
Regularized Meta-Learning for Neural Architecture Search

Rob van Gastel1 Joaquin Vanschoren2

2
Eindhoven University of Technology

Abstract Neural architecture search (NAS) methods have successfully enabled the automated search of

neural architectures in various domains. However, most techniques start from scratch with

every new task. Techniques have been proposed that generalize across tasks, but don’t always

adapt well to new tasks. In this work, we consider meta-learning approaches that effectively

leverage prior experience to adapt to unseen tasks. We analyze different regularization

and training methods to improve the generalizability of meta-learning for NAS. Empirical

results on standard few-shot classification benchmarks show that the added regularization

and adjustments in the network optimization improve upon previous approaches, such as

MetaNAS.
1

1 Introduction

Neural networks have achieved significant results in a variety of domains, such as image classifica-

tion (He et al., 2016), machine translation (Liu et al., 2020), and playing games (Silver et al., 2017;

Badia et al., 2020). This success is contributed to the careful design of the network architecture and

chosen hyperparameters. Network architectures are usually designed by human experts, which is

a cumbersome process and prone to delivering underperforming architectures. The goal of neural

architecture search (NAS) is to accelerate the designing process of these neural architectures by

employing a systematic search strategy to find well-performing neural architectures. Recent devel-

opments in NAS are closing the gap between human expert-designed architectures and automated

solutions.

An important obstacle for the success of NAS is the large number of model evaluations required to

search a vast design space, demanding substantial computational resources. This makes it hard to

apply NAS in scenarios where only limited amounts of compute are available. In such scenarios, one

has to leverage experience from related tasks to adapt to new tasks efficiently. This type of learning

is known as meta-learning. This research aims to improve the generalizability of meta-learning for

NAS through regularization, specifically in the setting of few-shot learning.

We build upon MetaNAS (Elsken et al., 2019) (see section 2.3), which marries gradient-based meta-

learning with gradient-based NAS. This method aims to learn a meta-architecture (a weighted

subspace of architectures) that quickly adapts to a task-specific architecture. This type of search

has reduced the architecture search time by several orders of magnitude (Liu et al., 2018). However,

these methods also tend to suffer from instability issues, which is referred to as the optimization

gap by Xie et al. (2020). The contributions of our work are twofold:

• We evaluate different regularization techniques to regularize meta-learning for NAS, to reduce

the problems associated with the optimization gap.

• We propose the use of a different DARTS optimization technique, TSE-DARTS (Fil et al., 2021).

This method improves the optimization of DARTS in settings in which a validation set per task is

not available, such as few-shot learning.

1
The code for reproducibility is available at: https://github.com/RobvanGastel/meta-fsl-nas

AutoML Conference 2022 © 2022 the authors, released under CC BY 4.0

mailto:r.v.gastel@student.tue.nl
mailto:j.vanschoren@tue.nl
https://github.com/RobvanGastel/meta-fsl-nas
https://creativecommons.org/licenses/by/4.0/


2 Related Work
We first describe background and related work on one-shot models, and meta-learning for NAS.

2.1 One-Shot Models
Weight-sharing models are proposed to amortize the cost of training many candidate architectures.

These models view sampled architectures as sub-graphs of a larger supergraph, the super-network
(Pham et al., 2018). The training procedure optimizes all the sub-networks at once, such that

sampled architectures do not require training from scratch. One-shot models extend the idea of

weight-sharing models by combining the learning of the architecture with learning the network

weights (Bender et al., 2018). Differentiable architecture search (DARTS) (Liu et al., 2018) is a popular

one-shot model approach that makes the search over architectures differentiable by introducing a

continuous relaxation of each edge of the super-network and optimizing the network using bilevel

optimization.

2.2 The Optimization Gap
These weight-sharing super-networks suffer from search instability issues, specifically sensitivity

to random initialization and hyperparameters. This optimization gap (Xie et al., 2020) results

in the same algorithm producing considerably different architectures and test accuracy results

when executing multiple runs (Li and Talwalkar, 2019; Zela et al., 2019). Consequently, there is no

guarantee on the search procedure producing sampled architectures of high quality. In section 3

we introduce regularization methods to mitigate this gap.

2.3 Neural Architecture Search for Few-Shot Learning

Figure 1: The meta-weights and meta-architecture are jointly optimized over a distribution of tasks

using a meta-learner. The task-learner adapts the meta-weights and meta-architecture to a

task-specific architecture. Illustration inspired by Elsken et al. (2019).

Many prior works explore meta-learning in a few-shot learning setting with a fixed architecture,

such as Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017). However, optimizing both the

neural architecture and the weights might allow these methods to perform better on few-shot

learning tasks from a wider distribution. AutoMeta (Kim et al., 2018) and Continual Architecture

Search (Pasunuru and Bansal, 2019) learn an architecture that performs well on average, but do not

adapt the architecture to specific tasks, only the model weights.

In contrast, MetaNAS also adapts the architecture to a specific task. The task-learner (DARTS)

jointly adapts the weights𝑤𝑚𝑒𝑡𝑎 and architecture parameters 𝛼𝑚𝑒𝑡𝑎 to a new tasks T𝑖 during the
inner-loop. The “meta-architecture” is optimized during the outer-loop. The MetaNAS process

is visualized in Figure 1. We define a task T𝑖 part of a distribution 𝑝 (T ) to contain a training set

T 𝑡𝑟𝑎𝑖𝑛 ∼ 𝑝 (T ) and test set T 𝑡𝑒𝑠𝑡 ∼ 𝑝 (T ), in which a task is composed of T𝑖 = (DT𝑖
𝑡𝑟𝑎𝑖𝑛

,DT𝑖
𝑡𝑒𝑠𝑡 ). The

outer-loop objective, is taken from Reptile (Nichol et al., 2018),

Lmeta

(
𝑤, 𝛼, 𝑝,Φ𝑘

)
=

∑︁
T𝑖∼T train

LT𝑖

(
Φ𝑘

(
𝑤, 𝛼, 𝐷

T𝑖
train

)
, 𝐷

T𝑖
test

)

2



where Φ is the task-learner and 𝑘 are the gradient steps of DARTS. The task-learner updates both

𝑤 and 𝛼 with potentially different learning rates, the weight learning rate 𝜆𝑡𝑎𝑠𝑘 and architecture

learning rate 𝜉𝑡𝑎𝑠𝑘 . The optimization steps of the task-learner are as follows (Elsken et al., 2019),(
𝑤 𝑗+1

𝛼 𝑗+1

)
= Φ

(
𝑤 𝑗 , 𝛼 𝑗 , 𝐷

T𝑖
train

)
=
©«
𝑤 𝑗 − 𝜆task ∇𝑤LT

(
𝑤 𝑗 , 𝛼 𝑗 , 𝐷

T𝑖
train

)
𝛼 𝑗 − 𝜉task ∇𝛼LT

(
𝑤 𝑗 , 𝛼 𝑗 , 𝐷

𝑇𝑖
train

) ª®¬
In contrast to DARTS, the task-learner optimizes both 𝛼 and 𝑤 on the training set, due to the

unavailability of a validation set in few-shot learning settings.

3 Methodology
In this work, we extend MetaNAS with a range of regularization techniques, detailed below, as well

as an optimization technique to improve the task-learner.

3.1 Regularization of the Task-Learner

We introduce seven regularization methods to the DARTS task-learner in attempts to shrink

the optimization gap. Originally, MetaNAS already uses three methods: pruning of mixture over
operations and over input nodes, and thresholding alphas. The pruning of mixture methods aim to

obtain progressively sparser architecture parameters during training to prevent from retraining

after finding an architecture (Elsken et al., 2019). Thresholding prunes alphas from the final model

below a set threshold to obtain a sparser network.

3.1.1 Search Space Approximation. Search space approximation, first introduced in P-DARTS (Chen

et al., 2019), divides learning into three progressive stages allowing deeper networks with every

stage. At the end of every stage, it increases the size of the feature maps, increases the number of

normal cells, and decreases the number of operations considered per edge.

3.1.2 Search Space Regularization. Search space regularization, also introduced by P-DARTS, adjusts the

skip-connections. Due to DARTS’s preference for skip-connections in early stages of training (Zela

et al., 2019). Operation-level Dropout (Srivastava et al., 2014) is applied to every skip-connection.

Additionally, skip-connections are limited to two skip-connections per normal cell.

3.1.3 Power Cosine Annealing. Power Cosine Annealing, as introduced in SharpDARTS (Hundt et al.,

2019), adds an additional parameter 𝑝 to the cosine learning rate annealing scheduler (Loshchilov

and Hutter, 2016). The power curve parameter 𝑝 allows a more optimal learning rate throughout

training and observes better results in fewer epochs (Hundt et al., 2019).

3.1.4 SharpDARTS Search Space. The SharpDARTS search space adjusts convolutions in the DARTS

search space to depth-wise separable convolutions (SepConv) based on theMobileNetV2 architecture

(Sandler et al., 2018).

3.1.5 Max-W Alpha Regularization. Max-W alpha Regularization, also introduced by SharpDARTS, ad-

justs the weighing of architecture parameters during the learning of the weights. The intuition is to

keep the largest operation’s architecture parameter unchanged and allow for the other architecture

parameters to grow, according to the authors of Hundt et al. (2019).

3.1.6 DARTS-. The DARTS- technique (Chu et al., 2021) attempts to stabilize the architecture search by

introducing an auxiliary skip-connection on every edge. The auxiliary operation is introduced with

a parameter 𝛽 , which decays to 0 during training. By adding this operation, the unfair competition

from non-parametric operations is reduced.

3



3.1.7 PC-DARTS-. PC-DARTS- is introduced by DARTS- as an extension on PC-DARTS (Xu et al., 2019).

This method samples a small portion of input channels for every operation to reduce computation

and regularize the training using only a subset of input channels during the architecture search.

3.2 Task-learner Optimization Without Validation Set

The original formulation of DARTS assumes the existence of a validation set during training,

while in few-shot learning there is no validation set. Therefore, following Fil et al. (2021), we

apply a generalization estimator, Training-Speed-Estimator (TSE), to optimize without a validation

set. Let L be the loss function, 𝑓𝜃𝑡 the neural network with parameters 𝜃𝑡 after 𝑡 iteration, and

𝑇 the total number of unrolling steps. At every time step 𝑡 a training data batch is sampled,

D𝑡 = {(𝑥1(𝑡 ) , 𝑦1(𝑡 ) ), . . . , (𝑥𝑛 (𝑡 ) , 𝑦𝑛 (𝑡 ) )} to update the network. TSE is defined as follows, TSE =∑𝑇
𝑡=1 L𝑡𝑟𝑎𝑖𝑛

(
𝑓𝜃𝑡

(
𝑥 (𝑡 )

)
, 𝑦 (𝑡 )

)
. The gradient of the estimator is used to update the architecture, ∇𝛼𝑇𝑆𝐸.

For the complete derivation of the TSE gradient, we refer to the original paper (Fil et al., 2021).

4 Experiments

We evaluate the proposed extensions on image classification few-shot learning benchmarks Om-

niglot (Lake et al., 2015), TripleMNIST (Sun, 2019) and MiniImageNet (Ravi and Larochelle, 2017).

We consider 𝑛-way, 𝑘-shot few-shot learning tasks; each task has 𝑛 classes with 𝑘 examples per class.

First, we evaluate different regularization methods on MetaNAS. Second, we evaluate optimization

without a validation set, TSE-DARTS. For a discussion on the used hyperparameters and experiment

setup we refer to Appendix A.1.

4.1 Experiment 1: Evaluation of the Regularization Methods

We compare the seven regularization methods on the TripleMNIST and Omnglot few-shot learning

benchmarks. First, to pre-select the best regularization methods, we select the methods outper-

forming the baseline MetaNAS implementation on 1-shot, 20-way Omniglot (see Appendix A.2).

The three methods improving baseline MetaNAS are limit and dropout skip-connections, Max-W

regularization, and power cosine annealing. The limit an dropout on the skip-connections applies

Search Space Regularization (section 3.1.2) without the progressive staging of P-DARTS, as we

observe empirically better results without staging.

Table 1 displays the performance of these methods on Omniglot and TripleMNIST. We already

improve upon the performance of MetaNAS by only applying limit and dropout on the skip-

connections in small meta-epoch settings. Additionally, adding max-W regularization and power

cosine annealing maintains similar performance while greatly reducing the number of parameters.

This reduction might indicate that DARTS finds more task-specific architectures and converges

faster.

Omniglot TripleMNIST

accuracy in accuracy in accuracy in

Method parameters 1-shot, 20-way parameters 3-shot, 20-way parameters 3-shot, 20-way

MetaNAS 340k 78.20 ±1.18 260k 88.70 ±0.86 389k 90.94 ±0.34
MetaNAS+Limit and Dropout Skip-Connections 335k 80.86 ±1.42 360k 91.55 ±0.81 405k 93.72 ±0.56
MetaNAS+Limit and Dropout Skip-Connections

+ max-W + Power Cos Annealing

149k 81.62 ±0.22 147k 89.94 ±0.34 195k 92.38 ±0.66

Table 1: The meta-testing accuracy and parameters of the regularization methods compared to the

baseline on the Omniglot and TripleMNIST datasets. The accuracy is averaged over two runs

with a ±1 standard deviation after 500 meta-epochs with 250 warm-up epochs.

4



4.2 Experiment 2: Training Without Validation Set

We evaluate TSE-DARTS to improve the optimization of the super-network without the availability

of a validation set in few-shot learning. Initially, the architecture and weights are optimized using

the training set. However, this can lead to overfitting and poor generalization (Liu et al., 2018). The

TSE estimator adjusts the optimization to better fit cases without a validation set and introduces a

new parameter. We evaluate TSE-DARTS with a higher learning rate and two unrolling steps. The

hyperparameter selection is discussed in Appendix A.3.

Table 2 displays the results, which outperform the baseline by 4.18%. Notably, the TSE-DARTS

optimization combined with the previously preselected regularization techniques does not improve

accuracy. Improving the performance of TSE-DARTS with regularization might require more

careful tuning of the unrolling steps and regularization parameters, such as Dropout.

Omniglot MiniImageNet

accuracy in accuracy in

Method parameters 1-shot, 20-way parameters 5-shot, 5-way

MetaNAS 340k 78.20 ±1.18 155k 42.55 ±2.65
MetaNAS+TSE-DARTS 251k 82.38 ±0.90 415k 49.85 ±3.65
MetaNAS+TSE-DARTS+Limit and Dropout Skip-

Connections + max-W + Power Cos Annealing

233k 81.64 ±0.60 100k 37.05 ±3.45

Table 2: The meta-testing accuracy and parameters of the optimization method compared to the

baseline on the Omniglot and MiniImageNet datasets. The accuracy is averaged over two

runs with a ±1 standard deviation after 500 meta-epochs with 250 warm-up epochs.

5 Conclusions and Future Work

In this work, we presented methods to regularize the meta-learning for NAS. First, we identify

and evaluate seven methods that we combine with the MetaNAS framework to improve gener-

alization. The limiting and dropout on skip-connections and max-W regularization with power

cosine annealing improve the performance of MetaNAS on the 1-shot, 20-way, 3-shot, 20-way

Omniglot, and 3-shot, 20-way TripleMNIST settings. Second, we introduce TSE-DARTS as an

adjustment to DARTS optimization. TSE-DARTS fits the problem formulation of few-shot learning

in which a validation set is not available. Through applying this optimization we observe the largest

improvement compared to MetaNAS improving by 4.18% on the 1-shot, 20-way Omniglot setting.

In future work, we would like to further improve the generalization abilities of MetaNAS. One

of the limitations of MAML is that it optimizes the overall performance and not necessarily the

task-specific performance (Deleu and Bengio, 2018). By applying meta-reinforcement learning

instead of MAML we might find more task-specific architectures. Moreover, we hypothesize that

meta-reinforcement learning might deal better with out-of-distribution tasks and in settings with

more shots.

6 Limitations and Broader Impact Statement

In a broader context, the goal of NAS research is to have a positive societal impact by making NAS

more accessible to the general public. This work introduces regularization methods for MetaNAS

to reduce the computation cost required to find good models, mitigating the carbon footprint and

energy consumption.

We empirically demonstrate the effectiveness of regularization, however it would be interesting to

further study better meta-learning methods leading to better task-specific architectures through

applying more adaptive meta-learners.

5



7 Reproducibility Checklist

Acknowledgements
This research was partially supported by TAILOR, a project funded by EU Horizon 2020 research

and innovation programme under GA No 952215.

References
Badia, A. P., Piot, B., Kapturowski, S., Sprechmann, P., Vitvitskyi, A., Guo, Z. D., and Blundell,

C. (2020). Agent57: Outperforming the atari human benchmark. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume

119 of Proceedings of Machine Learning Research, pages 507–517. PMLR.

Bender, G., Kindermans, P.-J., Zoph, B., Vasudevan, V., and Le, Q. (2018). Understanding and

simplifying one-shot architecture search. In International Conference on Machine Learning, pages
550–559. PMLR.

Chen, X., Xie, L., Wu, J., and Tian, Q. (2019). Progressive DARTS: bridging the optimization gap for

NAS in the wild. CoRR, abs/1912.10952.

Chu, X., Wang, X., Zhang, B., Lu, S., Wei, X., and Yan, J. (2021). {DARTS}-: Robustly stepping out of

performance collapse without indicators. In International Conference on Learning Representations.

Deleu, T. and Bengio, Y. (2018). The effects of negative adaptation in model-agnostic meta-learning.

CoRR, abs/1812.02159.

Elsken, T., Staffler, B., Metzen, J. H., and Hutter, F. (2019). Meta-learning of neural architectures for

few-shot learning. CoRR, abs/1911.11090.

Fil, M., Ru, B., Lyle, C., and Gal, Y. (2021). DARTS without a validation set: Optimizing the marginal

likelihood. CoRR, abs/2112.13023.

Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep

networks. CoRR, abs/1703.03400.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778.

Hundt, A., Jain, V., and Hager, G. D. (2019). sharpdarts: Faster and more accurate differentiable

architecture search. CoRR, abs/1903.09900.

Kim, J., Choi, Y., Cha, M., Lee, J. K., Lee, S., Kim, S., Choi, Y., and Kim, J. (2018). Auto-meta:

Automated gradient based meta learner search. CoRR, abs/1806.06927.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-level concept learning through

probabilistic program induction. Science, 350(6266):1332–1338.

Li, L. and Talwalkar, A. (2019). Random search and reproducibility for neural architecture search.

CoRR, abs/1902.07638.

Liu, H., Simonyan, K., and Yang, Y. (2018). DARTS: differentiable architecture search. CoRR,
abs/1806.09055.

Liu, Y., Gu, J., Goyal, N., Li, X., Edunov, S., Ghazvininejad, M., Lewis, M., and Zettlemoyer, L.

(2020). Multilingual denoising pre-training for neural machine translation. Transactions of the
Association for Computational Linguistics, 8:726–742.

6



Loshchilov, I. and Hutter, F. (2016). SGDR: stochastic gradient descent with restarts. CoRR,
abs/1608.03983.

Nichol, A., Achiam, J., and Schulman, J. (2018). On first-order meta-learning algorithms. CoRR,
abs/1803.02999.

Pasunuru, R. and Bansal, M. (2019). Continual and multi-task architecture search. CoRR,
abs/1906.05226.

Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. (2018). Efficient neural architecture search

via parameters sharing. In Dy, J. and Krause, A., editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages
4095–4104. PMLR.

Ravi, S. and Larochelle, H. (2017). Optimization as a model for few-shot learning. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net.

Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., and Chen, L. (2018). Inverted residuals

and linear bottlenecks: Mobile networks for classification, detection and segmentation. CoRR,
abs/1801.04381.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L.,

Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T., and

Hassabis, D. (2017). Mastering the game of go without human knowledge. Nature, 550:354–.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: A

simple way to prevent neural networks from overfitting. Journal of Machine Learning Research,
15(56):1929–1958.

Sun, S.-H. (2019). Multi-digit mnist for few-shot learning.

Xie, L., Chen, X., Bi, K., Wei, L., Xu, Y., Chen, Z., Wang, L., Xiao, A., Chang, J., Zhang, X., and Tian,

Q. (2020). Weight-sharing neural architecture search: A battle to shrink the optimization gap.

CoRR, abs/2008.01475.

Xu, Y., Xie, L., Zhang, X., Chen, X., Qi, G.-J., Tian, Q., and Xiong, H. (2019). PC-DARTS: Partial Chan-

nel Connections for Memory-Efficient Architecture Search. arXiv e-prints, page arXiv:1907.05737.

Zela, A., Elsken, T., Saikia, T., Marrakchi, Y., Brox, T., and Hutter, F. (2019). Understanding and

robustifying differentiable architecture search. CoRR, abs/1909.09656.

A Appendix A

A.1 Hyperparameters and Experiment Setup

A.1.1 Hyperparameters. Our implementation is based on the MetaNAS
2
(Elsken et al., 2019) code. The

code for the regularization methods are taken from their original repositories: SharpDARTS
3

(Hundt et al., 2019), P-DARTS
4
(Chen et al., 2019), DARTS-

5
(Chu et al., 2021) and PC-DARTS

6

2
https://github.com/boschresearch/metanas

3
https://github.com/ahundt/sharpDARTS

4
https://github.com/chenxin061/pdarts

5
https://github.com/Meituan-AutoML/DARTS-

6
https://github.com/yuhuixu1993/PC-DARTS

7



(Xu et al., 2019). Finally, the code for the TSE-DARTS (Fil et al., 2021) optimization is provided in

the appendix of the paper. The meta-testing accuracy of all experiments in section 4 are taken

at the end of meta-training, without a dedicated meta-testing phase at the end of meta-training.

Potentially, a better meta-testing performance could be obtained by running a final evaluation in

which MetaNAS adapts during the meta-testing phase for more epochs.

The Hyperparameters are listed in Table 3. The same parameters are used for all experiments in

section 4 with minor adjustments for the experiments of section 4.1 and 4.2. The parameters are

taken from the original MetaNAS implementation (Elsken et al., 2019) except for the task training

steps during meta-training. This parameters is increased from 5 to 6 steps to evaluate P-DARTS in

3 stages with 2 adaptation steps each. To evaluate P-DARTS in 3 stages as done in the P-DARTS

paper. The dropout on the skip-connections are set to 0.0, 0.4, 0.7 for stages 1, 2 and 3 respectively.

During the training the dropout is exponentially decayed with a factor 0.2. These hyperparameters

are taken from the P-DARTS implementation.

All the experiments are executed on a cluster with the following GPUs: Tesla V100-DGXS-16GB,

GeForce GTX 1080 Ti, GeForce GTX 970. Moreover, all experiments use a single GPU during training.

The candidate set of operations per edge are the same as MetaNAS, namely, the MaxPool3x3,
AvgPool3x3, SkipConnect, Conv1x5-5x1, Conv3x3, SepConv3x3, DilatedConv3x3 operations. The

meta-testing training steps are split into two phases, the first 50 adaptation steps update both the

weights and architecture and the next 50 steps only adapt the weights. Finally, all experiments are

evaluated for two random seeds, seed 1 and 2.

Hyperparameter Value

batch size 20

meta batch size 10

shots during meta training 15

Number of channels 28

Number of DARTS cells 3

task training steps (during meta training) 6

task training steps (during meta testing) 50 + 50

task learning rate (weights) 1 · 10−3
task learning rate (architecture) 1 · 10−3

task optimizer (weights) Adam

task optimizer (architecture) Adam

meta learning rate (weights) 1.0

meta learning rate (architecture) 0.6

meta optimizer (weights) SGD

meta optimizer (architecture) SGD

weight decay (weights) 0.0

weight decay (architecture) 1 · 10−3

Stages (P-DARTS) 3

limit number of skip-connections (P-DARTS) 2

Table 3: The hyperparameters of the experiments in section 4 on the Omniglot, MiniImageNet and

TripleMNIST datasets for 𝑛-shot, 𝑘-way few-shot learning.

A.1.2 Experiment Setup. The experiments in section 4 are executed for 500 meta-epochs of which 250

warm-up epochs. During the warm-up epochs the architecture parameters of the model are not

adjusted to warm-up the model. This practice avoids the unstable behavior of gradient-based

NAS (Elsken et al., 2019). Similarly, to MetaNAS half of the meta-epochs are warm-up epochs. All

8



experiments for 500 epochs require approximately 15 hours, except for MetaNAS with TSE-DARTS

which requires approximately 19 hours.

A.2 Selection of the Regularization Methods

In this section we provide an analysis of all introduced regularization methods to select the best

performing methods. The first segment of Table 4 contains the baseline MetaNAS result with an

accuracy of 78.20% ± 1.18.

Omniglot

Method Parameters Acuracy in 1-shot, 20-way

MetaNAS 340k 78.20 ±1.18
MetaNAS+P-DARTS 250k 57.32 ±0.08
MetaNAS+Search Space Regularization (Limit and

Dropout Skip-Connections)

212k 58.04 ±1.92

MetaNAS+Search Space Approximation 251k 54.66 ±1.66
MetaNAS+Limit and Dropout Skip-Connections 335𝒌 80.86 ± 1.42
MetaNAS+Dropout Skip-Connections 303𝒌 81.24 ± 0.20
MetaNAS+Limit Skip-Connections 352k 77.16 ±0.24
MetaNAS+SharpDARTS 128k 74.40 ±0.32
MetaNAS+max-W+Power Cos Annealing 98𝒌 80.86 ± 0.54
MetaNAS+max-W+Sharp Search Space 114k 78.38 ±0.18
MetaNAS+Power Cos Annealing+Sharp Space 377k 77.48 ±3.60
MetaNAS+max-W 101k 79.98 ±0.54
MetaNAS+Sharp Search Space 162k 67.74 ±1.94
MetaNAS+Power Cos Annealing 305k 76.32 ±1.04
MetaNAS+DARTS- 265k 74.56 ±1.58
MetaNAS+PC-DARTS- 44k 68.00 ±0.44
MetaNAS+DARTS- fixed 𝜷 = 0.7 240𝒌 81.70 ± 0.42
MetaNAS+DARTS- fixed 𝛽 = 0.7 and decay meta-test 231k 78.52 ±2.92

Table 4: The results of the regularization methods on the Omniglot dataset in a 1-shot, 20-way setting

with the final meta-testing accuracy. The accuracy is averaged over two runs with a ±1
standard deviation after 500 meta-epochs with 250 warm-up epochs.

The second split includes regularized P-DARTS methods, of which the best results are obtained

by limiting and dropout. The difference between Search Space Regularization and limiting and

dropout on the skip-connections is the removal of the progressive P-DARTS staging in the latter.

This simple modification of DARTS already shows promising results in as few as 500 meta-epochs

improving over the baseline by 3.04%.

The third segment evaluates the SharpDARTS components. The best improvement over MetaNAS

is obtained by combining max-W alpha regularization and power cosine annealing with an accuracy

of 80.86% ± 0.54 and 98k parameters. This adjustment has ±3× fewer parameters and achieves

higher accuracy than the baseline. However, the architecture might converge prematurely as the

architecture parameters do change much after 100 meta-epochs.

The fourth section contains the DARTS- adjustments. The DARTS- method obtains the best

performance by fixing parameter 𝛽 to 0.7 during meta-testing and training (Chu et al., 2021),

which obtains an accuracy of 81.70% ± 0.40. However, adding a skip-connection to every edge

without decay introduces an operation kept in the final architecture and thus undesirable as we

are introducing heuristics and not leaving the search up to the search strategy. Our attempts at

decaying 𝛽 during meta-testing lead to worse results. Therefore, we decided to further evaluate the

best methods of segments two and three.

9



A.3 Hyperparameter Selection for TSE-DARTS

As TSE-DARTS changes the optimization of DARTS and adds a new hyperparameter, number of

unrolling steps, we perform a manual hyperparameter selection. We lower the number of unrolling

steps 𝑇 to 𝑇 = 1 and 𝑇 = 2 compared to 𝑇 = 100 due to few-shot learning setting. Additionally,

we evaluate TSE-DARTS with higher learning rate due to the high number of model parameters

with the original learning rate. We want to lower the number of parameters to provide a more fair

comparison with MetaNAS.

Omniglot

accuracy in

Method parameters 1-shot, 20-way

MetaNAS 340k 78.20 ±1.18
MetaNAS+TSE-DARTS+𝑇 = 1 381k 89.66 ±0.22
MetaNAS+TSE-DARTS+𝑇 = 2 391k 90.80 ±0.14
MetaNAS+TSE-DARTS+𝑇 = 1+DARTS lr

weights and architecture of 4 · 10−2
251k 82.38 ±0.90

Table 5: The TSE-DARTS hyperparameter selection experiments on the 1-shot, 20-way Omniglot

dataset with final meta-testing accuracy. The accuracy is averaged over two runs with a ±1
standard deviation after 500 meta-epochs with 250 warm-up epochs.

Table 5 displays the results of our hyperparameter selection. For𝑇 = 1 we observe a significant

improvement in accuracy compared to the baseline improving the baseline by 11.46 and observe a

slightly better improvement for 𝑇 = 2. However, using 𝑇 = 2 also increases the running time from

approximately 18 hours to 24,5 hours. Therefore, we use 𝑇 = 1 for our TSE-DARTS experiments

to maintain comparable running times to the baseline MetaNAS. We also evaluate 𝑇 = 1 with a

higher DARTS learning rate for architecture and weights due to the larger amount of parameters,

by increasing the learning rate we lower the model parameters.

10


	Introduction
	Related Work
	One-Shot Models
	The Optimization Gap
	Neural Architecture Search for Few-Shot Learning

	Methodology
	Regularization of the Task-Learner
	Search Space Approximation
	Search Space Regularization
	Power Cosine Annealing
	SharpDARTS Search Space
	Max-W Alpha Regularization
	DARTS-
	PC-DARTS-

	Task-learner Optimization Without Validation Set

	Experiments
	Experiment 1: Evaluation of the Regularization Methods
	Experiment 2: Training Without Validation Set

	Conclusions and Future Work
	Limitations and Broader Impact Statement
	Reproducibility Checklist
	Appendix A
	Hyperparameters and Experiment Setup
	Hyperparameters
	Experiment Setup

	Selection of the Regularization Methods
	Hyperparameter Selection for TSE-DARTS


