We also assume perfect recall, which means that each player remembers its past informa-
tion sets and actions. In particular, for each information set (infoset) x; € X;; for the i™ player, there is
a unique history of past infosets and actions (z; 1, @i 1, .., Tih—1, @i h—1,Tin = ;) leading to x;.
This requires that X; can be partitioned to H subsets (X ;) he[H) such that z; ,, € & p is reachable
only at time step h. We define X; j, := |} |. Similarly, the state set S can be also partitioned into
H subsets (S},) helm]- As we mostly focus on the it player, we use xy, to also denote x; j, and use
them interchangeably.

'Our results can be directly extended to the case of stochastic rewards.

2We remark that POMGs with tree structure and perfect recall is a specific subclass of POMGs; General
POMGs could possess different challenges and are beyond the scope of this paper.

3Our definition of POMGs with tree structure and perfect recall can express any IIEFG satisfying an additional
mild condition called timeability [25]. Further, our algorithms and guarantees can be generalized directly to any
general IIEFG that is not necessarily timeable; see Appendix H.3 for discussions.



For s € S and z; € X, we write s € z; if infoset x; contains the state s. With an abuse of
notation, for s € S, we let ;(s) denote the i'" player’s infoset that s belongs to. For any h < h’,
Tih € X, Tip € Xjpr, We write x; , < x; 5, if the information set ; 5,/ can be reached from
information set x; ;, by i player’s actions; we write (7 ,a; ) < ;5 if the infoset x; 5/ can
be reached from infoset x; j, by ith player’s action a; . Forany h < h' and x;, € X ), we
let Cp (xin,ain) = {& € Xip @ (ip,ain) < xp and Cpr(xip) == {x € Xip @ @i <
x} = Uq, neA,Ch (i n, i) denote the infosets within the h'-th step that are reachable from (i.e.
children of) z; j, or (z; 1, a; 1), respectively. For shorthand, let C(x; », @i n) = Cht1(®in, ai ) and
C(z;p) := Cpt1(w; ) denote the set of immediate children.

Policies We use m; = {m; n(-|zin)}, €[H],zs nex; ,, to denote a policy of the i™ player, where each

min(-|Zin) € A(A;) is the action distribution at infoset z; ,. We say m; is a pure policy if 7; 5 (+|zin)
takes some single action deterministically for any (%, z; 1, ); in this case we let m;(z; ) = m (2 1)
denote the action taken at infoset x; j, for shorthand. We use 7 = {m; } ;) to denote a product policy

for all players, and let 7_; = {7, }j c[m),j: denote policies of all players other than the i player.
We call 7 a pure product policy if 7; is a pure policy for all ¢ € [m]. Let II; denote the set of all
possible policies for the i™ player and IT = Hie[m] II; denote the set of all possible product policies.
Any probability measure 7 on II induces a correlated policy, which executes as first sampling a
product policy m = {; };e[m] € II from probability measure 7 and then playing the product policy
. We also use 7 to denote this policy. A correlated policy 7 can be viewed as a mediator of the
game which samples m ~ 7 before the game starts, and privately recommends action sampled from
7i(+|z;) to the i player when infoset x; € A is visited during the game.

Reaching probability With the tree structure assumption, for any state s, € Sy, and actions a € A,

there exists a unique history (s1,ay, ..., s, = s,a, = a) ending with (s, = s,a;, = a). Given any
product policy 7, the probability of reaching (s, ay) at step h can be decomposed as
i (sna) = prn(sn) [Liepm) mio:n(sh, ain), (D
where we define the sequence-form transitions pi.;, and sequence-form policies m; ;.;, as
h—1
Pr:n(sn) = po(s1) [T —1 pre(Shrsalsn, an), ()
h
i 1:h(Shy @i ) = T 1:0(Tin, @in) = 11 —q T (@i nr|in0), €))
where (sp/,an )n<p—1 is the unique history of states and actions that leads to s, by the tree
structure; x; 5, = x;(sp) is the i player’s infoset at the h-th step, and (@i Qi pr )hr<n—1 1S

the unique history of infosets and actions that leads to x;; by perfect recall. We also define
h/
i hehe (Tignes Gine ) = 11 —p, Tine (@i |24 ) forany 1 < h < h' < H.

Value functions and counterfactual loss functions Let V™ :=E, [Zle r;.»] denote the value
function (i.e. expected cumulative reward) for the i player under policy 7. By the product form
of the reaching probability in (1), the value function V;™ admits a multi-linear structure over the
sequence-form policies. Concretely, fixing any sequence of product policies {7'}_; where each
mt = {7} }ic[m)» we have
, H m
V=3 > pun(sn) [T 75 (@s(sn), agn)ran(sns an)-

h=1 (sn,an=(a;,n)jeim])ESL XA Jj=1

For any sequence of policies {m'}7_;, we also define the counterfactual loss functions [45]
{L’ti,h('rivh7aivh)}ivhywi,}uai,h as:

£§7h(xi7h,ai,h) = Z pl:h(sh)Hﬂﬁ',l:h(mj(sh)’ajﬁ)[l - Tiﬁ(sh’ah)]’ @
ShET; K, JF#i
a_;p€A_;
H
L (@i, ain) = € (@i, ain) + ) > T (s 1)yt (Tnes @ ) gy (T ae).
h=h+1x,,€Ci(xi n,a:in),
apr€EA;
&)



Algorithm 1 Executing modified policy ¢ ¢ ;

Input: K-EFCE strategy modification ¢ € ® (0 < K < o0), policy 7; € II; for the i player.
1: Initialize recommendation history b = ().
2: forh=1,...,H do
3:  Receive infoset x; n, € X p.
itb € Q" (2;,) then
Observe recommendation by, ~ 7; 5 (-|x;,n)-
Take swapped action ar, = ¢(x;,5, b, br).
Update recommendation history b < (b, b,) € A”.
else
// Must have b € QEH)’K (z4,n), do not observe recommendation from 7;
Take action ar, = ¢(x; 1, b).

S A U

—

Intuitively, L! , (i n,a; ) measures the i player’s expected cumulative loss (one minus reward)
conditioned on reaching (z; p,, a; 1, ), weighted by the (environment) transitions and all other players’
policies 7! ; at all time steps, and the i player’s own policy 7} from step h + 1 onward. We will

omit the 4 subscript and use L}, to denote the above when clear from the context.

Feedback protocol We consider two standard feedback protocols for our algorithms: full feedback,
and bandit feedback. In the full feedback case, the algorithm can query a product policy 7t =
{7} }ic[m) in each iteration and observe the counterfactual loss functions { L} , (i 1, @i n) }ih

s5Ti,h Qi h
exactly*. In the bandit feedback case, the players can only play repeated episodes with some policies
and observe the trajectory of their own infosets and rewards from the environment.

3 K Extensive-Form Correlated Equilibria

We now introduce the definition of K Extensive-Form Correlated Equilibria (K-EFCE) and establish
its relationship with existing notions of correlated equilibria in IIEFGs.

3.1 Definition of K-EFCE

Intuitively, a K-EFCE is a correlated policy in which no player can gain if allowed to deviate
from the observed recommended actions K times, and forced to choose her own actions without
observing further recommendations afterwards. To state its definition formally, letting A? :=
{(b1,...,bn)|bn € A;, VA’ < h}, we categorize all possible recommendation histories (henceforth
rechistories) at each infoset x; ;, € Xj , (for the ith player) into two types, based on whether the
player has already deviated K times from past recommendations:

(1) A Type-I rechistory (< K —1 deviations happened) at z; 5, is any action sequence by.p,—1 € .Af -1
such that ZZ: 1{ay # by} < K —1, where (ay,...,an—1) is the unique sequence of actions
leading to x; 5,. Let le)’K(Jci, ») denote the set of all Type-I rechistories at x; 5.

(2) A Type-II rechistory (K deviations happened) at x; 5, is any action sequence by, € Af' with
length &' < h such that 22:11 1{ay # bp} = K — 1 and aps # by, where (aq,...,an-1) is

the unique sequence of actions leading to x; 5. Let QEH)’K(;UL 1) denote the set of all Type-II
rechistories at x; .

We now define a K-EFCE strategy modification (0 < K < oo) for the i'" player.

Definition 1 (K-EFCE strategy modification). A K-EFCE strategy modification ¢ (for the i player)
is a mapping ¢ of the following form: At any infoset x; ;, € X; p, for any Type-I rechistory by.p—1 €

QZ(-I)’K(Jci)h), ¢ swaps any recommended action by, into ¢(z; p,b1:n—1,bn) € Ai; for any Type-II
rechistory by, € QEH)’K(xiyh), ¢ directly takes action ¢(x; p,b1.pr) € A;.

“This is implementable (and slightly more general than) when the full game (transitions and rewards) is
known.



Let ®K denote the set of all possible K-EFCE strategy modifications for any 0 < K < oco. Formally,
for any ¢ € ®K and any pure policy w; € 11;, we define the modified policy ¢ o m; as in Algorithm 1.

We parse the modified policy ¢ ¢ m; (Algorithm 1) as follows. Upon receiving the infoset x; 5, at
each step h, the player has the rechistory b containing all past observed recommended actions. Then,
if b is Type-1, i.e. at most K — 1 deviations have happened (Line 4), then the player observes the
current recommended action by, = m; ,(; 5, ), takes a potentially swapped action ay, = ¢(z; n, b, bp,)
(Line 6), and appends by, to the recommendation history (Line 7). Otherwise, (z; p, b) is Type-II,
i.e. K deviations have already happened. In this case, the player does not observe the recommended
action, and instead takes an action aj, = ¢(z; p, b), and does not update b (Line 10).

We now define K-EFCE as the equilibrium induced by the K-EFCE strategy modification set
®K. With slight abuse of notation, we define ¢ o 7 for any correlated policy T to be the policy
(¢ o m;) x m_; where m ~ T is the product policy sampled from 7.

Definition 2 (K-EFCE). A correlated policy T is an e-approximate K Extensive-Form Correlated
Equilibrium (K-EFCE) if

3

K-EFCEGap(7) = max;¢[y,) MaX 4eq K (Vi%? - VE) <e.
We say T is an (exact) K-EFCE if K-EFCEGap(7) = 0.

3.2 Properties of K-EFCE

The K-EFCE is closely related to various existing definitions of correlated equilibria in IIEFGs.
We show that the special case of K = 1 is equivalent to the existing definition of EFCE based
on trigger policies (Proposition C.1); The K-EFCE are indeed stricter equilibria as K increases
(Proposition C.2); The two extreme cases K = 0 and K = oo are equivalent to (Normal-Form)
Coarse Correlated Equilibrium and the “Behavioral Correlated Equilibria” of [34]°, respectively
(Proposition C.3). Due to the space limit, the full statements and proofs are deferred to Appendix C.

4 Computing K-EFCE from full feedback

Algorithm description We first present our algorithm for computing K-EFCE in the full-feedback
setting. Our algorithm K Extensive-Form Regret Minimization (X -EFR), described in Algorithm 2,
is an uncoupled no-regret algorithm aiming to minimize the following K-EFCE regret

RZK = MaX e K Zthl (Viqbwim,i - Vft)- (6)
By standard online-to-batch conversion, achieving sublinear K-EFCE regret for every player implies
that the average joint policy over all players is an approximate X-EFCE (Lemma E.1).

At a high level, our Algorithm 2 builds upon the EFR algorithm of Morrill et al. [34] to minimize
the K-EFCE regret RZK, by maintaining a regret minimizer R, , (using algorithm REGALG) at
each infoset z; ;, € X; that is responsible for outputting the policy 7! (+|z; ) € A 4, (Line 8) which
combine to give the overall policy 7! for the ¢-th iteration.

Core to our algorithm is the requirement that R, , ~ REGALG should be able to minimize regrets
with time-selection functions and strategy modifications (also known as the wide range regret) [31, 6].
Specifically, R, , needs to control the regret

maxpeve Xy T2t wtOplen) ( (7L Clein) = p ot Clain) L u(@an)) ) ()

for all possible Type-I rechistories by.;,—1 € QEI)’K(xiTh) simultaneously, where Hz;} wf(bk|xk) =

Sél:h—l is the time-selection function (i.e. a weight function) associated with this by.;_1 (cf. Line 5),

and ¥° = {¢p : A, — A;} is the set of all swap modifications from the action set .4; onto itself.
(An analogous regret for Type-II rechistories is also controlled by R, ,.) Controlling these “local”

Up to a minor difference that our co-EFCE only defines the equilibrium in terms of the overall game value,
where the BCE additionally requries similar equilibrium properties to hold in certain subgames.



Algorithm 2 K-EFR with full feedback (™ player’s version)

Input: Algorithm REGALG for minimizing wide range regret; learning rates {1z, ,, }=, ,ex;-
1: Initialize regret minimizers {R, , }, , ex; With REGALG and learning rate 7z, , .
2: foriterationt = 1,...,7 do

3: forh=1,...,Hdo

4: for Tih € Xiyh do

5 Compute S, = [1"21 xt o (bic|ae) for all by € Q" (i0).

6: Compute Sy, = e, 7t o (be| ) for all by € QU (2, 0).

7: 'RI“L.OBSERVE_TIMESELECTION({Sglzh_1}blzhileggl)ﬁk(zivh) u{s, ., }blzh/eﬂﬁm’K(zi,h))'
8: Set policy 7} (+|i,n) < R, ,, -RECOMMEND().

9:  Observe counterfactual losses { Lj, (i,n, an)},  .a,, (depending on wfand wt;; cf. (5)).

10:  forall z;, € &; do
11: R, ,-OBSERVE_LOSS({ L}, (z:n,a)}

Output: Policies {7!}7_;.

aG.Af;)'

regrets at each x; 5, guarantees that the overall K-EFCE regret is bounded, by the K-EFCE regret
decomposition (cf. Lemma E.2).

To control this wide range regret, we instantiate REGALG as WRHEDGE (Algorithm 4; cf. Appendix
A.2), which is similar as the wide regret minimization algorithm in [27], with a slight modification of
the initial weights suitable for our purpose (cf. (11)). The learning rate is set as

Nzin = \/(KI/L\IH)XZ'A{(AH log A;/(H?T) ®)

for all =; ;, € &;. With this algorithm in place, at each iteration, R, , observes all time selection
functions (Line 7), computes the policy for the current iteration (Line 8), and then observes the loss
vector Lt , (z; , ) (Line 9) that is useful for updating the policy in the next iteration.

Theoretical guarantee We are now ready to present the theoretical guarantee for K-EFR.
Theorem 3 (Computing K-EFCE from full feedback). For any 0 < K < oo, € € (0, H], let all
players run Algorithm 2 together in a self-play fashion where REGALG is instantiated as Algorithm
4 with learning rates specified in (8). Let mt = {ﬂf}ie[m] denote the joint policy of all players at the
t’th iteration. Then the average policy @ = Unif({r'}L_,) satisfies K-EFCEGap(7) < ¢, as long
as the number of iterations

1 0{(y ) (s A1),

where 1 = log(max;e[m] A;) is a log factor and O(-) hides poly (H ) factors.

In the special case of K = 1, Theorem 3 shows that K-EFR can compute an e-approximate 1-EFCE
within O(max;e[,,) X;A;/e?) iterations. This improves over the existing O(max;e[,,) X2 A? /e?) it-
eration complexity of Celli et al. [11], Farina et al. [20] by a factor of X; A;. Also, compared with the it-
eration complexity of the optimistic algorithm of [3] which is at least O (max;e ) X 40 A3 jc4/3)6,
we achieve lower X; dependence (though worse € dependence).

For 1 < K < oo, Theorem 3 gives a sharp O(( ;) (max; ¢y X; AKAH) /¢?) iteration complex-

ity for computing K-EFCE. This improves over the O((KI;’H) (max;epm) XZAKM) /e?) rate
of EFR [34] instantiated to the K-EFCE problem. Also, note that although the term AXMH
is exponential in K (for K < H), this is sensible since it is roughly the same scale as the
number of possible recommendation histories, which is also the “degree of freedom" within a
K-EFCE strategy modification. Apart from learning equilibria, Algorithm 2 also achieves a low

K-EFCE regret when controlling the i player only and facing potentially adversarial opponents:

SMore precisely, Anagnostides et al. [3, Corollary 4.17] proves an O((X; maxy,er,,.. ||7il|34/2)*?)
iteration complexity, which specializes to the above rate, as for any 6 > 0 a game with maxr,em,, ... |71 >
X7 can be constructed.



Algorithm 3 Loss estimator for Type-II rechistories via Balanced Sampling (i player’s version)

Input: Policy ¢, 7' ;. Balanced exploration policies {7 } (-
I: for K <h <h < H,W C [h] with [W| = K and ending in ' do

. t,(h, h' W) *,h t t
2:  Set policy 7; (T kewuini41,hy - (T k) ke[ \W * T (ht1):H-
h,h! W . .
3:  Playm, . ) x n’; for one episode, observe trajectory
t,(h,h"\ W) _t,(h,h"\ W) _t,(h,h W) t,(h,h'\ W) _t,(h,h" W) _t,(h,h W)
(%,1 y A1 i v Ly g y Ay g Tl )-

4: for all (1,’2"}“ bljh/) € Q<H)’K do

5:  Find (zi1,01) < -+ < (Tih—1,an-1) < Tip-
6: SCtW(—{k‘E[h] bk;éak}

7 Construct loss estimator for all a € A;

1{ ¢, (h W), t;bh h’,W)) _ (mi,h,a)} H ,
. 3 (1-nl) @
R'I—h

Lz b ( W
(’LL /) 4
hoP1:h :;hhh )(zh7 )

Output: Loss estimators {Et . } .
P (Il’h’bl'h,)() (Zz‘,h,bl:h/)GQEH)’K

RZK < (5(\/(1(?111) ;AKNATY) (Corollary F.1). In particular, the O(\/ ;T') scaling is optimal up

to log factors, due to the fact that R;-":K > R;T,o (i.e. the vanilla regret) and the known lower bound
R}, > Q(vX,T) in IEFGs [42].

Proof overview Our Theorem 3 follows from a sharp analysis on the K-EFCE regret of Algo-
rithm 2, by incorporating (i) a decomposition of the K-EFCEGap into local regrets at each infoset
with tight leading coefficients (Lemma E.2), and (ii) loss-dependent upper bounds for the wide
range regret of WRHEDGE (Lemma A.2), which when plugged into the aforementioned regret
decomposition yields the improved dependence in (X; AX") over the analysis of Morrill et al. [34]
(Lemma F.1 & F.2), and also the X; A; factor improvement over the results of [11, 20] in the special
case of K = 1. The full proof can be found in Appendix F.

5 Learning K-EFCE from bandit feedback

We now present Balanced K-EFR, a sample-based variant of K-EFR that achieves a sharp sample
complexity in the more challenging bandit feedback setting. Our algorithm relies on the following
balanced exploration policy [19, 5]. Recall that |Cp,(z; 1/, @i 5/)| is the number of descendants of
(i b, a; pr) within the h-th layer of the i™ player’s game tree (cf. Section 2).

Definition 4 (Balanced exploration policy). For any 1 < h < H, we define 7, " the (i" player’s)
balanced exploration policy for layer h as

W:: (an|zn) = [Ch(@inr, ain )|/ ICh (zine )| forall (z;p,a;p) € Xipr X Ay, B < h—1,

and Tl':}?, (a; prlxin) == 1/A; for B’ > h.

Note that there are H such policies, one for each layer h. We remark that the construction of W;"h
requires knowledge about the descendant relationships among the i player’s infosets, which is a
mild requirement (e.g. can be efficiently obtained from one traversal of the i player’s game tree; see
Appendix H.2 for a detailed discussion about this requirement).

Algorithm description (sampling part) Our Balanced K-EFR (deferred to Algorithm 7) builds
upon the full feedback version of K-EFR (Algorithm 2). The main new ingredient within Algorithm 7
is to use sample-based loss estimators obtained by two balanced sampling algorithms (Algorithm 3
& 6), one for each type of rechistories. Here we present the sampling algorithm for Type-II rechis-
tories in Algorithm 3; The sampling algorithm for Type-I rechistories (Algorithm 6) is designed
similarly and deferred to Appendix G.1 due to space limit. Algorithm 3 performs two main steps:



(h,h' W)

e Line 1-3 (Samphng) Construct policies {7r } that are interlaced concatenations of the

current 7! and the balanced policy 7 © and play one episode using each policy against 7° ;.
e Line 7: Construct loss estimators {LL by (@ }es by .o BY (9), which for each x; ; and

b € QEH (,5) is an unbiased estimator of counterfactual losses {L! (2 p, a)}aeA,_ that
will be used by Algorithm 7 to be fed into the regret minimization algorithm REGALG.

We remark that the sampling policies {wf (R ’W)} in Algorithm 3 are interlaced concatenations

of ! and ﬂ;’h along time steps h, where the policy to take at each h is determined by W. These
policies are generalizations of the sampling policies in the Balanced CFR algorithm of Bai et al. [5]
(which can be thought of as a simple non-interlacing concatenation). They allow time-selection aware

sampling: Each loss estimator ZE mu“bl:h/)(~) achieves low variance relative to the corresponding
time selection function S,f . Further, there is an efficient sharing of sampling policies, as here
roughly (K/\H)X ARNH loss estimators (one for each (x; p, b1./)) are constructed using only (a
much lower number of) H (! ;) policies.

Stochastic wide-range regret minimization Algorithm 7 requires the wide-range regret minimiza-
tion algorithm REGALG to additionally handle the stochastic setting, i.e. minimize the wide-range

regret (e.g. (7)) when fed with our sample-based loss estimators. Here, we instantiate REGALG to be
SWRHEDGE (Algorithm 5), a stochastic variant of WRHEDGE, with hyperparameters

Mein = \/(K/\H>X AT 0g(8 3y Xis/p)/(HPT), L = H. (10)

SWRHEDGE is a non-trivial extension of WRHEDGE to the stochastic setting, as in each round it
admits multiple sample-based loss estimators, one for each time selection function, with the same
mean (cf. Line 8). This is needed since Algorithm 3 uses different sampling policies to construct the

., () for each by, € Q(H (x4i,n) (cf. (9)).

loss estimator L; by,
Jh

Theoretical guarantee We now present our main result for the bandit feedback setting.

Theorem 5 (Learning K-EFCE from bandit feedback). For any 0 < K < oo, € € (0, H] and
p € [0,1), letting all players run Algorithm 7 together in a self-play fashion for T iterations, with
REGALG instantiated as SWRHEDGE (Algorithm 5) with hyperparameters in (10). Let wt =
{Wf}ie[m] denote the joint policy of all players at the t’th iteration. Then, with probability at
least 1 — p, the correlated policy ® = Unif({n'}]_,) satisfies K-EFCEGap(7) < ¢, as long as
T>O(H?3 (K/\H) (Mmax;e(m] X; AN 22 The total number of episodes played is

3mH () - T = O( (K/\H) (maxie ) XiAf{AHH)L/EQ)v
where v = 10g(8 3, ¢(,,) XiAi/p) is a log factor and O(-) hides poly(H) factors.

To our best knowledge, Theorem 5 provides the first result for learning K-EFCE under bandit
feedback. The sample complexity (9((K/\H)2 Max;e|m) (X; AKNHFL) j22) (ignoring m, H factors)
has only an ( KA H)A additional factor over the iteration complexity in the full feedback setting

(Theorem 3), which is natural—The ( KFAI H) comes from the number of episodes sampled within
each iteration (Lemma G.1), and the A; arises from estimating loss vectors from bandit feedback. In
particular, the special case of K = 1 provides the first result for learning EFCEs from bandit feedback,

with sample complexity O(max;c(, X;A?/e?). We remark that the linear in X; dependence at all
K > 0 is optimal, as the sample complexity lower bound for the K = 0 case (learning NFCCEs)
is already Q(max;c[,,) X;A;/¢?) [5]7. Also, the policies {7} }{_; maintained in Algorithm 7 also
achieves sublinear K-EFCE regret. However, strictly speaking, this is not a regret bound of our

t,(h,h W)

algorithm, as the sampling policies 7;’ actually used are not 7!.

Proof overview The proof of Theorem 5 builds on the analysis in the full-feedback case, and
further relies on several new techniques in order to achieve the sharp linear in max;¢[,,) X; sample

"The sample complexity lower bound in [5] is stated for learning Nash Equilibria in two-player zero-sum
IIEFGs, but can be directly extended to learning NFCCEs in multi-player general-sum IIEFGs.



complexity: (1) A regret bound for the SWRHEDGE algorithm under the same-mean condition
(Lemma A.3), which may be of independent interest; (2) Crucial use of the balancing property

of 7} " (Lemma B.4) to control the variance of the loss estimators Zgz R (+), which in turn

produces sharp bounds on the regret terms and additional concentration terms (Lemma G.4-G.9). The
full proof can be found in Appendix G.3.

6 Conclusion

This paper proposes K-EFCE, a generalized definition of Extensive-Form Correlated Equilibria
in Imperfect-Information Games, and designs sharp algorithms for computing K-EFCE under full
feedback and learning a K-EFCE under bandit feedback. Our algorithms perform wide-range regret
minimization over each infoset to minimize the overall K-EFCE regret, and introduce new efficient
sampling policies to handle bandit feedback. We believe our work opens up many future directions,
such as accelerated techniques for computing K-EFCE from full feedback, learning other notions of
equilibria from bandit feedback, as well as empirical investigations of our algorithms.
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A Technical tools

A.1 Technical lemmas

The following Freedman’s inequality can be found in [1, Lemma 9].

Lemma A.1 (Freedman’s inequality). Suppose random variables { X t}f,T=1 is a martingale difference
sequence, i.e. X; € F; where {.7-",g}t21 is a filtration, and B[ X¢|F;—1] = 0. Suppose X; < R almost
surely for some (non-random) R > 0. Then for any \ € (0,1/R)], we have with probability at least
1 — ¢ that

X <A E[XPIF]+ M.

A.2 Wide-range regret minimization

Time selection functions For each element b in a finite set 5, we let {Sf }+>1 C [0, 1] represent the
time selection functions (viewing it as a function of ¢). We let BB be the non-intersection union of 3°
and B¢, where 3° is called the set of swap time selection indexes and 53¢ is called the set of external

time selection indexes.

Strategy modifications We denote the set of swap modification function set ¥° = {1 : [4] — [A]}
and external modification function set ¥¢ = {9 : [A] — [A4] : Ja € [A4],s.t. Y(b) = a, Vb € [A]}.
Given a modification ¢ : [A] — [A] and a strategy p' € A([A]), we denote ¥ o p* € A([A]) t

the modified strategy with (¢ o p*)(a) = 3y -1 () P'(b). Given a modification 1) : [A] — [A], we
define My, € {0,1}4*4 to be its associated matrix, with its (b, 1(b))’th element My (b, 1 (b)) = 1
for every b € [A], and otherwise equal to 0.

Interaction protocal and learning goals We consider the following interaction protocol: at
each iteration ¢, the learner receives the time selection set {S}},eg C [0,1], outputs a vector
p' € A([A]), and receives the loss ¢! € [0,00]". The goal of the learner is to control the regret
SO SE((pt, €1y — (1 o pt, £1)) for each pair (b, ¢)) € T := (B* x U*) U (B® x ¥°),

Specializing the results in [27], we design the WRHEDGE algorithm (Algorithm 4) achieving our

goal. The regret bound is presented in the lemma below, whose proof is based on [27], with a slight
modification on the initial weights and with a refined analysis.

Algorithm 4 Wide-Range Regret Minimization with Hedge (WRHEDGE)

Input: Learning rate > 0. Swap index set B® and external index set 3%; Swap strategy modification
set U® and external strategy modification set W¢.
1: LetZ := (B° x ¥*) U (B¢ x ¥°). Initialize S < 0 for all b € B* U B¢, and

05|11 {b € B} + |We[1{b € B}

0
¢ (b,9)
2 uner 1VP[L{Y € Be} + [We[1{V € B}]

(1)

for all (b,¢) € .
2: foriterationt =1,...,7 do

3:  (OBSERVE_TIMESELECTION) Receive time selection functions {S} }pcpsuse.
4:  Update distribution over (b, ) € Z:
@' (b, ) o ¢ (b, ) exp {mexp (=l ) ST ! 07 =S o p T 0T |
: t 3 . T 4T Zwwer Stat (b,y) My
5: Setp’ € A([A]) as a solution to the equation p* = p ( S s ST )
6:  if RECOMMEND is called then
7: Output the vector p?.
8:  (OBSERVE_LOSS) Receive loss vector /¢ € R4,
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Lemma A.2 (Wide-range regret bound of WRHEDGE). Let {{'(a)}sciajieir) and
{Si}begsugevte['j‘] be arbitrary arrays of loss functions and time selection functions. As-
sume that St € [0,1] and ¢* € [0, 00]* forany b € B> U B¢, a € [A] and t € [T). Let p* be given as
in Algorithm 4 with learning rate n) € (0, 00). Then we have

T T S € S
wsél‘gs Zslt)(<pt7£t> _ <¢0pt7€t>) < anlgtl\oosﬁ <pt7€t> 4 log|[(|B°| "7‘7|B IS ”’ Vb€ B°,
t=1
T S e €
;SSGZS ( p gt <¢0pt7€t>) S Zn”étHOOSIf <pt7£t> + lOg[(|B |4;]|B |)|\Il H’ VbG Be'
t=1 t=1

Proof. For (b, 1)) € T, we define the cumulative loss w.r.t. {S}};>1 till time ¢ as

Lt = zt: S,f/ <pt/,€t'> ,

t'=1

and define the cumulative loss w.r.t. ({Sf};>1, %) till time ¢ as

LY(b, ) = i St <¢ Opt’,zt’> .

t'=1

We further define the weight of ({5} }+>1,) at the end of time ¢ as

t
w'(b,9) = (|¥°[1{b € B }+[P°[1{b € B°}) exp {77 > exp(—nll€" [loo) Si <pt A > - nLt(b,w)},
=1
and hence w®(b,1)) is given by |U%|1{b e B°} + |¥°¢|1{be B5}. We further let Wt =
> byer W (b, 1). Then the quantity ¢ (b, ) in Algorithm 4 is simply equal to w'~" (b, ) /W*~".

We next show that W¢ < W't for all ¢t > 1. In fact, by exp(—nz) < 1 — (1 —

exp(—l|¢*[loc /||| o and exp(na) < 1+ (exp(nl€'lloe) — 1)z/]|¢*[|oo for any 7 € (0, 00)
and z € [0, ||¢*| ], we have

Wh= 3" wibg) = D w T (b,v)exp {nSh (exp(—n]|f']|o)p’ — ¥ op! 1)}

(b)) ET (bap)ET
(1 — exp(=nl¢*]l))S§ ¢t (1= exp(=nlltll=))Ss , +
< 1-— l 1 l
= w L) M e 11 e
(b,)ET
(1) - —nl|¢t
< Wt - 1 eXPét nlle ||OO)Wt—1 Z g (b,0)St <¢Opt7£t>
1144 oo Wt
1 — exp(—n|||| s _
T Fét”n” | )Wt 1 Z qt(b,ib)S}; <pt,€t>
& (b)ET
(2)Wt71.

Here, (i) follows from ¢*(b, ) = w'~1(b,7)/W*~1 and ¢ € [0, 1]*; (ii) uses the fact that p* solves

o=t S byer Spd' (0,9) My
> wer Stat (b, ¥)

in line 5 in the algorithm, which gives

> @b = Y d (b, 9)Shwop).

(by)eT (bp)ET

This proves that W < W1 forall t > 1.
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Therefore, Wt is non-increasing in ¢, and thus for all (b,v) € Z,

t'=1

(W*[1{b € B} + 9|1 {b € B} exp {n S exp(—lle l)8E () - nmb,w}

=w'b )< D w0 = [ eeY(IBY] + |BY)),

(v 9"z
which gives
t
’ ’ ’ ’ lo s BE+BS s
S exp(onle sy (o) - 200 < BTNy e
t'=1
t
!’ !’ ! ’ 10 We BS+BS e
> expllle sy (37 0) - b0y < AT v e
=1

Note that we have 1 < exp (—n[¢!]|oc) + 7|¢*||oc- So we can get that, for any b € B*,

Il
[M]=

Lt(b) - Lt(bv 1/’) Sg <pta £t> - Lt(bv 1/))

o~
Il
_

Mﬂ

exp(-nll¢"lloc) 54 {p"', ) = L'(b,0) + S et ()

t=1

o~
Il
—

log[|W*|(|B°] + [B°])]
; :

Mﬂ

€l Sy (p", ) +

o~
Il
s

Note that the left side is exactly E;‘F:l Slf( (pt, £ty — (¢ o pt, 0t) ) Consequently,

n

We have similar results for b € B°. Taking supremum over all ¢ € ¥€ or ¢ € ¥* proves Lemma
A2. O

T T S € S
Sosi((h ) = (o £) ) < Sl loeSh (B 1) + Log[PIIB B vy ¢ o,
t=1 t=1

A.3 Stochastic wide-range regret minimization

In this section, we consider a stochastic variant of wide-range regret minimization. More specifically,
we consider the following interaction protocol: at each iteration ¢, the learner receives the time
selection set {S} }oe C [0, 1], outputs a vector p' € A(JA]), and receives the unbiased stochastic

loss £f for each b € BCUB®, with E[£E|F,_,] = ¢* (the expected loss is independent of b). Here, the o
field .7-} 1 is generated by all the random variables before the ¢-th round. The goal of the learner is still

to control the regret >, SE((p", 01y —(popt, £1)) for each pair (b, 1) € T := (B x W*)U(B x T°).
Our algorithm Stochastic Wide-Range Regret Minimization with Hedge (SWRHEDGE) is given in
Algorithm 5. The regret bound for SWRHEDGE is given by the lemma below.

Lemma A.3 (Wide-range regret bound for SWRHEDGE). Let {¢'}ic(r), { M }vep:upe ter), and
{wp }vepsune be arbitrary arrays of loss functions, rescaled time selection functions, and weighting
functions. Let 0 < L < oo be a parameter (that will serve as an upper bound of all wy, M} ||} || ).
Assume that (i) M{ > 0, wy, > 0, and ¢} € [0, L/(w,M{)]2 for any b € B* U B¢, a € [A] and
te[T); (i) E P}Hft,l} = (" forall b € B° U BC. Let p' be given as in Algorithm 5 with learning

rate 1) € (0, 00) and time selection function { S} }vepsupe = {wpM{ }vep=upe. Then with probability
at least 1 — p, we have

. iw«pt@ (portB)) < ST () 4 AU BDID] gy

Yevs 1 — nwy
JSECZM ((0.0) — (vor B)) < tz:nLM;f (v 0)+ log](|5"] ;wljewe'/p], Vb € BE.
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Algorithm 5 Stochastic Wide Range Regret Minimization with Hedge (SWRHEDGE)

Input: Learning rate 7 > 0 and parameter L. Swap index set 3° and external index set 3°; Swap
strategy modification set ¥* and external strategy modification set U°.
I: LetZ := (B* x ¥¥) U (B¢ x ¥°). Initialize Sy < 0 for all b € B* U B¢, and
|Us|1{be B} +|¥°|1{be B*}
2 pyer (1W[L{Y € B} + [We[1{b" € B*}]

(b, ) +

for all (b, ) € .
2: for iterationt =1,...,7T do

3:  (OBSERVE_TIMESELECTION) Receive time selection functions {S} }pcp=upe.
4:  Update distribution over (b, ) € Z:
g"((b,4)) o< ¢ ((b,9)) exp {n exp(—nL)Sy~ (p" ™ 47 =Sy wop ™ 47 }

R t 1 : t—r _ tT Z(b,w)el Sﬁqt (byw)Mw
5: Setp’ € A([A]) as a solution to the equation p* = p ( S ez Sl )
6: if RECOMMEND is called then
7: Output the vector p'.
8: (OBSERVE_LOSS) Receive loss vectors {Zf)}begsuge (where E(Zﬂ}}_l) = (! doesn’t de-

pend on b).

Proof. For (b, 1)) € T, we define the cumulative loss w.r.t. {S}};>1 till time ¢ as
t ~
L) =Y sy (08,
t/=1
and define the cumulative loss w.r.t. ({Sf};>1, ) till time ¢ as
t ~
L) =S¢ (wop' By ).
t=1

We further define the weight of ({Sf}¢>1,) at the end of time ¢ as
w'(b, ) := (|°[1{b € B} + [°[1{b € B}) exp {nexp(—nL)L'(b) — nL' (b, %)},

and hence w®(b,1)) is given by |U¥|1{b € B¢} + |¥¢|1{be B°}. We further let W' :=
bz W (b ). Then the quantity ¢*(b, ) in Algorithm 5 is simply equal to w1 (b, ) /WL,

We next show that E[W?!|F,_;] < W' ! forall ¢ > 1. In fact, by exp(—nz) < 1 — (1 —

exp(—nL))x/L and exp(nz) < 1+ (exp(nL) — 1)z/L for any n € (0,00] and = € [0, L], we
have

Wi= 3 wbw)= Y w (b w)exp {nS} {exp(-nD)p' — v op', 7 )}

(bp)ET (bp)ET
, 1 — exp(—nE))S, . (1= exp(—nT))S} / ¢

< t—1 _( P\ b t i\ . \- b/t Jt
<Y w (b,w(l ; (wop'iBi)) - (1+ - (v'.5h)

(b)eT
(@) _ 1 —exp(—nL _ ~
< Wt Z( Ui )Wt 1 Z qt(b7w)52<w<>pt,f§;>

(by)ex

1 —exp(—nL _ ~
+7%( ML) yyri-1 > d'by)S; <pt7€i>~
(bp)eT
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Here, (i) follows from ¢* (b, ¢) = w1 (b,¢)/W*~! and S}||¢} || .o < L for any b. Using the above
inequality, E(Zﬂ}}_l) = (* for any b, and the fact that p’ solves

ptT _ ptT Z(b,w)ez Sﬁqt(b,¢)Mw
> wyer Spat (b, ¥)

in line 5 in the algorithm, which gives
> db)Sip = Y dbe)Shwep),
(bp)eT (b)eT

we have E[W|F,_ ;] < W'l Taking expectation and using the tower property of conditional
expectation yields that

E[W'] <Ww°.
Therefore, by Markov inequality, we have with probability at least 1 — p that
Wt <wO/p.
On this event, we have for all (b, ) € 7 that
(121 {b € B} + |¥°[1{b € B*}) exp {nexp(—nL) L' (b) — nL'(b,v)}
=w'(b, ) <W' <WOp< > W' ,¢)/p=¥°|[9°(|1B°] + |B°]) /p.
(b ") eT
As a result,
exp {mexp(—nE)L'(b) — ' (b)) < |W°|(|B°| + 1B /b, Vb e B,
exp {nexp(—nT)L!(B) — nL! (b, )} < [WI(B| + (B fp, Vb e B.
Note that we have 1 < exp (—nL) 4+ nL. So we can get that, for any b € 3,
LH(B) — (b, ) < exp(—nE) L (B) — L (b, ) + nEL'()
< log[|*[(1B°] + [B°])/p]
n
Note that the left side is exactly Zle Sg( <pt, Z}i> - <’(/J o pt, 572> ) Consequently,

isﬁ(@ﬂ@ - <¢<>pt,g7;;>) < énLSzi <pt,gi> n log[\lfsl(ll?:«7 + |BS|)/p]’ -

+nLL*(b).

Because S| = M} wy, dividing by w, gives that

iw«pt@ (wort i) = S () + EIVUE L BDIA g, e
t=1

Wy

We have similar results for b € 3°. Taking supreme over all ¢ € ¥¢ or ¢ € U* proves Lemma
A3. O

B Properties of the game

B.1 Basic properties

Given the sequence-form transitions pi.;, as in Eq. (2) and the sequence-form policies of the opponents
{mj1:n}jzi as in Eq. (3), we define the marginal reaching probability p],‘(ss) and p7 ;" (2i5) as
follows:

pin (sn) =pun(sn) [ man(snazn), 12)
JjE[m],j#i
P @in) = > pio(sn). (13)
ShETi h

The following three results give properties of the marginal reaching probability p],‘ (x; »), and the
counterfactural loss functions L; -
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Lemma B.1 (Properties of py;" (x1,)). The following holds for any m_; = {m;},,; € @11}

(a) For any policy m; € 11;, we have

Z Wi,l:h(xhaah)p;ﬁ(xh) =1
(Ih,aah,)GXi,h, X A;

(b) 0 <pi, (x) <1forallh € [H],zp € X; p.
Proof. For (a), notice that

i :n (Thy an)pl ) () = Z P1:n(sh) - T (Th, an) - HWj,l:hfl(mj,h(shfl)»aj,hfl)
SpRETH VED)
= Z P =i (visit (sp,ap)) = P07 (visit (zp, an)).

SRLETH
Summing over all (z, ap) € &; n X A;, the right hand side sums to one, thereby showing (a).
For (b), fix any ), € X; ;. Clearly p],;’(z;) > 0. Choose any a; € A;, and choose policy
m % e 1I; such that 7} )" (xp, an) = 1 (such 7" exists, for example, by deterministically
taking all actions prescribed in infoset x, at all ancestors of x},). For this 7:'“"  using (a), we have

%

P (@n) = 7 in" (e, an) - pry (an) < > T (@hy ah) - P () = 1.
(z},,a},)EXs X As
This shows part (b). O

Corollary B.1. For any policy m; € I, and h € [H], we have

Z i (Thy an )l (Th, an) < 1.
(xh,an)EX; hXA;

Proof. Notice by definition

G (xn, an) = > prn(sn) [ [ mhvn@sn(sn) ajn) A=ra(sn, an)) < i (zn),
ShETR,(ajn)j#i€ER i A; J#i
and the result is implied by Lemma B.1 (b). O

Lemma B.2. For any h € [H], the counterfactual loss function Lf ,, defined in (5) satisfies the bound

(a) For any policy m; € 11;, we have

Z ﬂ-i,l:h(zh, ah)L;h(l’h, ah) < H—h+1.
(Th,an)EX; n X A;

(b) For any (h,xp,an), we have

t

0 < L (xn,an) < Py (@) - (H —h+1).

Proof. Part (a) follows from the fact that
H

Z wiylzh(xh,ah)Lﬁ_’h(xh,ah) = ]Eﬂ'uﬂ't,i [Z Th/] <H-h+ 1,

(Th,an)EXi n X A; h'=h
where the first equality follows from the definition of the loss functions ¢;, and Ly, in (4), (5).

For part (b), the nonnegativity follows clearly by definition. For the upper bound, take any policy

m; % e II; such that 74" (xp, ap) = 1. We then have

H
Lfyh(xh, ap) = wfﬁzh (zp, ah)Lﬁyh(xh, ap) = Erenon po ll {visit zp,an} - Z rh/]
h'=h
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H
=Prenen qo (visit xp, ap) - Erznen po [ E Th

—1i

visit zp, ah]

h'=h
7"1—7 Wi,
< ﬂf’i Wi (@h,an)pyg (@n) - (H—h+1)=p; ;' (zp) - (H—h+1).
This proves the lemma. O

B.2 Balanced exploration policy

Here we collect properties of the balanced exploration policy w;’h (cf. Definition 4). Most results
below have appeared in [5, Appendix C.2] in the two-player zero-sum setting. Here we present them
again in our setting of multi-player general-sum IIEFGs.

We begin by providing an interpretation of the balanced exploration policy 7r2*1h p: its inverse 1/ W:’lh: h
can be viewed as the (product) of a “transition probability” over the game tree for the ¢’th player.

Forany 1 <h < Hand1 < k < h — 1, define p:_”,f(mkﬂuk,ak) = |Ch(xk+1)|/|Ch(zk, ar)| (We
use the convention that |Cp, (x5 )| = 1). By this definition, p:,? (‘|zk, ar) is a probability distribution

over Cp(xy, ax) and can be interpreted as a balanced transition probability from (xy, aj) to Tj1.
The sequence-form of this balanced transition probability takes the form

h |C}L(l‘1 ‘ |Ch X1 | ‘Ch Tk-‘rl
pit (xn —_ | I (Tht1|Tk, ak) I I : (14)
2,1,h( ) Xz 5 P Z k + | Z h |Ch T, ak

Lemma B.3. For any (vn,an) € X, X Aj, the sequence form of the transition p:’l}fh(mh) and the

sequence form of balanced exploration policy ﬂ'zﬁh(iﬂh, ap,) are related by

1

*,h

P (Tn) = x : (15)
! XinAi '%]{fh,(mh,ah)

Furthermore, for any i-th player’s policy 7; € I1; and any h € [H], we have

> min (s an)p; iy (2n) = 1. (16)
(zh,aah,)GXi,h, X A;

Proof. By the definition of the balanced transition probability as in Eq. (14) and the balanced
exploration policy as in Definition 4, we have

h—1
1 1 |Ch(74,)] _ Gl T 1Ch (@) . h
*h T XA Ch(zk, ar)| x A H Ch (21, a *pi,l;h(xh)v
XinAi -7 (Th, an) ihAi 2 1Cr( Tk, ak Xin s [Ch(g, ag)
where the second equality used the property that |Cy(xp)| = 1. This proves Eq. (15). The proof of
Eq. (16) is similar to the proof of Lemma B.1 (a). O]
Lemma B.4 (Balancing property of 7ri*’h). For any i™ player’s policy m; € I1; and any h € [H], we
have
i, 1:0(Th, an)
ﬁ = XinAi.
(Th,an)EX; n X A; i, Th, Gh
Proof. Lemma B.4 follows as a direct consequence of Eq. (15) and (16) in Lemma B.3. O

Lemma B .4 states that w;’h is a good exploration policy in the sense that the distribution ratio between
it and any m; € II; has bounded L; norm. Further, the bound X j, A; is non-trivial—For example, if

we replace 7; 1h , with the uniform policy 7}t (s, ar) = 1/A!, the left-hand side can be as large
as X,JLAz in the worst case.
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C Relationship between K-EFCE and exsiting equilibria

Equivalence between 1-EFCE and trigger definition of EFCE At the special case K = 1, our
(exact) 1-EFCE is equivalent to the existing definition of EFCE based on trigger policies [22, 11],
which defines an e-approximate EFCE as any correlated policy 7 such that the following trigger gap
is at most €:

TriggerGap(7) := max max max (Eﬁwﬁmtrig(mﬁ“(m“a))Xw‘i — E,TN;VZ-”) <e. (17
i€[m] (z;,a)EX; X A; T; €11;

Here the trigger policy trig(m;, 7;, (25, a)) € II; (with triggering sequence (z;,a)) is the unique

policy that plays 7; € II;, unless infoset z; is visited and action @ is recommended, in which case the

sequence (x;, a) is “triggered” and the player plays 7; € II; thereafter.

Proposition C.1 (Equivalence of 1-EFCE and trigger definition). For any correlated policy 7, we
have

TriggerGap(7) < 1-EFCEGap(7) < (max;c(,) X;A;) - TriggerGap(7),
In particular, 1-EFCEGap(7) = 0 if and only if TriggerGap(7) = 0.

The proof can be found in Appendix C.1. Proposition C.1 has two main implications: (1) An exact
EFCE defined by the trigger gap is equivalent to an exact 1-EFCE (cf. Definition 2). Therefore
the two definitions yields the same set of exact equilibria. (2) For ¢ > 0, I-EFCEGap(7) < ¢
implies TriggerGap(7) < ¢, but the converse only holds with an extra max;e(,,,) X;A; factor, and
thus 1-EFCEGap is a stricter metric for approximate equilibria than TriggerGap. This distinction
is inherent instead of a proof artifact: Our 1-EFCE strategy modification (Algorithm 1) is able to
implement multiple trigger policies simultaneously, as long as their triggering sequences are not
ancestors or descendants of each other.

Containment relationship We next show that K-EFCE are indeed stricter equilibria as K in-
creases, i.e. any (approximate) (K + 1)-EFCE is also an (approximate) K-EFCE, but not the
converse. This justifies the necessity of considering K-EFCE for all values of K > 1 and shows that
they are strict strengthenings of the 1-EFCE. Note that as we consider games with a finite horizon
H, we have K-EFCEGap = H-EFCEGap for all K > H (including K = c0). The proof of
Proposition C.2 can be found in Appendix C.2.

Proposition C.2 (Containment relationship). For any correlated policy 7, we have

0-EFCEGap(7) < 1-EFCEGap(7) < --- < K-EFCEGap(7) < (K + 1)-EFCEGap(7)
< -.. < 00-EFCEGap(7).

In other words, K-EFCE are stricter equilibria as K increases: Any e-approximate (K + 1)-EFCE
is also an e-approximate K-EFCE for any e > 0 and K > 0.

Moreover, the converse bounds do not hold, even if multiplicative factors are allowed: For any
0 < K < o0, there exists a game with H = K + 1 and a correlated policy T for which

K-EFCEGap(7) =0 but (K + 1)-EFCEGap(%) > 1/3 > 0.

Relationship with other correlated equilibria The two endpoints K = 0 and K = oo of
K-EFCE are closely related to other existing definitions of correlated equilibria in IIEFGs. Con-
cretely, 0-EFCE is equivalent to Normal-Form Coarse Correlated Equilibria (NFCCE), whereas
0o-EFCE is equivalent to using the “Behavioral Correlated Equilibria” considered in [34], which
is strictly weaker than Normal-Form Correlated Equilibria (NFCE) that is more computationally
challenging to learn [17, 11].

In order to introduce the definition of NFCE, we reload the definition of a correlated policy to be a
probability measure on all pure product policies instead of general product policies. We let ITP™*
denote the set of all possible pure policies for player 7. Note that this does not affect our definition of
K-EFCE introduced in Section 3.

We first present the definitions of Normal-Form Correlated Equilibria (NFCE) and Normal-Form
Coarse Correlated Equilibria (NFCCE) (from e.g. [17]). For consistency with our K-EFCE defini-
tion, we define both equilibria through defining their set of strategy modifications.
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Definition C.1 (NFCE strategy modification). A NFCE strategy modification ¢ (for the i player)
is a mapping ¢(-,-) : X; x IIP™ — A; . Let @?IFCE denote the set of all possible NFCE strategy
modification for the i player. For any ¢ € ®NFCE, and any pure policy 7; € TIV"", we define the
modified policy ¢ o m; as following: at infoset x; 1, the modified policy ¢ o m; takes action ¢(x; p,, ;).

Definition C.2 (NFCCE strategy modification). A NFCCE strategy modification ¢ (for the i™
player) is a mapping ¢(-) : X; — A;. Let <I>$IFCCE denote the set of all possible NFCCE strategy
modification for the i player. For any ¢ € @?IFCCE, and any pure policy m; € 11", we define the
modified policy ¢ o 7; as following: at infoset x; p, the modified policy ¢ © m; take action ¢(z; p,).

At a high level, NFCE has the “strongest" form of strategy modifications, which can observe the
entire pure policy 7; (i.e. full set of recommendations on every infoset). NFCCE has the “weakest"
form of strategy modifications, which cannot observe any recommendation at all (so that each
¢ € ®NFCCE j5 equivalent to a pure policy in IIP"").

Definition C.3 (NFCE and NFCCE). An e-approximate {NFCE, NFCCE} of a POMG is a
correlated policy T such that

{NFCE, NFCCE}Gap(7) := max max (Eﬂwﬂ/f@”")”” - Emfvgf) <e.

i€[m] ¢€<I>§NFCE,NFCCE}

We say T is an (exact) {NFCE, NFCCE} if the above holds with € = 0.

Proposition C.3 (Relationship between K-EFCE and NFCE, NFCCE). For any correlated policy
T, we have

(a) co-EFCEGap(7w) < NFCEGap(7), ie. NFCE is stricter than oo-EFCE
(NFCEGap(7T) < ¢ implies co-EFCEGap(7) < ¢).

Further, the converse bound does not hold even if multiplicative factors are allowed: there
exists a game with H = 2 and a correlated policy T for which

00-EFCEGap(7) =0 but NFCEGap(7) > 1/20.
(b) 0-EFCEGap(7) = NFCCEGap(7), i.e. 0-EFCE is equivalent to NFCCE.

The proof can be found in Section C.3.

Equivalence between co-EFCE and BCE deviations Next, we give an (informal) argument
of the equivalence between “behavioral deviations” considered in [34] and our co-EFCE strategy
modifications.

A “behavioral deviation” ¢ for one player states that at each infoset, the player can choose from
three options: (i) follow the recommendation action, (ii) choose a action without ever seeing the
recommendation action, or (iii) choose an action after seeing the recommendation action. Further,
the choice of these three options as well as the action to deviate to may depend on the infoset as
well as the recommendation history. This is exactly equivalent to the co-EFCE strategy modification
defined in Definition 1.

We remark though, despite the equivalence between the strategy modifications of co-EFCE and
BCE, the resulting equilibria defined as the BCE in Morrill et al. [34] is slightly stricter than the
0o-EFCE—The definition of Morrill et al. [34] requires a BCE 7 to satisfy that 7; does not gain
in game value from all the above deviation functions in not only the full game, but also in certain
subgames induced by 7_;; by contrast, our co-EFCE only requires such a property in the full game.

C.1 Proof of Proposition C.1

Proof. Tt suffices to consider all trigger policy trig(m;, 7;, (x;, a)) where 7; is a pure policy (at each
infoset x;,/, 7; chooses action 7; (x+) deterministically.). We prove the two claims separately.

Step 1. We first show that TriggerGap(7) < 1-EFCEGap(7) for any correlated policy 7. We
first claim that, for any trigger policy trig(m;, 7;, (;102*7h7 a*)) where m;, 7; € 1l;, 27 ), € Xjp, and
a* € Aj, there exists an 1-EFCE strategy modification ¢* € ®; such that, for any opponent’s policy
w_; € II_;, we have

trig(ms T, (] p,0")) X4 (p*oms)Xm_s
v, -, .
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Given this claim, for any correlated policy 7, we have as desired

TriggerGap(7) = max max max (EﬂNFV-trig(m’%i’(wi’a))Xﬂ’i —EWNFV”)
&8 p(T) i€[m] (z45,0) EX; X A; 7 €11 ¢ !

< max max ( 7TM,V(‘z)wl)mr’ - IEWN;VZ-’T> = 1-EFCEGap(T).
i€[m] ped!

To prove such a claim, we can choose the 1-EFCE strategy modification ¢* to be the following: (1)
At any Type-I rechistory with infoset z = x7 ,, ¢* swaps a, to mi(z} h) and swaps a to a (i.e., keep
it unchanged) for any a # a,; (2) At any Type I rechistory with infoset z such that x # x7, and
x o (zF T Q a*), ¢* does not swap the recommended action (swap the recommended action to 1tself)
(3) At any Type-I rechistory and Type-II rechistory with infoset z > (xl* hy &%), ®* chooses action
7;(x) (no matter seeing recommendation or not); (4) For any rechistory that does not fall into the
above categories, ¢* can be arbitrarily defined since those rechistories will not be encountered by the
design of ¢* as above. It is easy to see that such an 1-EFCE strategy modification ¢* applied on any
m; implements the trigger policy trig(m;, 7;, (x7 5, a*)) so that their value functions are equal. This
proves the claim.

Step 2. We next show that 1-EFCEGap(7) < max;c,) X;A; - TriggerGap(7) for any correlated
policy 7 € A(II). For any 1-EFCE strategy modification ¢ € ®} and any 7; € II;, by classifying
xy, according to the first & such that ¢ o m;(x;) # m;(x;), we have the decomposition of identity

H
1= Z Z Z 1 {x}, visited, ay., recomd., and ¢(xp, a1.) # apn}

h=1z,€X; 1 an€A;

+ Z Z 1 {zp visited, ay.g recomd., and ¢(zp,a1.57) = am}.

.’EHEXL\H ag€A;

As a consequence, for any ¢ € @%, m; € II;, and m_; € II_;, we have

H
‘/i(qﬁowi)xrrfi _ ‘/i‘n' = (E(¢<>7Ti)><7\'—z — Ew) |:Z Ti,k:|

= (E(pon;)xm_; — [Z Z Z 1 {x}, visited, a1., recomd., and ¢(zn,a1:n) # an} Zrl k]

h=1xzp€X; j ap€A; =

H
+ (]E(¢<>m)><ﬂ.7i — ]Eﬂ—) |: Z Z 1 {JJH visited, ai1.m recomd., and ¢(acH, ale) = CLH} ZT@}g]

THEX; HagEA; k=1

H H
— Z Z (Egomiyxn_; — Ex) [1 {z}, visited, a1., recomd., and ¢(xp,a1.n) # an} Z Ti,k:| ,
k=1

where the last equality used two facts: (i) fixing x1,a1,- - , &y, ax, supposing that ¢(xp, ay.p) =
ay, for all h < H, then the probability of xy is visited and ay. are recommended are the same
under (¢ o ;) X m_; and 7; (i%) the randomness of ZkH:1 ri 1 1s independent of policy when fixing
1,01, -+ ,TH,am. So the second quantity of left hand side of that equality is zero.

For any (zp,an) € Xip x A;, ¢ € @ and m; € I;, we define the trigger policy trig(m;, (¢ ©
m;), (zh, ar)) to be a policy that plays 7; before triggered by (x, a) and plays ¢ o 7, after triggered
by (xp, ap). Supposing that ¢(zp/, a1.p) = ap, VR < h and ¢(xp, a1.) # ap, the probability of
xy, is visited and a1.j, are recommended are the same the same under (¢ ¢ ;) X m_; and trig(m;, (¢ ©
i), (Th,ap)) X m_;, which gives

H
E(gom)xm_; |:1 {zp, visited, a1., recomd., and ¢(xp,a1.n) # an} Z ri,h,:|
h=1
- (18)
= Buig(r;, (pomi), (@h an)) xm_s [1 {xn, visited, a1., recomd., and ¢(xp, a1:n) # an} Z riyh] .
h=1
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Consequently, we have

Errmr (V(d’Oﬂ'm)Xﬂ'—i _ ‘/271')

H
Z Z EWNT‘- (E(dwm)xﬂ.ﬂ — Eﬂ-) |:1 {wh visited, ai:h recomd., and (;S(xh, a1;h) 75 ah} Z Ti’h:|

hE€EX; n ap€A; h=1

—
||=

HMI HM

Z Z 1{p(xn,a1.n) # an}

hEX; p ap€A;

X EWNF(Etrig(mv(d’oﬂ)v(zh,ﬂh))><7T—z‘ - E“)

H

1 {z}, visited and a1., recomd.} Z ri,h:|

h=1
(id) .
21
= Y D H{o(@n,arn) # an} Brer (Etrigm,<¢<>m,<xh,ah,>>mu - Er) [Z “‘vh}
lap€X; p ap€A; h=1
D)
z Z TriggerGap(7) = X;A; - TriggerGap(7).

lap€X; p ap€A;

H
h=
H
Here in (i) we used equation (18); in (iii) we bound the indicator by 1 and use the fact that TriggerGap
is non-negative (by the observation that in the definition (17), we can choose z; to be some leaf
infoset z; i and choose 7;(x; ) = a so that trig(m;, 7;, (z;,a)) = 7;); in (ii) we use the fact that

trig(m;, (¢ o m;), (xn, ap)) and 7 are identical on any infoset x such that x # zp, and = # (xp, ap),
so that

H

(Etrig(m,(wm),(xh,ah))XLi — IEW) [1 {a1.1, are not recommended or z, is not visited} Z rin| =0.
h=1

Finally, take supermum over ¢ € ®! and then take supermum over i € [m], we get

1-EFCEGap(7) = max max E .= (V(mm)wr ‘ VZ”) < max X; A; - TriggerGap(7).
i€[m] ped! i€[m]

This proves the lemma. O

C.2 Proof of Proposition C.2

Proof. We prove the containment result and strict containment result separately as follows.

Proof of K-EFCEGap(7) < (K + 1)-EFCEGap(7) We claim that, for any K > 0 and strategy
modification ¢ € ®X, there exists ¢ € <I>f( *1 such that for any policy 7; € II;, we have that ¢ o ;
and ¢’ o m; gives the same policy. Given this claim, we have

max IEWNWV(d)Mi)XW‘i < max EWN;V(MW’)XL
¢€q>K ¢€q>iK+l

This implies K-EFCEGap(7) < (K + 1)-EFCEGap(7) for all K > 0.

To prove such a claim, we can choose the strategy modification ¢’ € <I>ZK *1 to be the follow-
ing: (1) For any rechistory (z; n,b1.n—1) € Q(-I)’K N Q(-I)’KH and any action ap € A;, we set

&' (@i h, bizn—1,an) = (x4, b1:n—1, an); (2) For any rechistory (x; p, bi.p—1) € Q (D.K+1 \Q(I) o
and any action a, € A;, we set ¢'(x; p,b1:n—1,an) = &(Tin,b1.p,,) Where h** = inf{k <

h : ZZ,/zl 1{ap+ #bpr} = K}; (3) For any rechistory (x; p,b1.0/) € Q,EH)’KH, we set
& (ip,b1:) = &(Tin,b1un,,) where hy, = inf{k < b’ : Z:,,:l 1{apr £ by} = K}. Ttis
easy to see that for any 7; € II;, we have that ¢’ o 7; is the same as ¢ o ;. This proves the claim.
Example of a game and a 7 with K-EFCEGap(7) = 0 but (K + 1)-EFCEGap(7) > 1/3

For any K > 0, we consider a two-player game with H = K + 1 steps and perfect information. The
action spaces are .4; = {1, 2} for the first player and A5 = {1, 2} for the second player in each time
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step. The state space S = UL | S}, can be identified as S, = A" ' x AL~ forh =1,2,..., K +1
and both players’ infosets are the same as the state space X; = Xp = S. If action (ap, by,) is
taken at s, = (a1.5—1,01.h—1) € Sh, then the environment will transit to the next state given by
Sh+1 = (a1.h,b1.1). The reward for the second player is always 0 at every time step. We design the
reward for the first player (denoting as r, in short) as following:

* The reward rp(-,-) = 0 when h < K for every state actions.
* The reward at sx+1 = (a1.x, b1.x) is defined as

Tr41(8K+1, @ 41,b41) = 1{ar # by, ... ax 11 # brt1}

1
_1_5.1{@1:bl,...,aK+1=bK+1}-

Let I, = {(ms,m) : m € I3} where II; is the set of pure policies of the first player. That
means, II, is the set of pure policies such that two players take the same action (either 1 or 2) at
each state. We define 7 as the uniform distribution over such a policy space II,. We claim that
K-EFCEGap(7) = 0 but (K + 1)-EFCEGap(7) > 1/3. Since the reward of the second player
is always 0, we only need to consider the value function gap of the first player. Note that the value
function of the first player for the correlated policy 7 is 1/2.

We first consider the (K + 1)-EFCEGap. If the first player deviates from the recommended action

in every time step (this is an allowed strategy modification in <I>f( *1), she can receive reward 1 so
that her received value is 1. As a consequence, we have

(K 4+ 1)-EFCEGap(7) >1-1/2>1/3.

We then consider the K-EFCEGap. If the first player chooses to deviate at any step, she need to
play a different action from the second player at all time steps to receive an reward 1, otherwise she
will receive reward 0. However, she is only allowed to see the recommendation K times. There is at
least one time step such that she cannot see the recommendation and she need to guess what is the
second player’s action. The probability that her guess coincides with the other player’s action is 1/2
no matter how she guess. So by deviating from the recommended action, the first player can receive a
value at most 1/2. That means, K-EFCEGap(7) < 1/2 — 1/2 = 0. This finishes the proof of the
proposition. O

C.3 Proof of Proposition C.3

(a) We first show that co-EFCEGap(7) < NFCEGap(7). Indeed, for any co-EFCE strategy modifi-
cation ¢ € ®EFCE welet ¢’ € ®NFCE such that forany =z, 5, € X; and m; € TIPY, ¢ (241, ;) 1=
(w4 p,b1:n—1) where by, 1 i= (mi(2i1), .-, Ti(Tip—1)) and 253 < -+ < @551 < 4 are the
unique history of infosets leading to x; ;,. By comparing the execution of ¢ o 7 (cf. Algorithm 1) and
@' o m (cf. Definition C.1), the policy ¢ ¢ 7; exactly implements (i.e. is the same as) ¢’ o ;. This
gives

0o-EFCEGap(7) = max ET{N?‘/’i(d)Qﬂi)Xﬂ'_i < max ET{.NF‘/;(QﬁQﬂ'i)Xﬂ‘_i = NFCEGap(7).
LIS e PED]

We next prove the second claim (converse bound does not hold), by constructing the following
example.

Example 1 (There exists an co-EFCE which is not e-approximate NFCE with ¢ = 1/20): We
consider a two-player game with 2 steps and perfect information. The set of infosets X; ;, for both
players gives Xy 1 = X1 = {so} and X1 o = X520 = {s1,1, 51,2, 82,1, S2.2}. The action spaces are
A1 ={a1,a2} and Ay = {by, b2 }. If action pair (a;, b;) (¢, 7 = 1,2) is chosen at s¢, s; ; would be
reached with probability 1. The reward for the second player is always 0. And we design the reward
for the first player as following:

* The reward at sy depends only on the action of the first player: the reward is 1/2 if a; is chosen
and O if a9 is chosen.

* The rewards at s; ; and s o are always 0. The rewards at s ; and s3 o depends only on the action
of the second player: the rewards are all 1 if b; is chosen and 0 if b2 is chosen.
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Suppose 7 is the uniform distribution of all the deterministic policies that takes (a1, by) or (ag, b2)
at each infosets (there are 2° = 32 such policies). We would verify that 7 is a co-EFCE but not a
1/20-NFCE. Since the reward of the second player is always 0, we only need to consider the first
player.

We first consider NFCE strategy modifications. On one hand, the first player only has motivation to
modify his action at s to a if he observes that the recommendation at s, s2 1 and s2 o are all a;
(which happens iff the recommendation for his opponent are all b;). Otherwise, he does not have
motivation to change his action. If the first player choose such a modification, he will modify only
1/8 of the deterministic policies, and for each deterministic policy 7; that are modified, the reward of
the first player is increased by 1/2. So using this NFCE strategy modification, the first player’s value
function are increased by 1/16, which gives that

NFCEGap(7) > 1/16 > 1/20.

On the other hand, for any co-EFCE strategy modification, taking a2 at so always has utility 1/2
since the actions taken by the second player at A are all uniformly distributed conditional on the
recommendation at so. The utility of taking a; at sg is also 1/2. This means that any co-EFCE
strategy modification of 7 has value function 1/2, so does 7. Consequently, 7 is an exact co-EFCE,
i.e. co-EFCEGap(T) = 0. ¢

(b) Consider K-EFCE with K = 0. From the definition of strategy modifications and the executing
of modified policy (Algorithm 1), for ¢ € ®? and policy m; € IIP"™, ¢ o 7; takes action ¢(z;, ()
at ;. So ¢ is equivalent to a modification ¢’ € ®NFCCE which satisfies ¢ (z;) = ¢(x;, 1) for all
x; € X;. Here, the equivalence means that ¢ o m; = ¢’ o m; for any m; € IIP""°. This gives

0-EFCEGap(7) = max Err VO™ = max B,V ™™ = NFCCEGap(7),
€ 3

NFCCE
pEP?

which is the desired result. O

D Properties of K-EFCE strategy modifications

For any ¢ € ®X, we define its “probabilistic” expression u? as follows: For any a;, € A;,

Mi(ahmi,hybl:hfl;bh) = 1{an = ¢(xin,b1.n—1,bn)} forall (x;pn,bip—1),bn € QEI;)LK x Aj,

Mi(flhm,h, bin) = 1{an = ¢(xs,n, brnr)} forall (z;pn,b1:n) € QEI(I;)L*Kh)

In words, HZ('W@M bi.n—1,bn) € A(A,;) is the pure policy that takes action ¢(x; p, b1.p—1, by,) deter-
ministically, for any Type-I rechistory (z; p, b1.n—1) and recommendation by, € A;; uf(ah|mi, hyb1:0)
is the pure policy that takes action ¢(x; p, b1.) for any Type-II rechistory (x; j,, b1.n/ ). For conve-
nience, we abuse notation slightly to let

Sn(-[win, brn) == g Clin, bra1,0n), Gn(lin, bra) = ph(|zin, buw).
Moreover, we use D(ay.x, b1.x) to denote the Hamming distance of two action sequences a1.x, b1 €

Ak
' k
D(al:ka bl:k) = Z 1 {ah 7£ bh} ’
h=1

and define the following notation as shorthand for the indicator that ay., and by.; differs in
{< K — 1, K} elements:

6K (arp_1,b1n-1) == 1{D(ar.p—1,b1.—1) < K — 1}

6% (a1:n—1,b1:n—1) := 1{D(ar:p—1,b1:n—1) = K}.

Lemma D.1. For any ¢ € ®X and any (potentially mixed) policy ; for the i™ player, ¢ o m; is also
a (potentially mixed) policy for the i player, with sequence-form expression
h h

(pom)n(@n an) = 0= Harn-1,00n-1) [ [ orlarlwr, brw) [T mibrla)

biin k=1 k=1
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h TK
+ Y 6% (arn-1,bun1) [ ranlon, branre) [T mi(nlzn),

bin k=1 k=1
where

h’

= inf {0 <h=1: > Vaw £ bu} > K (19)

hr=1

is the time step of the K -th deviation, and the event {17 < k} can be determined by (a1.x, b1.) for
any k > 1. Furthermore, we have

Z (pom)n(Tn, an) X0 As,

*,h
(Ih,,ah,)GXi,h,X-Ai Wivl:h(:ch7ah)

Proof. Suppose the ancestors of xj, are 1 < 22 < --- < -1 < zp and the actions leading to
Zp are ay, . . .,ap—1. The sequence-form expression (¢ ¢ m;)(xp, ap) is the probability of (¢ ¢ ;)
choose ay, at xy for all k € [h]. We further denote the recommended action by, = 7;(z;,) for all
k € [h].

If [{' € [h—1]:ap #bp}| < K — 1, the conditional probability of (¢ ¢ 7) choosing a; at
xg for all k& € [h] is HZ:l or(ak|xk, b1.k), as the player would always swap the action; If
{h' € [h] : apr # by }| > K, the conditional probability of (¢ o ) choosing ay, at x for all
k € [h]is szl o1 (ak| Tk, bi:karg ). So by the law of total probability, we have

h h
(pom)1n(xh,an) :ngKil(alzh—lablzh—l) H or(ak|zr, bix) H (br|zk)
bi:n k=1 k=1
h h
+> L{{h €[] an #bw}| = K} [T dnlarlon, bran) H (x| )-
bi:n k=1 k=1

Notice that HZ:I ¢r(ak| Tk, bi:kary, ) only depend on by., and Ebwh 2’21 i (bg|Tr) =
[17.5, 7i(bg|zk), so the second summation admits a simpler form:

h h
Yo L{{W € (B an # b}l > K} [ dnlanlen, braar) H (b |xr)

bi:n k=1 k=1
h/
= E H (ax|zk, bikan’) H i (br| k)
(h bl h’) Zl l{ak;ébk} K and bh/;éah/ =1 k=1
= 6% (arn-1,b1n 1 H¢k k[T, biknr Hm bi|zk).-
bi:n

The last equality is because we can append ay/41.5 to by.j to get a new by.;, which doesn’t change
the value of the summation. Then the first part of this lemma is proved. The second part actually is a
direct corollary of Lemma B.4. O

The lemma above has the following corollary.
Corollary D.1. For the i player and any pure policy w € 1, fix any ¢ € ®K and x), € X; ), with
(a1,...,an—_1) being the unique history of actions leading to xy. Then the probability that xy, is
reached by the i player under policy (¢ o 7;) x 7_; is

Pyor;xm_; (zh is reached by the ith player)

h—1 h—1

= Z <K arpo1,b1:n-1) H or(ag|rr, bix) - H i (bl w7, (in)

bi:n—1 k=1 k=1
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h—1

+ Y 5 (arn—1,0n1) [] orarlor, brware) - [T mibkler)ply (2in)-

b1t k=1 k=1

Proof. We have
Poomixm_; (xh is reached by the i*" player)
= > (pom)nln, a)ply (i),

acA;

where pf;;' (x; 1) is defined in equation (12). So applying Lemma D.1 yields the desired result. [

As each step h, one (and only one) z;, € &j , is visited, so the summation of the above reaching
probability over xy, is 1. This directly yields the following corollary.

Corollary D.2. For the i™ player and any policy 7 € 1, fix any ¢ € ®K, we have

Z Z <K Yayp_1,bin1) Hqsk ag |z, b1.x) - Hm (bl )Py (win)

zp€Xip b1in—1

a1h 1,01:h— 1 kakmk, Ik/\TK 7Tz kxkplh Tin) =
+ oK b ¢ |xk, b (br| (zip) = 1.

T €Xip b1in—1

E Regret decomposition for K-EFCE regret

This section presents the properties of K-EFCE regret, which will be useful for the proofs of our
main results. Let {ﬂ't}te[T] be a sequence of policies. Recall the K-EFCE regret for the i player (6):

T 7!'1' 7\'1’ +
RT, = max (Vﬁ” XTei vy ) (20)
7 oe i

Lemma E.1 (Online-to-batch for K-EFCE). Let {n" = (7});cim) }te[] be a sequence of product

policies for all players over T rounds. Then, for the average (correlated) policy ™ = Unif({r'}]_,),
we have

K-EFCEGap(T) = max R /T.
i€[m ’

Proof. This follows directly by the definition of K-EFCEGap:
K-EFCEGap(7T) = max max (Viaﬁof _ Vf)
i€[m] pe@K
= max max E, = [V-(bomx”’i — Vf}

i€[m] pedX ¢

T

¢><>7r xmt ﬂ.t:|

= max max — -V
i€[m] gk T Z { !

=max R; K/T
1€[m]

This proves the lemma. O

For (a:,»ﬁ, bi.h—1,9) € QZ(.I)’K x U? we define the immediate local swap regret as

T h—1
BE e = 20 T m Okl ((waCloin) = @ 0 i (Clain), K a(@in, ) )
t=1 k=1
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and the (overall) local swap regret as

T, swap

(xhyblzh,—l) - mgx R

(Th,b1:n—1),¢" (21)
For (z; p,b1.07,0) € QEH)’K x A;, we define the immediate local external regret as

T b

R?;c;“bl:h/),a: ZHW bk‘mk <<7Tzh |x2h (le hs )> _Lé,h(l‘iﬁva’))’

t=1 k=1
and the (overall) local external regret as

T ext T
Ry by gy = WA R, ) (22)

K-EFCE regret decomposition Our main result in this section is the following regret decomposi-
tion that decomposes the K-EFCE regret R ;- into combinations of local regrets at each rechistory.

Lemma E.2 (Regret decomposition for K-EFCE regret). We have R ;. < S RT, with
Rf = mas 3 GI™0)+ mas S GE (e,

gef ThEX; €
where
h—1
Gz,swap(xh; ¢) = Z §§K—1(a1:h71’b1:h71) H ¢k(ak|xk7b1:k)Rg;:VZiph 1) (23)
biin—1 k=1
and
h—1
Gz,ext(xh; ¢) — Z 5K Cl1 he1,D1:h—1 H Ok Gk|$kab1 k:/\TK) ,(l;;e:,(g] i)
bi:n—1 k=1 (24)
= Z S 1{re =1} H Or(arle, baan) R )
=K by

Above, a1.p,—1 is the unique sequence of actions leadmg to xy, and T (cf- definition in (19)) depends
On G1:p—1, bip—1.

Proof of Lemma E.2. We begin by performing the following performance decomposition

T q5<>7rz-‘><7rii t
Rig = max (Vl -V )
PED; =1
T H H
PERT 11 h=1 h=1
T H rH H
- m?;ﬁ Z Z (E((¢°7‘t)1 W L)X Zh,k] B E((d)Oﬁ:)lih—lﬁﬁ,h:H)Xﬁt—i |:Z Tz’k:|>
PELT Y1 bt Lk=1 k=1
T H rH H
= max} > <E<<¢wz>mz,h+1:,{>mt_i > ’“k] = E(ort)inant ) xrt {Z ri kD
PERT 121 b=t Lk=h k=h
H T rH H
= (;22)1({ Z Z <E((¢°“f)l:h,1"27},,:H)X“ti Z(l - Ti’k):| - E((éoﬂf)lihrﬂ';,h+1:H)Xﬂ- |:Z 1 Tk :| ) ’
i h=1t=1 Lk=h k=h

Here, ((¢ o 7})1n7l ), 41 5) x wb, refers to the policy that the i player uses ¢ o w! for the first
h step, and then uses 7! where as other players always use 7 ;. The last step use the fact that
(pomh)inml 1) X 7oy and (¢ © Tf)1:n—17} 5.5) X 7L, are the same for the first h — 1 steps,
so the expected reward in first & — 1 steps are the same, too. Therefore, define

H
ottt [zu - >} )

k=h

T

H

T

Rj, = max (E«mw:n;hm;h;H)xw”_i [Z(l —Tik)
k=h

K
pe@ T
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we have R ;. < 27 RT.
‘We next show that

T T, swe T,ext T
R; < max E G, 7" (xh; @) + max E G, " (zn; 9) = Ry,
pedk pedk
R E€X; R i wpeX;p

which yields the desired result. Fix any h € [H] and ¢ € ®X according to the execution of modified
policy ¢ ¢ m; as in Algorithm 1, we have

H
E(omt)rnmt oy ) xmt, [Z(l - mc)}

k=h

h—1 h—1
= Z Z Hﬂf(bk|$k) H¢k(ak|l’kyb1:k/\rk) <¢h("$h»bl:h/\TK)»LE,h(-’rhy')>7
Rt

Tp €X; p b1:p—1 k=1

counterfactual loss
probability of taking ‘right” actions leading to =y,

where we assume 7 = inf{h/ < h —1: ZZ;,:l 1{ap+ # bpr} > K}. Similarly,

H
E((gomt)rin_1mt o )xmt s {Z(l - ”vk)]

k=h

h—1 h—1
= Z Z Hﬂf(bk\azk) H¢k(ak|wk7b1:kMK) <7Tf('\ﬂ€h),L§,h($ha')>'
k=1

TR €Xy p b1p—1 k=1

counterfactual loss
probability of taking ‘right” actions leading to =,

Substituting these into RY, we have

T H H
ST
R} = max <E<<¢ow5>1:h_1wf,m>xwt_i [2(1 - “’Jf)] = E((gont)inmt ppri) ¥t [2(1 - “’»k)D

i t=1 k=h k=h
qfrelg}( Z Z Z <H m; (bk|xk) H or(ak |z, by k/\TK)<7TZ( |zn) — ¢h(‘|$h,b1:hATK)aint,h(xhv‘)>>
iot=lap€X; p brip—1 \k=1

= max Z Z (H ¢k(ak|xk,b1;kArK)Z 1:[ (br|zr) <7l'zt(|$h) - ¢h('|$habl:hmx)aLﬁ,h(wm')>> .
k=1 Pt

cokK
Pe; Tp€Xi p b1:n—1

For fixed ¢, z,, based on whether D(ay.5,—1, b1.,—1) < K — 1 or not, we have

T h-—1
Rh = max Z Z (H ¢k ak|$k,bl kATE Z H 7TZ bk|xk <7r7,( |~Th) ¢h('|~rh7bl:h/\‘rK)vLE,h(th')>>

K
¢€lIh€X1nb1h1 k=1 t=1 k=1

= max (Ih -+ Hh),
pedkt

where
Z Z §SK- 1alh 1,01:0—1 Hébk ag|zk, bi:k)
Tp€X p b1ip—1
T h-1
X Z H wf(bk|:rk)<7rf(|a:h) — ¢h(-|$€h7bl:h/\rK)7L§,h(ﬂUh7 )>7
t=1 k=1
and

Iy = Z Z 1{D(a1:n—1,b1:n—1 >K}H¢>k K|k, Drikary )

TR €Xip b1:in—1
T h—1

X Z H Wf(bk‘mk)<7rf(|xh) — On([@h, biinary ), Lf,h(l‘hv )>

t=1 k=1
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For 1}, since all non-zero terms in the summation satisfy D(a1.p,—1,01.n-1) < K — 1, at step h, the
number of deviations is less than K, i.e. T > h. Moreover, max over ¢ € <I>f( can be separated into
max over all ¢ (+|zp, b1:pary )> SO We have

h—1
max I, = ma>1<< Z Z 6=K— 1 (a1:h—1,b1:h—1) H Or(ak|Tr, brikary )
PeD; PEPT Ly €Xin bron 1 k=1
T h—1
x> 11 wf(bklwk)<wf(-\xh) = &n (|2, brinnric ), Lin(@h, ')>

t=1 k=1

h—1
Z Z 6K 1 (@1:h—1,b1:n-1) H or(ak|Tr, bi:k)
k=1

®f TR EX; p b1:p—1

T h—1
xmax Y- [ i (belan) (i Clan) = (9 o m)Cfan), Lin(@n, )
t=1 k=1
h—1
Cmax >0 3 65 (e b)) [T dulanler b RGN,
PP € X brin1 k=1

= max Z GV (z4,).

Above, (i) follows by the deﬁnltlon of the local swap regret in (21). For I1;, since all non-zero terms
in the summation satisfy D(ay.p—1,b1.,—1) > K, all such (a1.p—1, b1.,—1) have already deviated K
times at some step b’ € [K,h — 1], i.e. 7x = h’. In this case, the recommended action at x, (i.e.
by, ~ mt(-|xp)) cannot be observed. Thus for IIj,, we have

h—1

max Hh:max Z Z 1{D(a1:h—1,b1:n-1 >K}H¢k K|k, brieary )

¢eq>7{< Pe® ’ TRhEX; p b1n—1
T h-1
x 37 TT w rlan) (x Clen) = dnClan, buanaric), Lon(an, ) )
t=1 k=1
= max >N Z 1{rx =h'} H bk (ak|Tr, bi:kans)
PEP; TR €Xi p biih—1 b=
T h-1
x> 1] wf(bk\mk)<wf(~|xh) — o (-|n, brnan), L g (@n, 4)>
t=1 k=1
= max Z Z Z 1{rx =h"} H br(ak|Tr, bi:kans)
PER; zp€Xip h'=Kbi:p1
T h-1
X Z H ﬂ-f(bk‘mk)<ﬂ-f(|‘rh) - ¢h(‘|‘rha bl:hAh')7 Lﬁ,h(mhd )>
t=1 k=1
D 35S o =) [ onnlo o)

i xR €Xp K=K by 1

X Z H Wf(bk|$k)<7ff(\$h) — on(wn, brnan), L (zn, )>

t=1 k=1
< max Z Z Z 1{rx =h'"} H Sr(ak|Tr, brkans)
PED; ThEX; p h'=K by s
X mgxz H ﬂ'f(bk‘xk)(lé’h(xh,F;(ivh)) — L;h(a:h, a))
t=1 k=1
@ max Z > 1{rx =1} H i (arlr, bran )R, (b L )sTh

K
PEPT =K by,
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Here, (i) uses the fact that for fixed xp,, b’ and by.,, with 7r = I/, there exists only one by 1., 1 satis-
fying7ge = hand 3, " ,11,+1 7t (b)) = 1; (ii) follows by definition of the local external

regret in (22). Furthermo're, for fixed xp,, we can expand by.ps to by, := (b1:pr, Gps g1, 0, Ah—1)
such that D(a1.p,—1,b1.n—1) = K. Then we can rewrite

5 5 =) T vt RS, .

Kb1 %

h—1
Z Z 1{rx =h',D(ar:n-1,b1:n-1) K}H¢k(ak|$k7b1:k/\h’)R(z2X;1 W Th

=K bi.p—
Text _ ~T,ext
Z " (arn—1,brn—1 H b (ar|Th, briknr ) Ry, i dwn = G, (zn).
bip—1
Consequently,

max II; < max Z G ().

cdkK e
¢ K ¢ i thX'L h

Finally, combining the above bounds for max e g x I, and max e qx 11, gives the desired result:

EZ = max (Ih + IIh < max Z GT swap + max Z GT ext RT

€K €K €dK
oEP; oeP; ThEX; K oe®; ThEX; h

F Proofs for Section 4

This section is devoted to proving Theorem 3.

The proof follows by bounding the K-EFCE regret (6):
T t t
RZTK — max (‘/;bowi xml, ‘/i.,r )
’ sePf 1

for all players ¢ € [m], and then converting to a bound on K-EFCEGap(7) by the online-to-batch
conversion (Lemma E.1).

By the regret decomposition for RZK (Lemma E.2), we have RZK < ZhH:1 R%, where

T T, 8
h ‘= max g G, (w0 +max g G, (xn; ).

pedK
" xp€Xin e TR E€X n

The following two lemmas bound two terms
T Text(
E max E G, (zp; ¢) and E max E G, (zn; 9).
7 :ChEXL h 7 T}LGXL h

Their proofs are presented in Section F.1 & F.2 respectively.

Lemma F.1 (Bound on summation of G5 " (

as
H KANH 2

for all xy, € X; ), (same with (8)). Then we have

x;,p,) with full feedback). If we choose learning rates

H
H
Tswap < 4 AKANH .
max E G, (zn; 9) < \jH (K/\H)XZAZ Tlog A;.

hoy o€ ThEX;
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Lemma F.2 (Bound on summation of G} " (; ;,) with full feedback). If we choose learning rates

as
H KAh 2
Ne), = KAH XA log A;/(H?T)

for all xj, € X; ), (same with (8)). Then we have

H
Tcxt H KANH
fgla)f(< E G, (xn; 9) < O(\j H4< AH)XiAi ANTlog A; |-

L xR €XGp

Combining Lemma F.1 & F.2, we obtain regret bound

1K<ZRh<Z<maX Z G o (wns ¢ —|—max Z G (an; )

xR €X; p e TpE€EXy p

In particular, as long as
T>0| ! H max X; AKAH log Ai/s2
- KANH m)] ’

we have by the online-to-batch lemma (Lemma E.1) that the average policy 7 = Unif({n*}]_,)
satisfies

(25)

K-EFCEGap(T) = %T]‘K < max O\J H4 <Kf\IH> (m[aX]X AK/\H> log A; /T <e. (26)
1e|lm elm

This proves Theorem 3. O

We remark that the above proof does not depend on the particular choice of 7t ;, and thus the
regret bound (25) also holds even if we control the i player only, and 7! ; are arbitrary (potentially
adversarial depending on all information before iteration ¢ starts). This directly gives the following
corollary.

—1

Corollary F.1 (K-EFCE regret bound for K-EFR against adversarial opponents). For any 0 <
K < oo, ¢ € (0, H], suppose the i™ player runs Algorithm 2 together against arbitrary (potentially

adversarial) opponents {Wii }3:1’ where REGALG is instantiated as Algorithm 4 with learning rates
specified in (8). Then the i'" player achieves K-EFCE regret bound:

T
T ¢<>7rf><7rii_ xt 4 H CAKAH ‘
Rix = max 1 (‘G Vi )§O<\/H (KAH>XZAZ. TlogA,).
Sz

F.1 Proof of Lemma F.1

Proof. Recall that G} ®*P(z,; ¢) is defined as

h—1
G (n;0) = Y 05K Navn-1,bra-1) [ ¢k(ak|$k,b1:k)R(7;iv,VbTh_l),
biin—1 k=1

where for each h € [H] and (zp,b1.,-1) € QZ(.I)’K,

T h-—1

Rz;:v,v;fh_l) maxz Hﬂ-z by |zx) (<7Tzh |Zin) @Oﬂf,h(‘|xi,h)7L:,h(mi,ha')>)'
t=1 k=1

For x;, € X, ), we first apply regret minimization lemma (Lemma A.2) on R, to give an upper
bound on R(j;’i“fﬁ _,)- Recall in Algorithm 2 with REGALG instantiated as Algorithm 4, each R,
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. . . h—1 0),K
observes time selection functions Sgl:hil = [1;=; 7t (b|zk) for (zp,b1n—1) € QE K and loss
vector Lﬁ’ w(zn, ). Suppose R, uses learning rate n,, = n for all ;, € Xj. Then, by the regret

bound with respect to a time selection function index and strategy modification pair (Lemma A.2),
we have

T h—t
maxZHm bi|zk) (<7th |Zin) Woﬂf,h('ui,h)»Lz,h(xi,m')>)
t=1 k=1
i, (A; + H)log A;
< nZHwf(bk|xk)|\L2,h(xh,->||w<wf(-|xh),L2,h(xh,->>+%
t=1 k=1
T h—1
A;+ H)log A;
< o123 T sty o)+ Ut s
t=1 k=1

Above, we used () || LL ;, (2h, ) |loo < Hpyy' (), and (i) (|B?| + [B2])|T] < A since the

number of rechistories is no more than A Then we can get

max Z Gquap (zn; P)

ped K

L zp€Xh
= max Z Z SSE M a1, brn s H¢k ak|T, bi:x)
oed; Tp€X p b1ip—1
T h—1
x maxZHm (b |z) ( zh($h77rf(mh))_Lz,h(l'hﬂooﬂ'f(mh)))
t=1 k=1
h—1 T h—
< nH® max Z Z =" Narn—1,brn—1) H¢k(ak|wk7blzk)ZH (bx|zx) Plh "(zn)
PEL; TREX; h b1ip—1 k=1 t=1 k=1
h—1
A; + H)log A;
+¢ max Z Z 6K Y a1:h717b1:h71)H¢k(ak|$k,bhk)-
n SEP R nb k=1
Th ,h O1:h—1 =
Letting

‘= max Z Z §<K- 1 (a1:h—1,b1:h—1 H¢k (ar|zk, bi:k);

coK
PEL] Tp€Xy p b1in—1

T h—
I1;, := max Z Z §<K- 1 (a1:h—1,b1:h—1 H¢k (ak|Tk, bi:x) ZH (br|xk) plh (xn).

ca K
PEL; Tp €Xy p b1in—1

For fixed ¢ € <I>iK and zj, € & j,, by counting the number of b1.,—; such that D(a1.p—1,b1:n-1) <
K — 1, we have
h—1

Z 5§K71(a1:h—1,b1:h—1)H or(ar|zr, brk)
biin—1 k=1
<K-1 h—1 (K—1)A(h—1)
S Z é (al:hflybl:hfl) S (K _ 1) A (h _ 1) A, .
bi:p—1
Consequently,
h—1 KAh—1
T < X <(K A (- 1)) A @7)

Note that by Corollary D.2, for fixed ¢,

Z Z S5 arn—1, brn—1 Hd)k ak|Tr, bi:x) Hm bi|zk) plh(ﬂﬁzh) 1.

Tp €Xy p b1:n—1

Consequently, we have

T h-1
=K1 b b (b T.
ma)}({ (ar1:h—1,b1:n—1) ¢k (ar|zK, bi:k) 7y (b |z) Plh(mzh)
¢€1T}€th1h1 t=1 k=1
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This yields that
I, <T. (28)

Taking summation over h € [H], we have

H H
max > GEP(anig) <D —A + H)log Aiy + Hnlly,)

hoy 9€T TR EX; h=1

A; + H)log A; h—1 KAR—1
< H3yT (—XZ- AN
=0 +Z n 'h<<K—1>A<h—1>> l

h=1

A; + H)log A; H-1 KAH-1
< H3yT (—XZ- AfN
= ok n KAH 1]

< miyr 4 T8 i, (KfH) AP
n

As we chose ) = \/(KAH)X AKN Jog A; /(H2T) per (8), we have

swa’ H
Zmax Z GZ‘ P(zp; ) < JH‘*(KAH)XiAfAHTlogAi.

h=1 %% TREX; p

F.2 Proof of Lemma F.2

Proof. Recall that G} " (z,; ¢) is defined as

T,ext BT, ext
Gy (wn;0) =Y " (arn1,brn H Pr(an|Th, brknr ) Rigy, -
bi:n—1
Since (xp,b1,7 ) € Qz(-H)’K, we have
T TK
R?;j’}ﬁl i) maXZ H 71'2 (b |zr) (<7Tz n(lzin), Li h(l’i,m )> - LE,h(xi,ha a)).
t=1 k=1

For xj, € X, we can apply regret minimization lemma (Lemma A.2) on R, give an upper bound on
RT:swap - Recall in Algorithm 2 with REGALG instantiated as Algorithm 4, each regret minimizer

(Th,b1:n—1
. . . hr
R, observes time selection functions Sﬁl:hm = [, 25 mf (bi|zy) for (zp,brn,, ) € QK and

losses Lf , (xp,-). Suppose all R, use the same learning rate 7, by the bound on regret with respect
to a time selection function index and strategy modification pair (Lemma A.2), we have

T TK

max 3 T wt(elon) ((whn Clain), Lin(@in, ) = Lin(@ins a)
t=1 k=1
T T s e e
< 0 S T m Glo) I n s llew ( Clan), L (on, ) + BB IETDTD
t=1 k=1 K
T T
< HZZHW’ (br|zk) plh( xn) + 72H1;)}g14i.
t=1 k=1

t
Here, we use (i) ||Ll n(@hs )loo < Hp;’hi (xp), and (i) (|B®|+ |B¢|)|¥e| < AZ—HJrl since the number
of rechistories is no more than A . Then we can get

max G} (zn; ¢)
pcdk
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= max Z Z % (@rn—1,br:n 1 H¢k ak|Th, bikary )

K
oER] Tp€Xi p b1:ip—1

T T
X m&XZ H ﬂ'f(bk|ﬁvk) ( <W§,h('|1‘i,h)7 LE,h(ZEi,h, )> - Lf,h(«’ri,h,a))
¢ = k=1
T T
< 77H max Z Z oK (a1:h—1,b1:h—1 H¢k |k, Diikary ) 'ZHTQ bk|$k)p1h($h)
oe®; Tp€Xy p b1:h—1 t=1 k=1
2H log A;
+Tg¢ X Z Z 65 (@1:n—1,b1:n— 1)H¢k k| Th, b1iknry )-
co

P xp€X; pbip—a

Similar to the proof of Lemma F.1, letting

I, := max Z Z 6" (ar.n—1,b1:n—1 H¢k ak|Tk, bipant);

coK
PEL; ThE€X; h b1ip—1

Iy := max Z Z 5" (a1:n—1,b1:n—1 H¢k ak|Tr, bi:kans) ZHW (bk |k Plh(l’h)

oK
¢€7'I}€'thb1h1 t=1

For fixed ¢ € (I>lK and zj, € &; p,, by counting the number of by.,—1 such that D(a1.p—1,b1.-1) = K,
we have

h—1
Z 6% (arn-1,b1:n-1 Hqﬁk ak|Tr, b1pan) < Z 8% (a1n_1,b1n_1) < <K/\h)AK/\(h 1

biih_1 b1:h—1
Consequently,
h—1\ ka(h-1)
I, < X; A, . 2
ek <K A h) i 29

Note that for fixed ¢, by Corollary D.2,

Z Z 6" (@1:n—1,b1:n—1 H¢k (ak|zr, b1:kans) Hm (b |zx) P1h "(zin) < 1.

TpE€EX; p b1:n—1

Consequently, we have

T
ma)}c{ Z Z (5 alh 1,b1h 1 H¢k ak|:ck,blmh/ ZHﬂ-Z bk\wk plh (mlh)ST.
PeR; Tp €Xi p b1:n—1 t=1 k=1
This yields that
I, <T. (30)

Taking summation over h € [H], we have

H
2H log A;
maxGTeXt ) <§ (71L+H II)

— ocef (s n ! i

2H log A; h—1Y\ kam
< H*yT —X; A;
s+ 3 ’h<mh>

< gogp 4 2Hlos A (;AH> AR
n

< H’nT + 72H1f7g‘4i X; (KiIH> AN

As we choose 17 = \/(KAH)AKAHX log A;/(H2T) per (8), we have

Z max G, (zp; ¢) < 3\j H* (Kf\[H>XiAZKAHT10gAi-

¢e<1>K
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Algorithm 6 Sample-based loss estimator for Type-I rechistories (i" player’s version)

Input: Policy ¢, 7' ;. Balanced exploration policies {7 } (-
1: for l<h< H,WC[h—1]with|[W|=(K—-1)A(h—1)do

. . t,(h,W) *,h t t
2 Set policy 7; A (ﬂ—z‘,k )keWu{h} ) (Wi,k)ke[h_l]\W * T, (h+1):H"
3:  Play 7r;-5 (W) wt ; for one episode, observe trajectory
t,(h,W) t,(h,W)  t,(h,W) t,(h,W) _t,(h,W)  t,(h,W)
(%,1 y g1 i IEEEEE2W » Ay g »Ti H )-

4: for all (SEi’h, bl;hfl) S QEI)’K do

5: Find (.’L’i,lyaq) << (xiﬁh_l,ah_l) =< Zj,h.

6:  SetW «fill({k € [h — 1] : by, # ar}, (K — 1) A (h —1)).
7 Construct loss estimator for all @ € A;

t,(h,W t,(h,W
~ 1 {(‘T?’;Z )7047',7;; )) = (Ii,haa’)} il t,(h W)
Lz, pbin_r)(@) ) : Z (1 —Tin ) (32)
T 1:h (Tin,a) h''=h

Output: Loss estimators {Zt ) . } .
p (I'L,hvblzhfl>() (Ii,hvblzh—l)eﬂgl)’K

G Proofs for Section 5

This section is devoted to proving Theorem 5. The additional notation presented at the beginning of
Section F is also used in this section.

G.1 Sample-based loss estimator for Type-I rechistories

We first present the sample-based loss estimator for Type-I rechistories in Algorithm 6, complementary
to the Type-II case presented in the main text (Algorithm 3). Here, Line 6 uses the “fill operator”
defined as follows: For any index set I C Zx>; and n’ > |I|, fill(Z,n’) is defined as the unique
superset of I with size n’ and the smallest possible additional elements, i.e.

f|”([,n/) ':IU{I(CI)"’I(C’H,’—lll)}7 (31)

where I := Z>, \ I with sorted elements If;) < If,) < ---. For example, fill({1,3,8},5) =
{1,3,8f U{2,4} = {1,2,3,4,8}.

G.2 Algorithm description of Balanced K -EFR

Algorithm 7 presents the detailed description of Balanced K-EFR.

For each infoset z;, € A;, the algorithm computes time selection functions
{Sf)}begm,x(m_ UK (4 )y based on the corresponding M (defined in Line 5 & 6), as

well as the following additional weighting function (below W := {k € [h — 1] : ay, # bi}, and
fill(-, -) is defined in (31))

Whypy_, (XTin) = H ﬂ':’kh(aﬂxk), forall by.,_1 € QEI)’K(xi,h), (33)

wy,,, (Tip) = 11 7 (arlzy), forall by € QUK (). (34)
keWuU{h'+1,--- ,h}

The resulting choice of time selection functions, S t— Méwé(mi, 1), is different from Algorithm 2,
and is needed for this sampled case.

Self-play protocol Here we explain the protocol of how we let all players play Algorithm 7 for T'
rounds via self-play in Theorem 5. Within each round, each player first determines her own policy 7!
by Line 3-8. Then, we let all players compute their sample-based loss estimators in a round-robin
fashion: The first player obtains her loss estimators first (Line 9) by playing the sampling policies
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within Algorithm 6 & 3, in which case all other players keep playing 7 ;. Then the same procedure
goes on for players 2, ..., m. Note that overall, each round plays m times the number of episodes
required for each player (specified by Algorithm 6 & 3). The following Lemma gives a bound on this
number of episodes.

Lemma G.1 (Number of episodes played by sampling algorithms) One call of Algorithm 6 and

Algorithm 3 plays (combinedly) ( HE1 ) +KANH-1< 3H( ) episodes.

KANH+1 KANH

Proof. The proof follows by counting the number of W’s and W’s in the sampling algorithms, i.e.
the cardinalities of
Wip = {W:W C [h—1] with [W| = (K - 1) A (h—1)}
for 1 < h < H, which comes from Line 1 in Algorithm 6, and
Wap o ={W :K <h' <h,W C [h'] with |W| = K and ending in 1’}

for K < h < H, which comes from line 1 in Algorithm 3.

For the first kind of sets , we have

o= e ) ()

—K/\H—l-i-zH:( h=1 )
S \KAH -1

H
=KANH-1 .
+(K/\H)

For the second kind of sets , we have

-1
Z [Wa b n| = Z <K B 1)

K<h'<h<H K<h'<h<H
B
o K
=K h'= h=K

- <Kﬁ1) - (KA?{H)'

Taking summation gives that the number of episodes equals

H
H+1
Z Wi | + Z [Wa b n| = < ) +KANH-1.

h=1 K<h'<h<H KNH+1

Finally, we show the above quantity can be upper bounded by 3H ( KAH H) For K > H, we have

KANH = Handtheabovequantltyls1+H—1—H<3H—3H( For K < H, we have
K AN H = K, and thus

H+1 H+1 H\ H+1
( + )+KAH—1:< +>+K—1:( ) ik

K/\H)

KANH+1 K+1 K) K+1
H H
<2H- H < 3H-
<ot () o ()
where the last inequality follows from the fact that (g) > 1. This is the desired bound. O
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Algorithm 7 Balanced K-EFR (i player’s version)
Input: Weights {ws,., , (zi,n)} ) and {wp, ,, (xi’h)}zi,mbl;h/Eﬂf;m’K(zi,h) defined

0).K
zi,hvbl:h—legg) (zi,n

in (33), (34), learning rates {1, , }x, , e x,. loss upper bound L > 0.

1: Initialize regret minimizers {Rwi,h }wz,hEXi with REGALG, learning rate 7, , , and loss upper bound L.
2: foriterationt =1,...,7 do
3 forh=1,...,Hdo
4: for x; », € & do
t . t t o h—1 _t
5 Sty =My, oy, (z4,n) where My, = [Thz: ik (bi|w)-
}/
6 Sgl:h/ = lel:h,/ Why, s (i,n) where Mél:h’ | Wﬁ,k(bk‘mk)'
t t
7 RIMAOBSERVE_TIMESELECTION({Sbl:hfl}blzhileﬂgm‘xm’h) U{Se,.,, }blzh/eﬂﬁn)’K<zi,h))'
8: Set policy 7f (+|i,n) < R, ,, -RECOMMEND().
9:  Obtaining sample-based loss estimators

It - } and {Zt b }
{ (@4, hb1:h—1) brno 1€ (@, ) [CTNSUINND) by €9 K (2, 1)

from Algorithm 3 & 6 respectively.
10:  forall z;, € &) do
. Tt Tt
11: Rwi’h.OBSERVE_LOSS({L(M)}I7b11h_1)}bl:hileﬂgl),x(zi,m U {L(wi)h’bl:h,)}bI:}L,GQEII),K(IiJl)).

Output: Policies {n} };e(r).

G.3 Proof of Theorem 5

The proof follows a similar structure as the proof of Theorem 3 (cf. Section F), with different bounds
on the regret terms and bounds on additional concentration terms.

Proof. The proof follows by bounding the K-EFCE regret (6):

T
q507rtv><7ri
RZTK = max (VZ *
I

i ‘/iTrt>

for all players ¢ € [m], and then converting to a bound on K-EFCEGap(7) by the online-to-batch
conversion (Lemma E.1).

By the regret decomposition for R} ;- (Lemma E.2), we have R} ; < S RT, where

R := max Z G;{’Swap(xh?@ + max Z Gzﬁm(gﬂh;(ﬁ)'

PK !
S z Ih,EXiyh, v :EhEXi,h
‘We bound the terms
H H
T,swap T,ext
max G, (xn;¢) and max Gy (wn 9)
h:1¢E tnp€Xn h:1¢€ tnp€Xn

when we play Balanced K-EFR (Algorithm 7) in the following two lemmas. Their proofs are
presented in Section G.4 & G.5 respectively.

Lemma G.2 (Bound on summation of G, "

rates as
H KANH+1 3
Nep = KAH XiAi L/(H T)

x; ) with bandit feedback). If we choose learning

Sor all zj, € X; (same with (10)). With probability at least 1 — p/2, we have

H
H H
T ,swap . < 3 K/\H+1 . K/\H+1 )
max E G, (zh;0) <O H <K/\H> A; XiTe +O<H <K/\H> A; Xw)

K
h=19€%% 4 ex,
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Lo H AKNH+L H(KfH)AfMHHXiL
KANH ¢ ’ T ’

where v = log(8X,;A;/p) is a log factor.

Lemma G.3 (Bound on summation of G-t (g, 1) with bandit feedback). If we choose learning
h ;

rates as
H KANH+1 3
Mo =\ (o p g ) AF N ()

Sor all xj, € X; (same with (10)). With probability at least 1 — p/2, we have
- H H
T,ext B < 3 KAH+L x KAH+1 x
hzlfelg?mgx_}Gh (zn;9) <O H <K/\H>Al XiT +O(H<K/\H>A’ XL)

+0O H O\ yxneny B Gels) AS X
KANH)| ‘ T ’

where . = log(8X,A;/p) is a log factor.

By Lemma G.2, G.3, and a union bound for all i € [m], we get

Rix <> Ry
h=1
H
T,swap . T,ext .
<D max 3 GIT(@aid) + max 3o G (@nig)
h=1 i xR €Xy p i TR €Xy p

H H
< 3 KAH+1 y, KAH+1 x
_OQH <K/\H>A’ XTLJrH(KAH)AZ L

H KANH+1
+< A >Af</\H+1XiL\/H(K/\H)Ai - XiL).

KNH T
with probability at least 1 — p for all i € [m] simultaneously, where ¢ = log(8 3" c(,,,; X;A4;/p)-

Further using the “trivial” bound RZK < HT (by the fact that V;™ € [0, H] for any joint policy )

gives
r @ . H KAH+1
R, x < HT -min{ 1,0 H KAH XiA; )T
H
< 3 KAHAL .
(’)(JH (K/\H)A’ XTL>7

where (i) follows by noticing that:

o« if T < H(, M) X AFMHY RT . < HT = HT min {1,0(\/H(KfH)XiA{<AH“L/T) };

o« if 7> H( M) X AFNHY R < HT - O(\/H(KfjH)XiAfAH“L/T).

Therefore, as long as
r>o(m| max X; AFMHTL) /e
- KANH i€[m] v ’
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we have by the online-to-batch lemma (Lemma E.1) that the average policy 7 = Unif({n?}]_,)
satisfies

K-EFCEGap(7) = w < max (9$ 3 (KJZH) (m[ax]X AK/\H+1)L/T <e
1elm 1€lm

This proves the first part of Theorem 5.

Finally, we count how many episodes are played at each iteration. By our self-play protocol
(cf. Section G.2) and Lemma G.1, each iteration involves m rounds of sampling (one for each

player), where each round plays at most 3H ( KA H) episodes. Therefore, each iteration plays at most
3mH ( KA H) episodes, and so the total number of episodes played by Algorithm 7 is

smi( 2 Yor—omut( 2 i max X; AKNIFLY, /g2
KANH KNH i€[m] '

This is the desired result. O

G.4 Proof of Lemma G.2

Proof. Recall that Gfswap(xh; @) is defined as (eq. (21))

h—1
T, . ._ <K-— AT
G (@nd) == Y 65K a1, binon) [ onlanlzr, bun) RGE
b1:p—1 k=1
I),K
For each h € [H] and (zp,,b1.,—1) € Q; 7, we have
R T h-1
RS _maXZHﬂ'z br|zk) (<7th |wi,n) 30<>Ff,h('|$i,h),L§,h($i,h,')>)
t=1 k=1
T h-—1 _
<3 T wioulen) (o) 7o), El )
t=1 k=1

T h—1
+ Z H Wf(bk|wk)<ﬁf,h('|l’i,h), Lﬁ,h(m,m )= foh,bl:h_l)>
t=1 k=1

T h-—1

—l—maxZHm bk|xk)<¢<>7r1h( |3,n), L<Zh brn_1) — Lf,h(wi,h,~)>.
t=1 k=1

Substituting this into max e gx Y G5 (11,; ¢) yields that

ThE€Xi n

T K- AT
max Z G (xn; 9) = maxz Z =" (a1:p—1,b1:0-1 H¢k ak|ze, brk) RYE,

re f(zhexl h oeelt ZTh biip—1
< REGRETh’ L BIASIT,‘ZW‘"‘P’ + BIAST swap,
where

TS LS Wap <K-— 1
REGRET;L = ma)I(( Z Z 5 a1 ch— 1,b1 ch—1 H ¢k ak|xk,b1 k)
PeL; Tp€Xi p b1:in—1
T h—1 _
X maXZ H 7 (bk|ax) <7Tz w(lzin) — <P<>7Tf,h('|37i,h)aszh,blzh,1>>,

t=1 k=1

BIAS{’swap = ma>}<( Z Z 5<K 1 a1 h— 1,b1 ch—1 H ¢k ak|xk,b1 k)
PEL; T €Xip b1:in—1

T h—1 B
x - TT i belon) (7En Clain), L (@ins ) = Ly )

t=1 k=1
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h—1
BIASghswap ‘= max Z Z =F N arn—1, brn—1) H¢k(ak|$k7bl:k)7
k=1

K
PeL; Tp€Xi p b1:p—1

T h-—1

xmax Y- [ wt(belaw) (i 0t Claen), Loy 1) = Lin(@in, ).

t=1 k=1

——~— Tsw
The bounds for Z,Ijzl REGRET, Z he1 BIAST SWAP and SO he1 BIAST SV are given in
the following three lemmas (proofs deferred to Appendlx G. 4 1,G.4.2, and G.4. 3) respectively.

—~—— T,swa
Lemma G.4 (Bound on REGRET), p). If we choose learning rates as

B H AKAHA+1 A 3
- \/ (1 ) KA+ 0, ) T)

for all xp, € X; (same with (10)). Then with probability at least 1 — p/4, we have

3 REGRET, " < | @3 T )axsmeiyp
; " = KAH) ikt

H KAH . H(KAH)AK/\H+1XL
+O<<KAH>A" X”\/ T

where . = log(8X,;A;/p) is a log factor.

Lemma G.5 (Bound on BIAST ). With probability at least 1 — &, we have

A H H
BIASTsver < 0| | H3 AKNE X, Ty + H ARNH x
; Lho = (K/\H) ‘ Lt (K/\H—l) : Ll

where . = log(8X,A;/p) is a log factor.

Lemma G.6 (Bound on BIAST wWAPY, With probability at least 1 — &, we have

H
H H
T ,swap < 3 K/\H+1 X KAH+1 X
h§:1j BIASI™™ < O @ H (K . H) Al X, Tv+ H (K . H) Al XZL) :

where . = log(8X;A;/p) is a log factor.

Combining Lemma G.4, G.5, and G.6, we have with probability at least 1 — p/2 that

H

Z x Y, G (ang) <3

h= & thth

—~— T,swap s
REGRET,  + Z BIAS] P + Z BIAS, 7P

Af AH+1XiTL>

|/\
AA HM:

\j K/\H
( )AK/\HX \/H<K/\H)AKAH+1X L)
T

KAH+1
+O|H K/\H)A XL)

/N
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T,swap

G.4.1 Proof of Lemma G.4: Bound on REGRET),

—~— T,swap
Proof. Recall that REGRET), is defined as

h—1
max Z Z gkt al:h—lybl:h—l)H¢k(ak|$k7bl:k)
k=1

pedK
i xR €X p b1p—1

T h-1

X maXZHm (br|zk) <7T1 |xn) — cp<>7T§(-|mh),zth’blzh_l)>.

t=1 k=1

We first apply regret minimization lemma (Lemma A.3) on R, to give an upper bound of

T h-1
max Y [T (bifa) < tolan) — gpow;(.m),Lgxh,blw».

t=1 k=1

Recall that in Algorithm 7, each regret minimizer R, is associated with weights M; =
h—1 *,h

[Tizi 7 (bely) and we,, , = erﬁu(W,(h—1)/\(K—1))u{h} ik (ag|zk) for any bip—1 €
QO (), where W = {ke[h—1]:by #ar}. Let W = fill(W,(h — 1) A (K — 1)),
Nz, = 7 be the learning rate of R,, and L = H. Since regret minimizers R, observe

<, !
{L(mi*h’blih/)(.)}(mi,h,,b1:}l/)€Q<II)’K and {L(L hob1in— 1)( )}(17 hyb1:n—1)EQ; (I) K from Algonthm 3&6
as its loss vector at round ¢, we have

M[fl:h,Iwbl:h—lLE(L‘i,}“bl:hfl)(')
1 {(xﬁ,(h,W) ay(h,W)) = (zip, .)} H
HkEWU{}L} e (axlzi k) Miep-mw m Osleir) 5,

H _
=TI moedwsn)t {0, apf™) = @in )} 30 (1= ri™)

kEW h''=h
€[0,H] =10,L].

t,(h,W
l_T’L}(L” ))

Similarly, we have szl_,,wbm_lZ(acq,,h,bljh/)(') € [0,L]. Moreover, let F;_; be the o-algebra

containing all the information until 7¢ is sampled, by the sampling algorithm, we have that the loss
estimators are unbiased:

E[Egl’i,h,bhh,—ﬂ(')|]:t*1} = E[szlﬁh,,bhh/)(')l}—tfl} = L]}&L("Ei,h, ),

for all (z; p,b1:n—1) € QEI)’K and all (z; p,b1.p) € QEH)’K. So the assumptions in Lemma A.3 are
satisfied. By Lemma A.3, with probability at least 1 — p/8, for all z}, € X;, we have

T h-—1
maxZHm (br|zk) <7r1 Jan) — go<>7rf(~|xh),L?mh’bl:hil>>,
t=1 k=1
924; log(8X: A: /p ~
< BAMROXAD) S ay T o), Ty ()
NWboy.p 1 =1
2A;1log(8X;A;
_ i g( i’hl/p) +H77 H Wf,k(bku‘k)
nerWu{h} T (ak|zk) ke[h—1]
Z 1{%7 _ t(hW)7 ZULW)}(H*h‘Fl Zh’hf}(f;w>)
X < |CCk >
[rewon ”i,’k (ak|e) [Tyeppopw ik (Oklzk)
t,(h,W) _t,(h,W
2A; log(8X, A; /p) +H2n§:<wt( - erwn;k(bkm)l{(wh, )= (@) g >)}>
= i ULk ), .
nHkEWu{h} W:,’kh(akmk) t=1 erWu{h} 7::(%‘%)
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Above, we used (i) our choices of M and wy,,, ,; (i) (|B*| 4 |B°|)|¥*| < ARFA < x AN

T,swap
and (4i7) taking union bound over all infosets. Plugging this into REGRET),, , we have

—~—— T,swap
REGRET,
= max Z Z 5= 1 (@1:n—1,b1:n—1 H¢k ak| Tk, b1:k)
¢€q’f(z ex b
h i,h P1:h—1
T h-1 B
X maxz H L (b |zw) <7T1( |zn) — 4,0<>7rf(-|mh),Lfmh’bl:h’il».
t=1 k=1
24, log(8X; A; o b1,
< PALBBXAID) e § ST T gy, by ) Ll P D)
N PERS o €Xin brin1 [iewoiny 0 (aklzr)
k(ak |z, b1k
+H n Hla,)}({ Z Z 5<K ! al:hflabl:hf H ¢) ( | L: )
PER; Tp €Xi p b1:p—1 erWu{h} zk(a’k‘mk)
X Z H 7t (br|zx) <7Fz Jak), 1{ an, ) = (b ™ ) t(h,W))}>.
t=1 kew
::KZh‘blzh—l
Letting

h—1
i 141q — 7b :
I, = 2A;1og(8X;A;/p) ;nax Z Z §SK- Yarn_1,bin1) [1.2; ¢x(ak|or, biy)
€d

h )
" xR €X p b1 erWu{h} ﬂ-;,k (ak|zk)

<K-— 1 Hh71 b (ak|zr, bik) = ATh:b1n—1
11, == H’n max Z Z =" "N avn—1, brin—1) =E=L - AL

h t
s ThEX; p b1n 1 erWu{h} 7ri*,k (ak|zr) =

Using Lemma B.4, we have

S S 655 (o bupy) ALt (k] i)

*,h
Tp€X; p b1in—1 erWu{h} Tk (ak|zk)

— *,h
Z Z 55 Narn—1, b 1)1_11C 1 #r(acler, b k)er[h A T (ar|z)

T E€Xj p b1in—1 er[h] ik (ak|mk)

(b|zk) - ) (an]zn)

Z Z Dby 5K (@rn—1,brn—1) [I3Z1 on(ar|zr, bix) e L

h
TR €Xp an er[h] W:,k (ak|zr)

_1
(i9) > AL ST T it (anle)

WClh—1],|W|=(h—1)A(K—1) @p,an \kE[h]

h—1
X Z H or(ak|zy, bi:k) H W;’kh(bkh?k) m‘-’,’?ﬁf(bklwk)ﬂff

" (an|zn)
b1.p_1:fil({k€[h—1):ap#£by }, KAH—1)=W k=1 k€[h—1]\W kew

(#4) —
< 3 AWIX, 4,

WcCh—1],|W|=(K—-1)A(h—1)

h—1 R
= Xin ((K 1)/\(h1)>Af< "

Here, (i) uses that 77::( /|zp,) is uniform distribution on A; and that for k € [h — 1] \ W, we have
a = by; (ii) follows from grouping zj, and by.;, by |W|, where Wur];lf is the uniform distribution on

Aj; (iii) uses Lemma B.4 and the fact that, for each fixed W (by relaxing the summation over by.;,_;
to the full sum Zbl:h—l) the numerator is no more than the sequence-form of the following policy:
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* Sample recommended action b, from w:lf(|xk) if step k € W. Otherwise, sample recom-

mended action by, from 73t (-|2,).

* “True” actions are sampled from ¢y, (ax|zk, b1.i) for k € [h — 1]. At step h, take action ay,.

Consequently,

h—1
by. _
Z Z 55K (a1, b 1) [T:Z: dx(ar|rr, bix) <Xi,h< h—1 )AZK/\h' (35)

b —
TR EX; h b1ih_1 erWu{h} 77 (ak|7r) KAh—1

So we have
I <

2A;1og(8X;A;/p) _ h—1 ARNR
. (K -1 A(h-1))7

bih—

For 11}, observe that the random variables A ! satisfy the following:

A Th;b1:h—1 J(h,W (h,W
* A =licw ™ (bk|93k)<7"§('|zk)a 1 {(Ih, )= (@™ e W))} > € [0,1];

* Let F;_1 be the o-algebra containing all information until 7* is sampled, then

-11 wf,k<bk|xk>xa[2 mi (a1 { @ a) = (@, ap ") } ]fH]

kEW acA;
h _ t _ t T T
=TT wtaorlan) Do mi(alan)p "o remom Lorennm X = g W0 — g, b (W) = q)
keW a€A;
t .
= H i o (br| ) Z mi (alzk) H Wi*,’;il(akkrk)' H 71 (arlar) 'W;’f(ahh)Piﬁz(ﬂﬂh)
keW a€A; keW ke[h—1]\W
= 11 #istrlze)- TI  #=0d (arla) - plh “(zn),
keh—1] keWu{h}

where the last equation is because [[,cy 7}, (brlzs) - er[h—l]\Wﬂf,k(aklmk) =
er [h—1] z,k(bk|xk)’

« The conditional variance E[(A}"""*"")2|F,_,] can be bounded as

]E|:(A$h7blh 1 ‘J_—t 1:| Thvblh 7, 1]
: _
xt,
= I #iwCelzn) ] W?,’;c (ak|zk)pyy (xn),
ke[h—1] keEWU{h}
~ZThyb1:h—

where we used A, € [0, 1] almost surely.

Therefore, we can apply Freedman’s inequality (Lemma A.1) and union bound to get that for
any fixed A € (0, 1], with probability at least 1 — p/8, the following holds simultaneously for all
(hy @i p, bip—1):

. . . Clog(X: A;
ZA hobLih—1 < A+1 Z H 7Tzk bk‘l‘k H Wi}ch(a’k|xk)p1;}L (ZEh) + M’

s

t=1 ke[h—1] keWU{h}

where C' > 0 is some absolute constant. Plugging this bound into II;, yields that,

h—1
bq.
T, < H?j max Z Z 55K (a1, brnt) [1iZ; or(ar|zr, bik)

N
A v [iewoiny 7 (ak|zy)
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mt; C'log(X;A;
003 T whatbien AL mitosin Pl (an) + CESID)
keWu{h}

t=1 ke[h—1]
Note that by Corollary D.2, for fixed ¢ and any ¢ € ®X,
Z Z SSF N arn-1, b1 H¢k ak|Tk, bi:k) H i (br|x) - plh H(win) < 1.
Tp€Xy p b1:pn—1 kelh—1]

so we have

h—1 T +
max Z Z 6~K "M arn_1,brn 1) H or(ak|Tr, b1k Z H i (b|mr) -y (i) < T
k=1

cdK
PeL; TR €X; p b1in—1 t=1 ke[h—1]

Moreover, by the previous bound (35), for any ¢ € <I>ZK ,

h—1
b1. _
Z Z 55K (a1, brn) I1.=1 ox(ak|zs, 1k)) <Xi,h< h—1 )Al{(/\h'

*,h
Tp €Xy p b1:h—1 erWu{h} ik (ak|xk

Using these two inequalities, we can get that

CHnlog(XiAi/p) ( h-1 ) Knh,

M, < Hn(A+ 1T + 3

Taking summation over h € [H], we have

H o T swa H
> REGRET, =) (In+1I,)
h=1 h=1
24;log(8X,; A /p) |, CH’nlog(X;Ai/p) < h—1 KAh
§H3n,\+1T+< + Xin Aj
A+1) n ) ,Z::l (K—1)A(h—1)

< HPn(A+1)T + (

2A;log(8X;A;/p) N CH?nlog(X;Ai/p) o H-1 \  xnnm
n A \KAH-1 ’

for all A € (0,1]. Choosing A = 1, we have,

H —~~— T,swa . - A —
> REGRET), P <ol + (M + C'Hznlog(XiAi/p))Xi (Kf\[Hl 1) AKNHE
" _
h=1

Then, choosing n = \/(KAH)AKAHHX ¢/(H3T) and using (K/\H ) < (KAH) we have

3 REGRET, " <o |ms( M Yaxnusixp
; o= KAH| it

H KAH 5 H( M)A X5
+O<<K/\H>AZ X’L\/ T

with probability at least 1 — p/8, where « = log(8X,;A;/p) is a log factor. O

G.4.2 Proof of Lemma G.5: Bound on BIAS{’Zwap

Proof. We can rewrite BIASIT AP as

T, swe
BIASTveP
h—1
—_1 Pr(ak|zi, bk
= ma)}(( E E 5" "arn—1,b1n-1) Loy 04l J’,L’ 1:4)
PEPT 2y €Xin brn erWu{h} Tk (ak|zr)
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T h—1
X Z ﬂ:;f(akﬂk) H Wf(bk|wk)<ﬂf,h('|$i,h), Lin(@in, ) — szh,,bl:h_l)> .
t=1 geWu{n} k=1

~xp b1
::Ath 1:h—1

Here, for fixed x;, € X; and by.,_1,let W = {k € [h — 1] : by # ax} and W = fill(W, (h — 1) A
(K —1)). Observe that the random variables Am’“bl "~* qatisfy the following:

« By the definition of L in Algorithm 6, we can rewrite AF" brn=t g
h—1
th’bmfl = H W;’kh(aﬂwk) H Wf(bk|xk)<ﬂ'f,h("mi,h)aLé,h(xi,hy )>
keWu{h} k=1
J— J— H J—
— T whatbelwn) (mhnClasn), 1 {@n, ) = @, a7 - (H— ht1-3 rf;i’f”))}
keWw h'=h

NTn,bin—
o Ryt < (it Clean), L (i, o)) < H:

. E[ﬁf’“bl:h’l |Fi—1] = 0, where F;_; is the o-algebra containing all information until 7* is
sampled. This also can be seen from the unbiasedness of L;

« The conditional variance E[(A7**"*~*)2| F,_,] can be bounded as

E {(z:h,bl:h,—1)2‘ft71:|
H N\ 2 _ _ 2
< E[(H— hel- ) rf’fff’W)) (H o elan) (o Clarn), 1 (@n, ) = (@™, ap ")} >) \fH]

keWw

|A~

#7 T whutbulee) - E[(whaClain). 1 { (@) = @50, a7 ) 7]

keWw

= H2 H 7Tz X bk‘mk [ ﬂ—z a\mk {(J?h,a) — (w’;;(h,W)’a;;(h,W))} ’]:tfl
keWw a€A;

= H? H i (bk|zi) - Z i (alzk) IP’(( DOkewo iy (TLke o) XL (12’<h’w> = xh,aZ’(h’W) =a)

kew acA;
‘irt .
= H* [T #ls(belar) - Z {(alzn) mif(anler) - T ws(arlzn) - 703 (alwn)pyy (zn)
keWw EA; keWw ke[h—1]\W
(i) .
< H [ mx (belz)p T (w6) T (anzh).
kelh—1] keWU{h}

Here, (i) uses < Zth(|l'zh) 1{(5%7') =

erWﬂf,k(bkm@) er[h IZ\wT (ak‘xk) = er[hq] 7Tf,k(bkkﬂk)-

(x t’(h’W),aZ’(h’W))}> € [0,1]; (ii) is because

Therefore, we can apply Freedman’s inequality and union bound to get that for any fixed A € (0,1/H],
with probability at least 1 — p/8, the following holds simultaneously for all (h, x; ,, b1:h—1):

T

o Clog(XA;
2 :Athvbl.h—l S)\HZ | | 7T,’ ak|xk E | | 7Tzk bk‘l'k pl 0 (337, h)+ Og( /p),
t=1

el A
kEWU{h} t=1 ke[h—1]
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T,swap
S

where C' > 0 is some absolute constant. Plugging this bound into BIAS; ™" yields that, for all

h € [H],
h—1
b
BIASITZwap< max Z Z 55K (g, ) [L.Z; é(ak|zi, brk)
oed; Ty EX p b1ih— erWu{h} zk(ak|l’k)
r t
—q ClO XzAz
| T witanlee) Y T wtalaleopis () + SESA)
keWu{h} t=1 ke[h—1]
< A\H? max Z Z =M arn—1,brn—1 Hd)k ak| T, b1:k) Z H 75 1 (be |k plh(x”L)
PEP; Tp €Xy p b1:h—1 t=1 ke[h—1]
h—1
1A _ b1.
+w max 3 Z 555 (vt b ) | ¢k<ak*|:ik7 %)
PEL; TR EX;  b1ih— erWu{h} Tk (ak|zk)

By Corollary D.2, for fixed ¢ and any d) € oK,

Z Z <K Marn_1,brn H or(ak|zr, brk) H ik (br|)py ) (wan) < 1

Tp€Xy p b1in—1 kelh—1]
So we have
<K-1 2p
AH? max Z Z 0="""(a1:h—1,b1:h—1 H or(ar|Tr, bi:x) Z H Tk bk\mk)plh (xin) < AH'T
peeft ThEXy h b1ih—1 t=1kelh—1]

Moreover, by the inequality (35) in the proof of Lemma G.4, we have for any ¢ € ®X,

h—1
SK-1 [Ti— Px(ar|zr, bi:k) h=1 Knh
Z Z 6= al:hfly bl:h*l) *,h ) = X’L’h (K — 1) A (h — 1) AZ .

ThEX; h b1:h—1 erWu{h} ik (ak|xk

T sw'1p

Plugging these bounds into BIAS yields that, with probability at least 1 — p/8, for all h € [H],

swa, ClOg(XZAZ/p) h—1 KAh
BIASTSaP < \H2T 4 2S00 ) AT
Sin s + A MVE-1)A(=1)]"

Taking summation over h € [H|, we have
H

C'log(XiAi/p) 1~ h—1 KAk
BIASTsvar < A3 4 Z 2 /BN AR
; Sin T SAHTT+ ) ; M Ex—1am-1))"

< 3 — =X, .
<AHT + \ X KAH-1 A;

C'log(X;Ai/p) H KAH
< AHPT =P Al
=X + A KANH)™ 7

(. H AH g A
forall A € (0,1/H]. Choose A = min {1 \/CXl(KAH)Ag;S? e(XiA:/p) }, we obtain the bound

H?

L H H
A QT swap < F[B QK/\H X. T H qK/\H X,
thl BIAS, T = O (K/\H> b (K/\H) Y

where ¢ = log(8X;A;/p) is a log factor. O

G.4.3 Proof of Lemma G.6: Bound on BIAS£’,jwap

Proof. Forfixed zj, and by.j,_1,let W = {k € [h — 1] : by # ay} and W = fill(W, (K —1)A(h—1))
We can rewrite BIAST’Swap as

BIAS;’Zwap— max Z Z 5<K 1 a1h 1,b1h 1 H¢k ak|xk,b1 k)

pcdK
© xR €Xy p b1ih—
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T h-—1

XmaXZHm bk|33k)<§0<>771h J@in)s Ly oy ) — Lz,h(mi,h7')>

t=1 k=1

coK
PeL; Tp €Xi p b1:p—1

h—1
= max Z Z §=K- Y(a1h—1,b1:n—1) H or(ak|xr, bi:k)
k=1

T h—1

X maxz H 7T7, bkll‘k Zﬂ-z h bh‘l‘h (L(zh,bl h— 1)( (bh)) - L;,h(l‘i,}mw(bh)))

t=1 k=1

<ma)I<( Z Z =" Marn—1,brn—1 H¢k ag|Ty, bix)
PeL; Tp€Xj biip—1

T h-—1 _
X maxz H 71'1 bk|xk Z Wf’h(bh\mh)qﬁﬁl(ah\mh,bljh)(Lé,;hnbhh_l)(ah) — L;h(l’i’mah))

Ph 121 ket bh,an

h
@ max Z Z Z5<K Y al:h—l,blzh—l)H(ﬁk(ak‘xlmbl:k)

K
PEE; i, hyah b1:p—1 bp k=1

X Z H 7 (br|x) (Ezzh,bl:h,l)(ah) - LE,h(l‘i,h,ah))

t=1 k=1

h
E by
= max E E 5" Narn—1,b1:n-1) Loy Orlar], bux)

T
¢E¢LK T, h>%h bi:n—1 bn HkEWU{h} ﬂ-:k (ak|xk)
Z H ; (br|zk) (L(zh,bl won(an) — Lf,h(%,hﬂh)) H T (ak o) -
t=1 k=1 kEWU{h}

:zgf}wblzhf‘lh
Here, (i) comes from the fact that the inner max over ¢}, and the outer max over ¢1.,,—1 are separable
and thus can be merged into a single max over ¢1..

Ti,hsb1:0,0n

Observe that the random variables A satisfy the following:

bi:n,an

* By the definition of Lin Algorithm 6, we can rewrite ﬁf’ as

Azhsbl:hvah
t

— — H J—
= H 71'1 k bk|1'k mh,ah t,(h,W)jaZ,(h,W))} . (H —h+1- Z T;:;L}/L’W)>

keWu{h} h/=h

i,k

— H 71'“1€ (bk|zr) H w (ak|xk) zh(xi7h7ah).
kewWu

. Etzh,gbl:h,»ah, € [-H, H].

. E[ﬁf’“bl:h’ah |Fi—1] = 0, where F;_; is the o-algebra containing all information until 7* is
sampled.

* The conditional variance E[(A7*"»**")2| F, _|] can be bounded as

I
2

H N\ 2 _ _
<E (H—h+1—Zr§;;7’W>> [T wlwelon)t{(n an) = @™ apy ")} |Fis

h/=h keWu{h}

*,h o ﬂ_@ . ﬂ_t . A7 A7
< H* H r} g (b Pk Jke@ o) (ke @) _l((xz(hw)’a;[(hw)) = (fEh7CLh))

keWu{h}

t .
=H? [ miaCeles) [] 7ifCarlen) - [T win(arlew) - 700 (anlen)pyy, (@in)

keWuU{h} keWw ke[h—1]\W
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i) b, .
Q2 [T wleulenpry @n) ] wf(aelze).

)

kelh] keWu{h}

Here, (i) is because [ [, e,y ™ (Oxl2r) - Tle -y mhn(anlzn) = Tlie ) i 5 (Okl2)-

Therefore, we can apply Freedman’s inequality and union bound to get that for any fixed A € (0,1/H],
with probability at least 1 — p/8, the following holds simultaneously for all (h, z; p, b1, an):

T

~ . Clog(X;A;
ZAt’“b”’” h < NH? H T 7’ (ak|zk) Z H wlk (bk|zk) plh (zin) + 7og( /p)7

- A
t=1 keWu{h} t=1 kelh

where C' > 0 is some absolute constant. Plugging this bound into BIAST SWAP yields that, for all
h € [H] and ¢ € ®X,

BIASTswap < <K-— 1 HZ:1 ¢k(ak\$k,blzk)
2 max ZZ(S (a1:h—1,b1:n—1)

h
veelt Thsap bi:p HkEWU{h} ﬂ—:’:k (ak|zr)
A2 ] =i (aklax) Z 1T =&l Pin (xzh)‘i‘M
keWu{n} t=1 k€[h]
h T
< max AH? DS 65 a1, bun1) Hék(aﬂl‘mbl ik Z H . (bk k) plh "(zin)
€
* ZTp,ap bi.p k=1 t=1 ke[h

b
+ max C'log(X;Ai/p) Z 26<K Yarno1,bin1) Hk 1¢k(ak|xk, Lik)

¢E(I)K A zp,ap bi.p HkEWU{h} 7r7, k (ak‘xk)

By Corollary D.2, for fixed ¢ and any ¢ € ®X,

h—1 .

ST S Navno,bino) [ drlarler, b)) [ whw(Orlen)pys (@in) < 1.

Tp€Xy p b1in—1 k=1 ke[h—1]

so we have
h T ,
>3 55  Navna, bina) [ onlarlan, b)) D T minbrlzr)pys (@in)
Th,ap by.p k=1 t=1 ke[h)
h—1 T ,

= Z Z §sK- 1 (a1:h—1,b1:h—1) H ¢>k(ak|xk7b1;k)z H ﬂ'f,k(bk|xk)p7;;f (zin) <T.

Th biip—1 k=1 t=1 ke[h—1]

Moreover, by the inequality (35) in the proof of Lemma G.4, we have

h
b1.
Z 25<K 1 (ar:h-1,b1n-1) szl ¢k(ak|xk7 1'k)

T
zp,ap by.p erWU{h} W:,k (ak|zk)
0] K- [10=) bk (ar]zr, br)
=Ai Z Z =" (a1:n-1,b1:n-1) -
TR €X; p biip—1 erWu{h} Tk (ak|zr)

h—1 KAh+1
<X; Al .
=ik (K/\H 1) i

Above, (i) sums over a;, and by,. Plugging these bounds into BIAST SV2P yields that, with probability
atleast 1 — p/8, for all h € [H],

BIAST < a4 CBALD) (KZ; 3 1>AZW+3

Taking summation over h € [H], we have

) (K —1)A(h—1)

ki H
SoBIasTyr < g7 4 T8 AVP) ( Oat )AfAhH
h=1 h=1
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< NHPT + Clog(X;Aq/p) X/_( H-1 >AK/\H+1

A KNH-1
- Clog(X;A;:/p) H KAH+1
< \H? ot P ;
< NHPT + N Xil o)A ,
7 H KA |00 (X, A, )
forall A € (0,1/H]. Choose A = min {iﬁ \/CXZ(KAH)Ai T A D) } we obtain the bound

T
H H
T,swap 3 KANHA1 y KAHA+1 y-
thl BIAS; ™" <0 \j " (K A H> A A H(K A H) & de )

where ¢ = log(8X;A;/p) is a log factor. O

G.5 Proof of Lemma G.3

Proof. Throughout the proof, for xp, and by.,—1, let W = {k € [h — 1] : by # ax} and A/ is the
maximal element in W, so we have A’ = Tx. Recall that Gf’e’“(xh; @) (eq. (22)) is defined as

h-1
T ,ext Text
Gy (wn0) =Y % (arn1,brn H Pr (k| T, brknrc )R, by )

bip—1

For each h € [H] and (zp, b1.p) € QEH)’K, we have

T h'
Ry =maxy ) [T xi(oslee) ( (minClain), L n(@in, )Y — Lip (@i, a))

t=1 k=1

T n
< mgxz H Wf(bkm’k)(<7Ff,h('|$i,h)7 Lzzh,blrh,)> - L@h,bl:h/)(a))

t=1 k=1

T K
+ 3 T mtelon) (minClain), Lin@ins ) = Liayoy )

t=1 k=1
T h'

+ mgxz H 7y (bx|xk) (Zfzh,bl:h,)(a) — Ly (win, a)).

t=1 k=1

Substituting this into max ¢ g 3 G} (zh; ¢) yields that

ThEX; h

Text Text
max g G, (zh; @ max E E 8" (arn—1,b1:n—1 H(bk ak|Tr, b1karg )R @nobrer g )

K
PEP; ThEX; R

< REGRETh + BIAS] ™ + BIAS] ™",

where
—~~—— T.ext
REGRET,, Z: Z Z oK a1 h—1,b1:h—1 H Dk ak‘$k,b1 k/\TK)
e T €Xi p b1:p—1
T Tk _ _
xcmaox > T T b el ((rhnClean), oy i o)) = Loy 100 (@)
t=1 k=1
BIASIT";Xt :: )I(( Z Z oK (a1:h—1,b1:h—1) H¢k (ar|Tr, biikary)
®; Tp €Xi p b1:n—1
T T N
X Z H Wf(bk|$k)<ﬂf,h(‘|$i,h)7 L (Tin,-) — sz,“bl;TK>>,
t=1 k=1

BIASQT”;"t = max Z Z 6" (@1:n—1,b1:n1 H¢k (ar|zr, b1:eary )

pcdK
t xR €Xy p b1ip—
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T TK

x max 3 T mt(bule) (Efzh,bw>(a) — Lt (@i, a)).

t=1 k=1

H o Thext H T,ext H T,ext . .
The bounds for >, REGRET, , >, _, BIAS 3™, and >7,_, BIAS, ;™ are given in the
following three Lemmas (proofs deferred to Appendix G.5.1, G.5.2, and G.5.3) respectively.

—~—— Tiext
Lemma G.7 (Bound on REGRET);, ). Ifwe choose learning rates as

H
e ﬂfc A H) X A og(8X:Ai /p) [ (HPT)

Sorall zj, € X; (same with (10)). Then with probability at least 1 — p/4, we have

XH:RE/G\/RETT'M< | N axameiy g,
ho = KAH)| :

h=1
) H O gnmen g [ H ) AT X
KANH)| ¢ T ’

where . = log(8X;A;/p) is a log factor.

Lemma G.8 (Bound on BIAST;;Xt) With probability at least 1 — p/8, we have

H
H H
Text 3 KAH+1 ; KAH+1 .
h§:1BIASLh O(JH i) A XiTut H| o)A Xt |,

where . = log(8X;A;/p) is a log factor.

Lemma G.9 (Bound on BIASZT,th) With probability at least 1 — p/8, we have

H H
Text< 3 KAH X, KAH x.
E BIAS O(JH( A )AZ XTL+H< A )Al XL>7

where | = log(SXiAi/p) is a log factor.

Combining Lemma G.7, G.8, and G.9, we have with probability at least 1 — p/2 that

H

Z mae S G (an; ) < ZRE/G\R/ETh 4 ZBIAST oxt | ZBIAST ext

of TREX; 1 h=1 h=1 h=1

< JH?’ (Ki[H) AFMFLXGT
o) H AKAHAL 5 H (i) A X
KAnH|™ ' T
H KAH+1 5
o, ).

—~—— Text
G.5.1 Proof of Lemma G.7: Bound on REGRET),

—~—— Tiext
Proof. Recall that REGRET),, is defined as

max E E 6" (@1.n—1,b1:n—1 H¢k (ar|zr, b1:kary )
ca!
PEL; Tp€X p bip—
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T T
xmax Y [T et ula) (et Clarin). Lo or. ) = Llantn ) (@)

t=1 k=1

We first apply regret minimization lemma (Lemma A.3) on R, to give an upper bound of

T TK
HlélX Z H Tr?t(bk|xk) (<7Tf7h('|$i7h), LExhvb1:TK)> B Li(txhvblrﬂ'K)(a)> ’

t=1 k=1

For R.,, Algorithm 7 gives that M = Hz;lﬂf(bkmk) and wy =

I 1:h/
kewoint1,..n) Tik " (ax|zx) for any by € Q( DK (), where W = {k € [h— 1] : b # az.}.

Letting W (h) = W U {h’ 4+ 1,..., h}, n be the learning rate of R, and L = H. The assumptions

in Lemma A.3 are verified in Section G.4.1. So by Lemma A.3, with probability at least 1 — p/8, we
have for all z;, € cX;,

T T
max Y [ i (bl (i Clari): Lo ) = Lot (@)

t=1 k=1

2log(8X;A;/p
< ZosORAD) ZMbl (). Ly 0)
1:h/
2log(8X: A; i
= £( Z*,hZ/p) +H7IH7T§(bk|97k)
nerW(h) Tk (ak|zk) k=1
h,h' \ W h,h' W ,(h,hR\W
T, 1 (n,) = (@M ap sl (1)
X Z <7Ti,h('|xi,h): . Z >
t=1 erW(h) 772',19 (ak“mk) er[h’]\W Wi,k(bk|$k)
,(h '\ W J(h,h" W
210g(8X; A; /p) e ZT: o) [Teew ik (brlzx)1 {(a:h,a) = (a3 ) b ))}
; : )3 (1m0 * )
n erW(h) 7Ti,7kh(ak‘mk) t=1 erW(h) ﬂi,)ch(a’k|xk)

Here, we use () our choices of Mt candwy, ;5 (1) (|B%]+|B°))|¥¢] < AP < X, A; and (iid)
—~—— T.ext
taking union bound over all infosets. Plugging this into REGRET,,  , we have

—~— T,ext
REGRET,

= max Z Z 8" (a1:n—1,b1:n—1 H¢k ak|Tk, bipan)
bed

L wp€Xy b biip—1

xS T 0ekoe) (o Bl ) = Fho (@)

t=1 k=1

< 21og(8X;A:/p)

h—1
_ a|x ,b: ,
Z Z 6" (a1:n—1,b1:n— 1)H’€—1¢’f( k|Tk, b1:kAns)

*,h
n ¢€q>lK THEX; h b1in—1 erW(h) ik (ak|zk)
h—1
— Qg |T 7b: ’
FHmax Y 5K(a1:h_l’b1:h_1)nk,1 Px ( kl*;: LkAR)
PER; TREX; h blih—1 erW(h) Tk (ak|zk)
T
xS TT mhalbelan) (mtnClain) 1 {@n, ) = @5 ®F W ap® M W)L
t=1keW
::Zizh’blzh,’)
Letting
2log(8X; A; h:1 kla xkhb : Y
I, _ 2log(8XiAi/p) max Z Z 5% (arin—1, brn1 )Hk71¢ ( k|*’h lkAh);
n PED; TREX; p biipn—1 erW(h) Tk (ak|zr)

K [o=1 on(ar|ze, brean) ZT Al@nbr)

IIh = 11 7 max E E ) (alzh_l,bl:h_l) = - N 1 01:h! )
K *,h( | )

PER b €Xin brin1 Hiewm mix (arlze) =
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Using Lemma B.4, we have

Z Z 5K(a1~h—1 bl-h—l)nz;i Or(ax|s; buknn)

*,h
TREX; b b1ip_1 erW(h) ik (ak|zr)

h— *,h
Z Z 5% (a b )Hk:i b (ar|Tr, bruan) [nein—ipw ik (aklzk)
1:h—1, b1:h—1

*,h
TR €Xi,h b1:h—1 er[h] Tik (ak|a)
h— h *h
Z Z Dby 6% (atn—1,brn—1) TTi—1 Gr(an|zr, bikan) ietn—1pw 77 (Oklzr) - 7)) (an|zn)
iy
TR €Xyp an er[h] ﬂ—;kb(akwk‘)
-1
w2y AT T el
WCh-TLIWI=K  an.an \kein]
h—1
X Z H oOr(arlr, brean’) H T, 7’ (bk|zs) H 7w (bg 2w ) 7] ”:(ahhﬁh)
brip_1:{k€[h—1]:ap#by }=W k=1 ke[h—1\W kew
(ii1)
< S AYIX LA
WClh—1],|W|=K
h—1
:Xi7h< K )Af“’“.

Here, (i) uses that 7, h "(-J&p,) is uniform distribution on A; and that for k € [h — 1]\ W, we have

ay = by; (i) follows from grouping x, and by.j, by |W|, where wu“‘f is the uniform distribution on

A;; (iii) uses Lemma B.4 and the fact that for any fixed W, (by relaxmg the summation over by.;,_1
to the full sum Zbl:’kl) the numerator is no more than the sequence-form of the following policy:

* Sample recommended action by from w:kh( ‘|xy) if step k € W. Otherwise, sample recom-

mended action by, from 7Tumf( |zk).

* “True” actions are sampled from ¢y, (ag|zk, b1.x) for k € [h — 1]. At step h, “True” action is
sampled from ay,.

Consequently,

h—1
) by. , _
Z Z 6K(111:h—17b1:h—1)1_[k:1 Or(ak|r, b1:sans) < Xin (hKl)Af(/\H+l' (36)

D
©h€Xip brin1 Ieewm ™0 (axlzk)

So we have
1 2K | (1) s
n

bl:h/)

To give an upper bound of I, obvserve that the random variables Z,Ex'“ satisfy the following:

A (@nsbyipr) J(h,h W J(h,h W
e B = e w el (7l Cloin), 1 @ny) = @0,y @)L e
[0,1].

e Let F;_1 be the o-algebra containing all information until 7 is sampled, then

e

— H 7t g (be|zi)E [Zm nlalzin)l {(mh7 a) = (0 W)_ gt ,W))} ft1:|

keWw

y t ! ’
= T et Skl D0 et ) g 40
kew
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t .
=[] & xrla) Zm wlalzan) | [T mid(anlze) - [] wiwanloe) - 70 (alon)pry, ()

kEW KEW (h) ke[ \W
=
= H 7i o (br| k) H T (anlze)pyy (2n),
= kEW (h)

where the last equation is because [[,cy 7} (bklzk) - er[h,]\wﬂf,k(aﬂxk) =
er[h/]7r o (brlzr);

* The conditional variance E[(ngh unt)

2 () ] <sfar

H ik (b k) H 7T,’ (ak|zk) P1h "(zn).

ke[h’] keW (h)

)?|Fi—1] can be bounded as

Fi]

Here, the inequality comes from that A, (mnbinr) o [0,1].

Therefore, we can apply Freedman’s inequality and union bound to get that for any fixed A € (0, 1],
with probability at least 1 — p/8, the following holds simultaneously for all (h, x; p, b1:n—1):

T

e ot C'log(X;A;
ZAE hibyp ) )\_,_1 Z H 71-2 & bk'xk H 7T, ak|$k pl h (-Th) + M7
— t=1 ke[n’] keWw (h)

where C' > 0 is some absolute constant. Plugging this bound into II;, yields that,

T10Z1 dn(an|@r, brgan)
Hh<HTlma§( Z Z 6% (ar:n—1, brip—1) E=L R
PED; Tp€Xi p b1:in—1 erW(h) ﬂ—iv’k (ak|$k)

wt Clog(X;A;
X /\+1Z H i,k (bk|r) H T (aklzr)pry (2n) + M

A
t=1 ke[h’] keW (h)

Note that for fixed ¢ and any ¢ € ®X, by Corollary D.2,

Z Z 6" (arn—1,b1n—1 H¢k ak|Tr, bikan) H 1 (br| Tk Plh(l?zh) 1.

Tp€X; p b1p—1 ke[n’]
So we have
ma};{ Z Z oF (a1:h—1,b1:n—1) H(,bk (ak|Tr, b1.kans) Z H ﬁzk bk|1'k)p1h (zin) <T.
oe; TREX; b bl:n—1 t=1ke[nr’]

Moreover, by the previous bound (36), for any ¢ € @f" s

bikan -
Z Z 5K alh 17b1h 1)1_‘['1C 1¢k(ak|$k7 1k/\h) <Xi,h<hK1>AzK/\H+1‘

ThE€EXj h b1:h—1 erW(h) ik (ak|wk)

Using these two inequalities, we can get that

2 . . —

Taking summation over h € [H|, we have

H —~ T,ext H
> REGRET, = (Ir +1Iy)
h=1 h=1
A 2
<Hp(\+ )T + <2l°g(8f’A’/p) + ¢ ”log (XiAi/p) ) ZXM< >A5“H“
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< H? DT + X; Al
< H(+1) ( n + A KAH)

c 210%(84@‘12/17) 011217 log(‘<1411/p) H KANH+1
< 3 _|_ i .

for all A € (0,1]. Choosing A = 1, we have,

il —~~— T,ext - A —
> REGRET, < 2H’nT + (M +CH?p log(XiAi/p)) X ( [Ij . ;) AL
h=1

Then, choosing n = \/(KAH) AKNMITLX J(H3T), we have

H —~— T,ext H
T, <.,|H3 ABNHFL
> REGRET, < \j <K o)A .

h=1
KAH
+O H AKNHL X, H(K/\H)A M X 7
KANH T

where ¢ = log(8X,;A,/p) is a log factor.

G.5.2 Proof of Lemma G.8: Bound on BIASlTﬁXt

Proof. For fixed zj, and by.,,_1, let W = {k € [h — 1] : by # ax} and A’ is the maximal element in
W, so we have h' = 7x. We define W (h) as the set W U{h’' + 1,..., h}. We can rewrite BIAST ext
as

BIAS] ¢

h—1

b1.kAR/

= ax Z Z 6K(a1:h—1,b1:h—1)nk:1 m(ak‘fi’j’ LkAR)
[iewm ™k (aklzr)

cP K
@ i TpE€Xi p b1:n—1

h/
X Z [T =0 tanlen) TT wia( bklxk)<mh( |i,n), Lin (i, ) —foh,,blth,)>~

t=1 keW (h) k=1

::Aizh.bl:h/)

Observe that the random variable ﬁix’“blzh/) satisfy the following:

« By the definition of L, we can rewrite A(Ih brar)

R

Tp by
A( hobips) Hﬂ-zk bklxk)<ﬂ'zh( |l’h), L(xh by, h')> H 7T LIk|CCk

k=1 keW (h)
’ ! H ’
=TT wtrrla) (minClan), 1 {@n, ) = @5, ap ") (Hh+1 > " ’W>>>;
kew h''=h
o E(a:h)bl:h,’) < ﬂ_t(.lx ) Lt < H-:
t =\t hls Han b)) =0
. E[A(zh b1 h')|]-' 1] = 0, where F;_; is the o-algebra containing all information until 7* is

sampled. This also can be seen from the unbiasedness of L;

* The conditional variance ]’E[(Z,EI’“I“”"))2 | F¢—1] can be bounded as

E {(ﬁixh’b”"’)) ’

Ft—1:|
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Fi1

H 2 2
<E (H—h+1— > ’W>> (<wf,h<-|xh)7 [T wta ezt {(@n, ) = @™, a0 *W>>}>)

h''=h kew

(’L) ’ !’
< 17 I wbaelon)E[(rinClan), 1 { @n,) = @™, ag @) 7]
kew

_ 2 H 7t o (belz)E Z t p(alan), 1 {(xh,a) = (ghRW) b ,W))} >’]:t—l

kew acA;
*,h t t
= H? [] wlurlzr) - > il (alan) P Iew o meep ) < ((mﬁg(h’h/’w),aﬁb’(h’h/’w)) = (mh,a))
kew a€A;

t .
=H* ] miwrlzn)- Y wintalen) [ miwarlen) - ] miw(aklzn) - pig (win)

kew acA; kEW () ke[ \W
(“) xt
< H? I] miwCulze) - ] 7ok (arlar) - pryt (i)
ke[h’] keW (h)

Here, (i) uses < nClan), 1 {(mh, )= (xz(h’h”w),af{(h’h"w))} > € [0,1]; (ii) is because

Hﬂ' (b |xk) H 77 elaglzr) = H7r (bi|xg).

kew ke[ \W kelh]

Therefore, we can apply Freedman’s inequality and union bound to get that for any fixed A € (0,1/H],
with probability at least 1 — p/8, the following holds simultaneously for all (h, x; ,, b1:p—1):

ZA( b)) <\ 2 H 7r7’ (ak|zk) Z H 77 w(Ok|Tr) plh(atlh)—k—og( /p)7

keW (h t=1 ke[h’] A
where C' > 0 is some absolute constant. Plugging this bound into BIAST Xt vields that, for all
h € [H],
h—1
YN,
BIAST ext o max Z Z 6K(a1:h717b1:h71)nk:1 ¢k(ak|*$:7 1:kAR!)
PEPT L €Xin brin1 [iewm ™k (aklzr)
T t
o Clo XZAZ
X H 7r’ (ak|zk) Z H 7y k(b2 )py.n (xi’h)—‘_M
keW (h) t=1 ke[h’]
< A\H? ma;I(( Z Z 6" (arn—1,brn—1 Hd?k ag|Tr, bigans Z H 71 o (br|zk) Plh (wi,n)
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i _ bi.kans
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Note that for fixed ¢ and any ¢ € ®X, by Corollary D.2,

S0 6% (arn-1,bin) H¢k (aklzr, bran) [ i (brlzx) plh(xzh)fl'

TR E€EX; h b1n—1 ke[h’]

So we have

A\H? max, S0 M (arn-1,bina H¢k kT, brknn) Z I 7ok (brlan) Plh(%h)<)\H T.
PeD; TpEX; h b1:h—1 t=1 ke[h’]

Moreover, by the inequality (36) in the proof of Lemma G.7, we have for any ¢ € ®X,

h—1
b . ’ —
Z Z 5K(alzh—1,b1;h_1)Hk:1 &r(ar]Tr, br:kans) < Xin (h

N
TREX; b b1in—1 HkéW(h) 7ri*7’C (ak|zr) K

1) AZKAH+1.
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Plugging these bounds into BIAS{’,‘?Xt yields that, with probability at least 1 — p/8, for all h € [H],

BIAST S < AH*T + Clog(Xidi/p) log()iiAi/p) Xin (h;( 1) ABNHEL

Taking summation over h € [H], we have

H

H
3 BIAST P <AHT + 701%();“41'/1’) Xin (h;( 1) AKNHH
1

h=1 h=

g ClOg(XlAl/p) H KAH+1
< Hr3 —_— Xz .
SAHT + A KANH A ’

i KAHTL
forall A € (0,1/H]. Choose A = min {}1, \/CXI’}L(KAH)AHgT el /7) } we obtain

H H
BIAS] ™ < s AKMITLX T+ H AfH X,
Z o1, O@ <K/\H> i Tk AH)N ok

where ¢ = log(8X;A;/p) is a log factor. O

G.5.3 Proof of Lemma G.9: Bound on BIAST ext

Proof. For fixed x5, and by.p,—1, let W = {k € [h — 1] : by # ax} and k' is the maximal element in

W, so we have b/ = 7x. We define W (h) as the set WU{h' + 1,..., h}. We can rewrite BIAST ot
as

BIAS;’EXt: HlaX Z Z 6" (arn—1,b1n1 H¢k ak|Tr, bikan)

e Tp €Xy p b1:n—1

T h'

b mgxz H i (br|2k) (Zéxh,bl:w)(a) — Li n(@in, a))

t=1 k=1

< max Z Z 6" (arn_1,b1n_1) H<Z5k (ar|Tr, b1:kans)

copkK
oeR; Tp €Xy p b1:p—1

X %?XZ%(W%‘)LMW ZH” (bx|z) (Lm by (@n) = szh,bl;m(ah))

h ap t=1 k=1

h
= max Z Z 5K(a1:h—17b1:h—1)H¢k(ak|wk7bl:k/\h’)

cpK
PP Ty hyah bin—1 k=1

xZHﬁwm@@%ﬁm—%mwmn

t=1 k=1

h
b. ’
= max » Y 5K(a1:h_17b1:h_l)nk:1¢k(ak|fck, LkAR’)

R
S an bimoa Ikewn 7ok (axlx)
xznﬁwm@@%ﬂm Livpspn(an) TT wil (ko)
t=1 k=1 kEW (h)

ZETh by

Here, (i) comes from the fact that the inner max over qS’h and the outer max over ¢;.;_1 are separable
and thus can be merged into a single max over ¢1..

T 7b1 h!> ap

Observe that the random variable A satisfy the following:
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l‘h,bl h!>Qh

* By the definition of L, we can rewrite A as

Zzh b1 san
t

H
=[] =t w(orlar)1 {(-’Eh,ah) =z """, ap ’W))} : (H —h+1— > bt ’W>>

keW h''=h

*,h
— 1 msCrlee) Lz, b, (an) [T w0k (anlzn).
ke[h’] kEW (k)

. &fmbnhhah < H.

o« E[A7#Pur F 4] = 0, where F;_; is the o-algebra containing all information until 7" is
sampled.

« The conditional variance E[(A7"* "% "*")2| F,_,] can be bounded as

E {(&:h,bl;h“ah)2‘ft_l:|

H 2
<E (Hh+1 ST > (H e ele) { (@, an) = @™ a0 ””)}) ‘JEH

h''=h keW

*,h
< H? H W;,k(bk‘i‘kﬂp((wi’k Ykew () (i, e n\w) X T ((a:f;(h’h/’w),az(h’h/’w)) = (a:h,ah))
kew

t .
=H? | minulzn) [ miw(anlee) - [ miwlarlae) - 700 (anlzn)py, (2in)

kew keW kel \W
Y I =& (orla) plh @in) [ =i (axlzs).
ke[h’] keW (h)

Here, (i) is because [ ], ¢ jpw ik (arlzr) = [reppw mhr (Ok|2k) -

Therefore, we can apply Freedman’s inequality and union bound to get that for any fixed A € (0,1/H],
with probability at least 1 — p/8, the following holds simultaneously for all (h, z; j,, b1.n, an):

x /ha Clog(X;A;
ZAhblh h <Af]2 H 71', ak|mk Z H 7le bk‘l‘k plh(xlh)-‘riog( /p),

A
keW (h) t=1 ke[h']

T, ext

where C' > 0 is some absolute constant. Plugging this bound into BIAS yields that, for all

h € [H] and ¢ € ®X,

T,ext K szl ¢k (ak|mk7 bl:k/\h’)
BIAS, ™ < max Z Z 87 (arn—1,b1:p-1) :

R
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Note that for fixed ¢ and any ¢ € ®X, by Corollary D.2,

Z Z 6" (arn—1,b1n—1 H¢k ak|Tr, bikan) H 1 (bi| Tk plh(l'zh) 1.
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So we have

h
> 68(arn-1bino1) [ ] onlarlzn, brkan Z IT 7 x(okl2) plh(wzh) <T.

ThyQh b1:p—1 k=1 t=1 ke[h’]

Moreover, by the inequality (36) in the proof of Lemma G.7, we have for any ¢ € ®X,
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- K 121 onlarlzn, braan)
= Z Z 0" (a1:n-1,b1:n—1) s
Tp b1.p—1 HkEW(h) ik (ak|xk)
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Plugging these bounds into BIASQT’:Xt yields that, with probability at least 1 — p/8, for all h € [H],

BIAST ™ < AHT + Clog(Xi4i/p) bg();““i/ ) Xin (h;( 1) AKNH

Taking summation over h € [H], we have
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for all A € (0, 1/H]. Choose A = min {1 \/ X (g AL MoB (XA /) } we obtain the bound

H>

H H
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E BIAS;, @) H A AN X T+ H A A7 X ]

where ¢ = log(8X;A;/p) is a log factor. O

H Additional discussions

H.1 Implementation of KX-EFCE by the mediator

Given a K-EFCE, the mediator can implement it as follows. Before the game starts, the mediator
samples a product policy from the K-EFCE (which is a correlated policy), and initializes a “deviation
counter” for each player at 0. Then, at each round, the mediator by default recommends the
sampled actions to all players. After players take their actual action, the mediator increments each
player’s “deviation counter” by 1 if their action is different from the recommendation. The mediator
stops recommending to any player as soon as their counter reaches K. We remark that such an
implementation (viewed from the mediator’s side) corresponds exactly to the definition of a K-EFCE
strategy modification (for the player’s side) in Definition 1 and Algorithm 1.

H.2 Requirement on knowing the tree structure in bandit-feedback setting

Under bandit-feedback, in Algorithm 3 and 6, the input balanced exploration policies {Tl':h} helH]
depend on the number of children Cy (z; p, a; 5 ) for all infoset z; ;, and action a; j,. This requires
knowing the structure of each player’s game tree (treeplex). A similar requirement is also needed in
the Balanced OMD and Balanced CFR algorithm of Bai et al. [5]. We remark that this requirement is
relatively mild as the tree structure can be extracted efficiently from just one tree traversal for each
player.
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H.3 Timeability condition

Our formulation of tree-structure, perfect-recall POMGs is able to express any IIEFG with perfect
recall and the additional timeability condition [25], a mild condition which roughly speaking requires
that infosets for all players combinedly could be partitioned into ordered “layers”. Therefore, our
results hold for all timeable IIEFGs with perfect recall.

Furthermore, our algorithm K -EFR and Balanced K-EFR does not depend on the joint game tree for
all players. Instead, the i player’s version of our algorithms only depends on the i player’s own
game tree (which is timeable for any perfect-recall IIEFG). Therefore, our algorithms and theoretical
guarantees (when formulated in general [IEFGs with perfect recall) can be generalized directly to any
perfect-recall IIEFGs that is not necessarily timeable, similar as existing CFR/OMD type algorithms
for external regret minimization [45, 19, 5].

H.4 Comparison between K-EFR and [11, 20] for learning EFCE under full feedback

Celli et al. [11] and its extended version [20] design the first uncoupled no-regret algorithm for com-
puting EFCEs under full feedback. Their algorithms are based on a two-level regret decomposition,
which first decomposes the EFCE regret into trigger regrets [22], one for each subtree policy at
each infoset, and minimizing each trigger regret via Counterfactual Regret Minimization (CFR). By
contrast, our {-EFR utilizes a slightly different decomposition, which decomposes the K-EFCE
regret directly into wide-range regrets (7) at each infoset, and uses wide-range regret minimization
with WRHEDGE to learn the K-EFCE. We remark that, for learning the EFCE, our approach works
by learning the 1-EFCE, which is equivalent to the (trigger definition of the) EFCE in terms of the
exact equilibria they define, but a slightly stricter version in terms of e-approximate equilibria (cf.
Proposition C.1).

Morrill et al. [34] considers various forms of correlated equilibria and also uses wide-range regret
minimization to learn these equilibria. When specializing in EFCE, we improve its result by a more
refined analysis and our new wide-range regret minimization algorithm (WRHEDGE).
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