
A Proof of Theorem 1

Proof.∣∣∣∣∣∣losst −
∑
fℓ∈F

fℓ(τ
t|scp(fℓ))

∣∣∣∣∣∣ =
∑
fℓ∈F

∣∣∣∣∣∣fℓ(τ t|scp(fℓ))−
∑

⟨τi1 ,...,τin ⟩∈Πxi∈scp(fℓ)
Di

fℓ(τi1 , . . . , τin)
∏

j=1:n

ptij (τij)

∣∣∣∣∣∣
=

∑
fℓ∈F

∣∣∣∣∣∣
∑

⟨τi1 ,...,τin ⟩∈Πxi∈scp(fℓ)
Di

(
fℓ(τ

t|scp(fℓ))− fℓ(τi1 , . . . , τin)
) ∏
j=1:n

ptij (τij)

∣∣∣∣∣∣
≤

∑
fℓ∈F

∑
⟨τi1 ,...,τin ⟩∈Πxi∈scp(fℓ)

Di

⟨τi1 ,...,τin ⟩̸=τt|scp(fℓ)

∆ℓ

∏
j=1:n

ptij (τij)

=
∑
fℓ∈F

∆ℓ

1−
∏

xi∈scp(fℓ)

pi(τ
t
i)


According to Eq. (4) and Eq. (15), for each xi ∈ X it must be the case that τ ti = argminτi∈Di

bti(τi)

and hence τ ti = argmaxτi∈Di
pti(τi). We now show that pti(τ

t
i) ≥ 1

|Di| . Assume by contradiction
that pti(τ

t
i) <

1
|Di| . Since τ ti has the highest probability,∑

τi∈Di

pti(τi) ≤
∑

τi∈Di

pti(τ
t
i) = |Di|pti(τ ti) < 1,

which contradicts to the fact that pti is a probability distribution over Di. Therefore,∣∣∣∣∣∣losst −
∑
fℓ∈F

fℓ(τ
t|scp(fℓ))

∣∣∣∣∣∣ ≤
∑
fℓ∈F

∆ℓ

1−
∏

xi∈scp(fℓ)

pi(τ
t
i)

 ≤
∑
fℓ∈F

∆ℓ

1−
∏

xi∈scp(fℓ)

1

|Di|

 .

B Additional Experimental Details and Results

In this section, we present additional experimental details and results.

B.1 Benchmarks

We consider four types of benchmarks in our experiments, i.e., random COPs, scale-free networks,
small-world networks, and Weighted Graph Coloring Problems (WGCPs). For random COPs and
WGCPs, given |X| variables and density of p1 ∈ (0, 1), we randomly create a constraint for a pair
of variables with probability p1. For scale-free networks, we use the BA model [1] with parameter
m0 and m1 to generate constraints: starting from a connected graph with m0 vertices, a new vertex
is connected to m1 vertices with a probability which is proportional to the degree of each existing
vertex in each iteration. For small-world networks, we generate problem topology according to
Newman-Watts-Strogatz model [8]: starting from a ring of |X| vertices, each vertex is connected to
its k nearest neighbors, and for each edge underlying the ring with k nearest neighbors, we create a
new shortcut by randomly selecting another vertex with a probability p. Finally, for each variable and
constraint in the benchmarks except WGCPs, we set domain size to 15 and uniformly sample a cost
from [0, 100] for each possible assignment combination, respectively. Differently, for WGCPs each
variable has a domain of 5 values, and for any pair of constrained variables, we uniformly sample a
cost from [1, 100] for an unanimous variable assignment and otherwise, a zero cost.

B.2 Baselines

Since BPNN [9] and NEBP [7] are proposed for partition function estimation and error correction
decoding, respectively, it is not trivial to adopt them for solving COPs. Although FGNN [11] can be
applied to solve COPs, all of these existing DNN-based BP variants require expensive supervised

1

learning and optimal labels which are not available in our experimental settings because we consider
large-scale problems and it is not practical to obtain optimal labels using heavy exact solvers.
Therefore, to be fair and practical, we do not consider existing DNN-based BP variants.

We compare our DABP with the following state-of-the-art COP solvers: (1) DBP with a damping
factor of 0.9 and its splitting constraint factor graph version (DBP-SCFG) with a splitting ratio
of 0.95 [2]; (2) GAT-PCM-LNS with a destroy probability of 0.2 [5], which is a local search
method combining the LNS framework [6, 10] with neural-learned repair heuristics; (3) Mini-bucket
Elimination (MBE) with an i-bound of 9 [4], which is a memory-bounded inference algorithm; (4)
Toulbar2 with timeout of 1200s [3], which is a highly optimized exact solver written in C++. The
hyperparameters for DBP and GAT-PCM-LNS are set according to the original papers, while the
memory budget for MBE and timeout for Toulbar2 are set based on our computational resources.

All experiments are conducted on an Intel i9-9820X workstation with GeForce RTX 3090 GPUs
and 384GB memory. We terminate DBP(-SCFG) and GAT-PCM-LNS whenever convergence or the
maximum iteration limit (Tmax = 1000) reaches. Finally, we report the best solution cost for each
run, and for each experiment we average the results over 100 random problem instances.

B.3 Parameter Tuning

In this subsection, we empirically study the impact of damping factor λ on the performance of DBP
and DBP-SCFG, and the impact of the number of effective iterations on the performance of our
DABP, respectively.

0 200 400 600 800 1000
Iteration

27.5

28.0

28.5

29.0

29.5

No
rm

al
ize

d
co

st

DBP(=0.5)
DBP-SCFG(=0.5)
DBP(=0.6)
DBP-SCFG(=0.6)
DBP(=0.7)
DBP-SCFG(=0.7)
DBP(=0.8)
DBP-SCFG(=0.8)
DBP(=0.9)
DBP-SCFG(=0.9)
DABP (R=10)

(a) Random COPs

0 200 400 600 800 1000
Iteration

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

No
rm

al
ize

d
co

st

(b) WGCPs

0 200 400 600 800 1000
Iteration

29.0

29.2

29.4

29.6

29.8

30.0

No
rm

al
ize

d
co

st

(c) SF networks

0 200 400 600 800 1000
Iteration

26.00

26.25

26.50

26.75

27.00

27.25

27.50

27.75

28.00

No
rm

al
ize

d
co

st

(d) SW networks

Figure 1: Solution quality comparison with different λ (|X| = 60)

0 200 400 600 800 1000
Iteration

30.5

31.0

31.5

32.0

32.5

No
rm

al
ize

d
co

st

DBP(=0.5)
DBP-SCFG(=0.5)
DBP(=0.6)
DBP-SCFG(=0.6)
DBP(=0.7)
DBP-SCFG(=0.7)
DBP(=0.8)
DBP-SCFG(=0.8)
DBP(=0.9)
DBP-SCFG(=0.9)
DABP (R=10)

(a) Random COPs

0 200 400 600 800 1000
Iteration

1.0

1.5

2.0

2.5

3.0

3.5

4.0

No
rm

al
ize

d
co

st

(b) WGCPs

0 200 400 600 800 1000
Iteration

29.4

29.6

29.8

30.0

30.2

30.4

30.6

30.8

31.0

No
rm

al
ize

d
co

st

(c) SF networks

0 200 400 600 800 1000
Iteration

26.0

26.5

27.0

27.5

28.0

No
rm

al
ize

d
co

st

(d) SW networks

Figure 2: Solution quality comparison with different λ (|X| = 80)

0 200 400 600 800 1000
Iteration

32.5

33.0

33.5

34.0

34.5

35.0

No
rm

al
ize

d
co

st

DBP(=0.5)
DBP-SCFG(=0.5)
DBP(=0.6)
DBP-SCFG(=0.6)
DBP(=0.7)
DBP-SCFG(=0.7)
DBP(=0.8)
DBP-SCFG(=0.8)
DBP(=0.9)
DBP-SCFG(=0.9)
DABP (R=10)

(a) Random COPs

0 200 400 600 800 1000
Iteration

1.5

2.0

2.5

3.0

3.5

4.0

4.5

No
rm

al
ize

d
co

st

(b) WGCPs

0 200 400 600 800 1000
Iteration

29.75

30.00

30.25

30.50

30.75

31.00

31.25

31.50

No
rm

al
ize

d
co

st

(c) SF networks

0 200 400 600 800 1000
Iteration

26.0

26.5

27.0

27.5

28.0

28.5

No
rm

al
ize

d
co

st

(d) SW networks

Figure 3: Solution quality comparison with different λ (|X| = 100)

2

Impact of Damping Factor λ. We vary λ from 0.5 to 0.9 with a step size of 0.1, and Fig.1-3 present
the solution quality performance of DBP and DBP-SCFG under different damping factors. It can be
observed that the performance of DBP varies a lot with different λ while DBP-SCFG is relatively less
sensitive to the damping factor. In more detail, DBP with a small λ (e.g., λ = 0.5 or λ = 0.6) trends
to produce low-quality solutions, which is due to the fact that a small damping factor usually cannot
eliminate the effect of the costs accumulated before the final periodical of the BP process [12]. On
the other hand, a large damping factor (e.g., λ = 0.9) can also lead to poor results, since it requires
significantly more iterations to update the beliefs before finding a high-quality solution.

60 80 100
|X|

0

200

400

600

800

1000

Ac
cu

m
. r

un
tim

e
(s

)

DBP
DBP-SCFG
DABP (R=10)

(a) Random COPs

60 80 100
|X|

0

200

400

600

800

1000

Ac
cu

m
. r

un
tim

e
(s

)

(b) WGCPs

60 80 100
|X|

0

100

200

300

400

500

600

700

Ac
cu

m
. r

un
tim

e
(s

)

(c) SF networks

60 80 100
|X|

0

100

200

300

400

500

Ac
cu

m
. r

un
tim

e
(s

)

(d) SW networks

Figure 4: Accumulated runtime comparison

However, it can be extremely tedious and time-consuming to tune the damping factor. Fig. 4 presents
the accumulated runtime of tuning damping factor in DBP and DBP-SCFG, and the one of DABP
with 10 times of restart. It can be seen that both DBP and DBP-SCFG require significantly higher
runtime if we tune the damping factor. In fact, the runtime is generally proportional to the number of
damping factors we have attempted. On the other hand, to obtain high-quality solutions one needs to
perform extensive tuning (e.g., by using a smaller step size or a wider range), which substantially
increases the overall runtime overhead. In contrast, our DABP automatically infers the optimal
hyperparameters from the BP messages in the previous iterations, eliminating the need of notoriously
laborious tuning procedure and finding better solutions in all test cases with much smaller runtime.

1 2 4 8 16
Teff

29.8

29.9

30.0

30.1

30.2

30.3

No
rm

al
ize

d
co

st

(a) Random COPs

1 2 4 8 16
Teff

0.75

0.80

0.85

0.90

0.95

No
rm

al
ize

d
co

st

(b) WGCPs

Figure 5: Solution quality when varying Teff (i.e., the number of effective iterations in Alg. 1).

Impact of the Number of Effective Iterations Teff. We train our DABP with different Teff on
the Random COPs and WGCPs with 80 variables and p1 = 0.25. Fig. 5 presents the solution
quality when varying Teff. It can be seen that a large Teff usually produces inferior solutions. In such
scenario, T ∗ may contain many suboptimal iterations and their solutions are relatively easy to be
improved. Consequently, DABP is more exploitative and thus, it is prone to get trapped in local
optima. In contrast, a small Teff forces DABP to improve only good-enough solutions and encourages
exploration. In our experiments, we use Teff = 2 due to its better solution quality.

B.4 Results on the Instances with 60 and 100 Variables

Fig. 6-9 present solution quality in each iteration and convergence rate on the instances with |X| = 60
and |X| = 100. Our DABP outperforms the other baselines by considerable margins on a wide
range of benchmarks. The only exception happens on WGCPs with 60 variables, where Toulbar2
exhibits the best performance. That is because the variables in WGCPs have a relatively small domain

3

0 200 400 600 800 1000
Iteration

28

29

30

31

32

No
rm

al
ize

d
co

st

MBE
Toulbar
GAT-PCM-LNS
DBP
DBP-SCFG
DABP (R=5)
DABP (R=10)
DABP (R=20)

(a) Random COPs

0 200 400 600 800 1000
Iteration

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

No
rm

al
ize

d
co

st

(b) WGCPs

0 200 400 600 800 1000
Iteration

29

30

31

32

33

No
rm

al
ize

d
co

st

(c) SF networks

0 200 400 600 800 1000
Iteration

26

27

28

29

30

No
rm

al
ize

d
co

st

(d) SW networks

Figure 6: Solution quality comparison (|X| = 60)

50 100 250 500 1000
Iteration limit

0

20

40

60

80

100

Co
nv

er
ge

nc
e

ra
te

 (%
)

DBP
DBP-SCFG
DABP (R=5)

(a) Random COPs

50 100 250 500 1000
Iteration limit

0

20

40

60

80

100

Co
nv

er
ge

nc
e

ra
te

 (%
)

(b) WGCPs

50 100 250 500 1000
Iteration limit

0

20

40

60

80

100

Co
nv

er
ge

nc
e

ra
te

 (%
)

(c) SF networks

50 100 250 500 1000
Iteration limit

0

20

40

60

80

100

Co
nv

er
ge

nc
e

ra
te

 (%
)

(d) SW networks

Figure 7: Convergence rates under different iteration limits (|X| = 60)

0 200 400 600 800 1000
Iteration

32

33

34

35

36

No
rm

al
ize

d
co

st

MBE
Toulbar
GAT-PCM-LNS
DBP
DBP-SCFG
DABP (R=5)
DABP (R=10)
DABP (R=20)

(a) Random COPs

0 200 400 600 800 1000
Iteration

1.5

2.0

2.5

3.0

3.5

No
rm

al
ize

d
co

st

(b) WGCPs

0 200 400 600 800 1000
Iteration

30

31

32

33

34

No
rm

al
ize

d
co

st

(c) SF networks

0 200 400 600 800 1000
Iteration

26

27

28

29

No
rm

al
ize

d
co

st

(d) SW networks

Figure 8: Solution quality comparison (|X| = 100)

50 100 250 500 1000
Iteration limit

0

20

40

60

80

100

Co
nv

er
ge

nc
e

ra
te

 (%
)

DBP
DBP-SCFG
DABP (R=5)

(a) Random COPs

50 100 250 500 1000
Iteration limit

0

20

40

60

80

100

Co
nv

er
ge

nc
e

ra
te

 (%
)

(b) WGCPs

50 100 250 500 1000
Iteration limit

0

20

40

60

80

100

Co
nv

er
ge

nc
e

ra
te

 (%
)

(c) SF networks

50 100 250 500 1000
Iteration limit

0

20

40

60

80

100

Co
nv

er
ge

nc
e

ra
te

 (%
)

(d) SW networks

Figure 9: Convergence rates under different iteration limits (|X| = 100)

4

size (i.e., 5) and the constraint functions are highly structured, which allows effective pruning and
enumeration for exact methods like Toulbar2. It also can be concluded that our DABP converges
much faster than DBP and DBP-SCFG. Notably, when solving WGCPs with 100 variables (cf.
Fig. 9(b)), DBP-SCFG has a poor convergence rate and, even worse, DBP entirely fails to converge,
while our DABP still achieve convergence on the most of instances, which demonstrates the virtues
of our learned dynamic hyperparameters.

B.5 Ablation Study

To demonstrate the necessity of heterogeneous hyperparameters of Eq. (6), we conduct extensive
ablation studies by (1) fixing neighbor weights wt

m→i(ℓ) to 1
|Ni|−1 and inferring only heterogeneous

damping factor λt
i→ℓ (referred as DABP_Heter_λ), and (2) fixing neighbor weights wt

m→i(ℓ) to
1

|Ni|−1 and inferring a homogeneous damping factor λt by averaging all the damping factors computed
by Eq. (12) (referred as DABP_Homo_λ). It is noteworthy that DABP_Heter_λ and DABP_Homo_λ
reduce the number of hyperparameters from O(T |X|d2) to O(T |X|d) and O(T), respectively.

Fig. 10-12 present the results on solution quality. It can be observed that without heterogeneous
neighbor weights DABP_Heter_λ often converges to the solutions inferior to the ones found by DABP,
given the same number of restarts. DABP_Homo_λ, on the other hand, performs significantly worse
than DABP_Heter_λ and DABP, which highlights the merits and necessity of learning heterogeneous
hyperparameters in belief propagation for COPs. Nonetheless, equipped with learnable deep neural
networks, DABP_Homo_λ still substantially outperforms DBP-SCFG which relies solely on a single
static damping factor in terms of both solution quality and convergence speed.

0 200 400 600 800 1000
Iteration

27.2

27.3

27.4

27.5

27.6

27.7

No
rm

al
ize

d
co

st

DBP-SCFG
DABP_Homo_ (R=5)
DABP_Heter_ (R=5)
DABP (R=5)
DABP_Homo_ (R=10)
DABP_Heter_ (R=10)
DABP (R=10)
DABP_Homo_ (R=20)
DABP_Heter_ (R=20)
DABP (R=20)

(a) Random COPs

0 200 400 600 800 1000
Iteration

0.30

0.32

0.34

0.36

0.38

0.40

No
rm

al
ize

d
co

st

(b) WGCPs

0 200 400 600 800 1000
Iteration

28.9

29.0

29.1

29.2

29.3

29.4

No
rm

al
ize

d
co

st

(c) SF networks

0 200 400 600 800 1000
Iteration

25.8

25.9

26.0

26.1

26.2

26.3

26.4

No
rm

al
ize

d
co

st

(d) SW networks

Figure 10: Ablation results on the instances with |X| = 60

0 200 400 600 800 1000
Iteration

30.1

30.2

30.3

30.4

30.5

30.6

No
rm

al
ize

d
co

st

DBP-SCFG
DABP_Homo_ (R=5)
DABP_Heter_ (R=5)
DABP (R=5)
DABP_Homo_ (R=10)
DABP_Heter_ (R=10)
DABP (R=10)
DABP_Homo_ (R=20)
DABP_Heter_ (R=20)
DABP (R=20)

(a) Random COPs

0 200 400 600 800 1000
Iteration

0.90

0.95

1.00

1.05

1.10

1.15

1.20

No
rm

al
ize

d
co

st

(b) WGCPs

0 200 400 600 800 1000
Iteration

29.4

29.5

29.6

29.7

29.8

29.9

No
rm

al
ize

d
co

st

(c) SF networks

0 200 400 600 800 1000
Iteration

25.7

25.8

25.9

26.0

26.1

26.2

No
rm

al
ize

d
co

st

(d) SW networks

Figure 11: Ablation results on the instances with |X| = 80

B.6 Memory Footprint

Table 1 presents the GPU memory footprint of our DABP. We do not include CPU memory usage
since DABP has a similar CPU memory footprint of 4.3GB on all test cases, It can be observed
that the GPU memory footprint on random COPs (whose domain size is 15) is similar to the one
on WGCPs (whose domain size is 5), which indicates that the GPU memory usage of our DABP is
insensitive to the domain size. Besides, on highly-structured problems like scale-free networks and
small-world networks, our DABP trends to consume less memory than uniform problems.

5

0 200 400 600 800 1000
Iteration

32.1

32.2

32.3

32.4

32.5

32.6

No
rm

al
ize

d
co

st

DBP-SCFG
DABP_Homo_ (R=5)
DABP_Heter_ (R=5)
DABP (R=5)
DABP_Homo_ (R=10)
DABP_Heter_ (R=10)
DABP (R=10)
DABP_Homo_ (R=20)
DABP_Heter_ (R=20)
DABP (R=20)

(a) Random COPs

0 200 400 600 800 1000
Iteration

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

No
rm

al
ize

d
co

st

(b) WGCPs

0 200 400 600 800 1000
Iteration

29.6

29.7

29.8

29.9

30.0

30.1

No
rm

al
ize

d
co

st

(c) SF networks

0 200 400 600 800 1000
Iteration

25.2

25.3

25.4

25.5

25.6

25.7

No
rm

al
ize

d
co

st

(d) SW networks

Figure 12: Ablation results on the instances with |X| = 100

Table 1: GPU memory footprint of DABP (in GB)
Random COPs WGCPs SF Nets SW Nets

|X| = 60 6.54 6.53 8.34 6.14
|X| = 80 12.22 12.16 11.44 7.01
|X| = 100 20.41 20.34 18.74 8.31

References
[1] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science,

286(5439):509–512, 1999.

[2] Liel Cohen, Rotem Galiki, and Roie Zivan. Governing convergence of max-sum on DCOPs
through damping and splitting. Artificial Intelligence, 279:103212, 2020.

[3] S. de Givry D. Allouche and T. Schiex. Toulbar2, an open source exact cost function network
solver. Technical report, INRA, 2010.

[4] Rina Dechter and Irina Rish. Mini-buckets: A general scheme for bounded inference. Journal
of the ACM, 50(2):107–153, 2003.

[5] Yanchen Deng, Shufeng Kong, and Bo An. Pretrained cost model for distributed constraint
optimization problems. In AAAI, pages 9331–9340, 2022.

[6] Khoi D Hoang, Ferdinando Fioretto, William Yeoh, Enrico Pontelli, and Roie Zivan. A large
neighboring search schema for multi-agent optimization. In CP, pages 688–706, 2018.

[7] Jonathan Kuck, Shuvam Chakraborty, Hao Tang, Rachel Luo, Jiaming Song, Ashish Sabharwal,
and Stefano Ermon. Belief propagation neural networks. In NeurIPS, pages 667–678, 2020.

[8] Mark EJ Newman and Duncan J Watts. Renormalization group analysis of the small-world
network model. Physics Letters A, 263(4-6):341–346, 1999.

[9] Victor Garcia Satorras and Max Welling. Neural enhanced belief propagation on factor graphs.
In AISTATS, pages 685–693, 2021.

[10] Paul Shaw. Using constraint programming and local search methods to solve vehicle routing
problems. In CP, pages 417–431, 1998.

[11] Zhen Zhang, Fan Wu, and Wee Sun Lee. Factor graph neural networks. In NeurIPS, pages
8577–8587, 2020.

[12] Roie Zivan, Omer Lev, and Rotem Galiki. Beyond trees: Analysis and convergence of belief
propagation in graphs with multiple cycles. In AAAI, pages 7333–7340, 2020.

6

	Proof of Theorem 1
	Additional Experimental Details and Results
	Benchmarks
	Baselines
	Parameter Tuning
	Results on the Instances with 60 and 100 Variables
	Ablation Study
	Memory Footprint

