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1 INTERIORSIM IMPLEMENTATION DETAILS

Environments and agents We show additional enviornments in Figures 1. We show our Fetch and
LoCoBot agents in Figure 2, and our OpenBot agent in Figure 4 of the main paper.

C++ plugin architecture At a high level, our C++ plugin has a remote procedure call server
running over a TCP/IP connection in a background thread, which our Python code uses to send
actions, receive observations, and to coordinate the behavior of the plugin. At a low level, our
plugin hooks into specific entry points at the beginning and end of the engine’s game-loop, and
inside these entry points, our plugin can optionally pause and unpause the game, block and unblock
the game-loop, and execute tasks in a work queue. By making a sequence of remote procedure calls
to our plugin, our Python code can implement any function in the Gym interface.

For example, to implement observation = environment.step(action), our Python
code makes the following remote procedure calls: BeginStep, ApplyAction, Step, GetObservation,
EndStep. We briefly describe the behavior of each remote procedure call from the perspective of our
C++ plugin below, and in parentheses we describe the call’s return behavior from the perspective of
our Python code. For this discussion, we assume that the game is initially paused, the game-loop
is initially unblocked, our plugin’s work queue is initially empty, and the reward and other similar
metadata is encoded directly in the observation. BeginStep requests to block at the beginning of the
game-loop, and execute any tasks that arrive in the work queue (returns immediately). ApplyAction
adds a task to the work queue to apply a user-specified action (returns when the task is completed).
Step requests to unpause the game, unblock the beginning of the game-loop, immediately block at
the end of the game-loop, and execute any tasks that arrive in the work queue when the end of the
game-loop is reached (returns when the end of the game-loop is reached). GetObservation adds a
task to the work queue to retrieve the latest rendered image observation from GPU memory and
return it (returns an image when the task is completed). EndStep requests to pause the game, and
unblock the end of the game-loop (returns immediately). At this point, our user-specified action
has been applied, the state of the world has been updated for exactly one time-step, an up-to-date
image observation has been returned to our Python code, and our Python code is ready to return. All
other functions in the Gym interface (e.g., observation = environment.reset()) can be
implemented similarly.

Extending InteriorSim We designed our C++ plugin to make it as easy as possible for researchers
and practitioners to implement new agents, sensors, and tasks. Implementing an agent or task in-
volves implementing the desired agent behavior or task logic in a C++ class (e.g., using Unreal
Engine primitives to apply control forces, or to compute a reward), and implementing a small C++
interface for sending and receiving data in the format expected by our framework. These implemen-
tations tend to be lightweight, e.g., our Camera Agent and Point-Goal Navigation Task can each be
implemented in a few hundred lines of code. Additionally, we provide tools to import any robot
whose geometry and kinematic structure has been described in URDF format (URDF, 2022).

Personally identifiable information and offensive content Our environments are populated ex-
clusively with common household objects, and therefore do not contain personally identifiable in-
formation or offensive content.
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Figure 1: Additional InteriorSim environments in the following architectural styles (top to bottom,
row-major): American, Chinese, European, European (simple), Japanese, Modern.

Figure 2: Our Fetch (left) and LoCoBot (right) agents interacting with InteriorSim environments.

2 ZERO-SHOT NAVIGATION POLICY TRANSFER DETAILS

Training details We show egocentric views seen during training in Figure 3. We train all of our
policies on a cluster with Intel Xeon CPUs and NVIDIA 3090 GPUs. The policy that sees 100% of
our simulated data takes approximately 26 hours to train on our cluster, and the training times of our
other policies are proportional to the amount of data seen during training.

Evaluation details We show egocentric views seen in our real-world evaluation in Figure 3. The
success metric we report is stricter than what is typically reported in the point-goal-navigation liter-
ature (Anderson et al., 2018), because we count any collision between the agent and its environment
as a failed episode (see Table 2 in the main paper). We opt for this stricter success metric because
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Figure 3: Simulated egocentric views seen during training (top row), and real-world egocentric
views seen during evaluation (bottom row) in our navigation experiments. We show images at the
native resolution (160 × 120) seen by our navigation policies.

Images Patches

Simulator Humans prefer InteriorSim (%) FID (↓) KID (×102 ↓) FID (↓) KID (×102 ↓)

Hypersim 59.5 ± 1.4 48.5 2.4 ± 0.1 32.8 1.5 ± 0.1

Table 1: Quantitative photorealism metrics for Hypersim (Roberts et al., 2021).

OpenBots are more sensitive to collisions than the robots typically used in sim-to-real navigation
experiments (Deitke et al., 2020; Kadian et al., 2020; Xia et al., 2018; 2020). On an OpenBot, even
minor collisions with the environment can lead to significant state estimation errors, so for simplic-
ity we count any collision as a failed episode. Therefore, the strict success percentages we report
are not directly comparable to the more relaxed success percentages found in the existing literature.

Real-world data and crowd workers We recruited crowd workers to collect real-world data in
their own homes, and we provided each worker with their own OpenBot. The crowd workers were
able to review all collected data before uploading it to our servers, to guarantee that they did not
accidentally upload any personal information. Each crowd worker was scheduled to collect data for
approximately 5 hours over 5 weeks, at a rate of approximately $10 USD per hour of collected data.
We anonymized all real-world data before using it for training.

3 EVALUATING PHOTOREALISM METHODOLOGICAL DETAILS

We show images from our photorealism experiment in Figure 4. For additional context, we show
photorealism metrics for Hypersim (Roberts et al., 2021) in Table 1. Hypersim is a synthetic dataset
that has been carefully rendered offline, and it achieves high photorealism scores across all metrics.
Nonetheless, humans consider InteriorSim to be more realistic than Hypersim 59% of the time.

Generating views in simulation RealEstate10K is biased towards upright views captured at
human eye-level. We want to generate similarly biased views in each simulator, because we do not
want the metrics we use to be confounded by drastic differences in viewpoint sampling. With this
motivation in mind, we generate views for each simulator using a simple two-phase heuristic. In our
first phase, for each available scene, we randomly sample camera positions that are in the scene’s
reachable space and are roughly at human eye-level, and we randomly sample camera orientations
that are roughly upright. In our second phase, we automatically select a subset of the views from
our first phase. When performing subset selection, we prefer views where no single semantic class
(e.g., wall or floor) is dominant. So for each scene, we select views where the entropy of the view’s
per-pixel semantic class histogram is highest. For each simulator, we generate 54K images in our
first phase, and we automatically select 10K images in our second phase. We generate images at
852×480 resolution with a horizontal field-of-view of 90°, which roughly matches the field-of-view
of a typical RealEstate10K image.
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Figure 4: Images from the scanned datasets, simulators, and real-world reference dataset used in our
photorealism experiments (top to bottom, row major): Matterport3D (Chang et al., 2017), Replica
(Straub et al., 2019), HM3D (Habitat-Matterport, 2022; Ramakrishnan et al., 2021), InteriorSim
(ours), ThreeDWorld (Gan et al., 2021a;b), AI2-THOR (Deitke et al., 2020; Ehsani et al., 2021;
Kolve et al., 2017), ReplicaCAD (Szot et al., 2021), and RealEstate10K (Zhou et al., 2018).

4 LIMITATIONS AND SOCIETAL IMPACT

Although our environments cover a variety of architectural styles (see Figure 1 and Figure 1
in the main paper), there are many styles that are not well-represented. Moreover, even within
architectural styles that are well-represented, our environments do not necessarily match the
statistics of real-world homes. The limited diversity of our environments can have an adverse
effect on embodied agents that are trained in InteriorSim, and subsequently deployed in homes
that are not well-represented in our data. The metrics we use for evaluating photorealism attempt
to quantify this issue (e.g., FID (Heusel et al., 2017) and KID (Binkowski et al., 2018) explicitly
measure how well our environments match a large dataset of real-world homes (Zhou et al., 2018)),
and we generally outperform existing simulators on these metrics, but the limited diversity of our
environments is nonetheless an issue that researchers and practitioners should be aware of.

The speed of our physics and rendering is another important limitation. Although our speed is
comparable to existing simulators that are built on top of video game engines (Deitke et al., 2020;
Dosovitskiy et al., 2017; Ehsani et al., 2021; Gan et al., 2021a;b; Lee et al., 2021; Puig et al., 2018;
Shah et al., 2017; Urakami et al., 2019; Yan et al., 2018), we are 2–3 orders of magnitude slower
than the fastest 3D simulators that are optimized for for embodied AI workloads (Savva et al.,
2019; Szot et al., 2021). However, our simulator is quantitatively more photorealistic than existing
simulators (see Table 3 in the main paper), and we believe that highly photorealistic simulators will
play a complimentary role to very fast simulators for the forseeable future. Indeed, embodied agents
with the best real-world performance will likely be trained in both types of simulator (e.g., basic
skills and behaviors can be learned in very fast simulators, and can be subsequently fine-tuned in
highly photorealistic simulators to improve sim-to-real transfer performance). Therefore, we do not
consider this limitation to be overly burdensome.
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