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A DETAILED DISCUSSIONS ON RELATED WORKS

In this section, we provide detailed discussions on related works. In particular, considering our
focus on providing a novel long-term fairness notion with the help of the detailed causal modeling of
involved dynamics, we compare our work with previous literature on causal notions of fairness, as
well as fairness inquiries in dynamic settings.

A.1 CAUSAL NOTIONS OF FAIRNESS

Various causal notions of algorithmic fairness have been proposed in the literature, for instance,
fairness notions defined in terms of the (non-)existence of certain causal paths in the graph (Kamiran
et al., 2013; Kilbertus et al., 2017; Zhang et al., 2017), fairness notions defined through estimating or
bounding causal effects (Kusner et al., 2017; Chiappa, 2019; Wu et al., 2019; Mhasawade & Chunara,
2021), fairness notions defined with respect to statistics on certain factual/counterfactual groups (Imai
& Jiang, 2020; Coston et al., 2020; Mishler et al., 2021). The proposed causal notions audit fairness
in an instantaneous manner, i.e., the fairness inquires are with respect to a snapshot of reality, and
the scope of consideration is limited to observed variables only. Our Tier Balancing notion has a
built-in capacity to inquire fairness in the long-term and dynamic setting, which is very different
from instantaneous causal fairness notions (beyond the fact that our notion encompasses latent causal
factors).

While we can detect and measure discrimination based on previous (instantaneous) causal notions of
fairness (e.g., the existence of certain causal paths or causal effects), eliminating such existence of
causal paths or causal effects is a valid goal to achieve but might not be the means one should opt for.
To begin with, there is no guarantee that eliminating a causal path or effect results in non-existence
of such causal path or effect in the future under the interplay between decision-making and data
dynamics. Furthermore, the data generating processes represented in the causal model might not be
easily manipulable under the same timescale of decision-making (e.g., the ones governed by nature
and/or the mode and structure of a society). One cannot expect that the manipulation on the causal
model (for the purpose of enforcing fairness notions) directly translate to real-world changes in the
underlying data generating processes.

Different from previous causal fairness notions, instead of directly “going against” the underlying data
generating process (e.g., by eliminating certain causal path or causal effect), our Tier Balancing notion
encourages “working with” the underlying data generating processes. With a detailed causal modeling
of the decision-distribution interplay, Tier Balancing emphases on the possibility of inducing a future
data distribution that is fair in the long run.

A.2 FAIRNESS INQUIRES IN DYNAMIC SETTINGS

Previous literature have considered dynamic fairness in specific practical scenarios, for instance,
opportunity allocation in labor market (Hu & Chen, 2018), a pipeline consisting of college admission
followed by hiring (Kannan et al., 2019), opportunity allocation in credit application (Liu et al., 2018),
and resource allocation in predictive policing (Ensign et al., 2018). Different from previous literature,
we present a detailed causal modeling of the decision-distribution interplay that is general enough
to be applicable in various resource allocation problems (e.g., loan applications, hiring practices)
while also being specific enough to encompass nuances in data dynamics for the particular practical
scenario of interest.

In terms of the analyzing framework, closely related works have considered the one-step analysis
(Liu et al., 2018; Kannan et al., 2019; Mouzannar et al., 2019; Zhang et al., 2019). However, previous
works focus on the long-term effect of imposing certain fairness notions that are readily available, for
example, Demographic Parity (Calders et al., 2009; Liu et al., 2018; Mouzannar et al., 2019) and
Equal Opportunity (Hardt et al., 2016; Liu et al., 2018). In our work, we formulate a novel notion
of long-term fairness, namely, Tier Balancing, and explore the possibility of providing a fairness
notion that characterizes the dynamic nature of decision-distribution interplay through detailed causal
modeling on both observed variables and latent causal factors.

In terms of the modeling choice for data dynamics, most closely related works model data dynamics
using variants of Markov Decision Processes (MDPs) (Jabbari et al., 2017; Siddique et al., 2020;
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Zhang et al., 2020; D’Amour et al., 2020; Wen et al., 2021; Zimmer et al., 2021; Ge et al., 2021).
For example, Zhang et al. (2020) consider the partially observed Markov decision process (POMDP)
model, and conduct evolution and equilibrium analysis with respect to Demographic Parity and
Equal Opportunity notions of fairness. The dynamics are modeled through transition matrices on
group-level qualification rates. Compared to the modeling of transition matrices in MDPs, our model
is more fine-grained and on the individual level, answering the call for “richer and more complex
modelings [of involved dynamics]” in previous literature (Hu & Chen, 2018).

Another closely related work is the one-step analysis on the impact of causal fairness notions on
downstream utilities conducted by Nilforoshan et al. (2022). They consider a detailed causal modeling
on the college admission running example and analyze previously proposed (instantaneous) causal
fairness notions, namely, Counterfactual Predictive Parity (Coston et al., 2020), Counterfactual
Equalized Odds (Coston et al., 2020), and Conditional Principal Fairness (Imai & Jiang, 2020).
Our work is different in several ways: instead of utilizing a static graph, we focus on the decision-
distribution interplay and explicitly capture both observed and latent variables along the temporal
axis; different from analyzing one-step downstream consequence in terms of utility, we formulate a
long-term fairness goal and investigate the challenges and opportunities revealed by the notion.

B ADDITIONAL RESULTS, TECHNICAL DETAILS, AND DISCUSSIONS

In this section, we provide additional results, technical details, and discussions of our work. In
Appendix B.1, we provide additional discussions on our causal modeling of the decision-distribution
interplay; in Appendix B.2, we analyze the situation where Tier Balancing is initially attained;
in Appendix B.3, we discuss the role of exogenous terms and provide a remark on Fact 3.2; in
Appendix B.4, we present the detailed derivation of Single-step Tier Imbalance Reduction (STIR) term
∆STIR|t+1

t ; in Appendix B.5, we illustrate the connection between Assumption 3.5 and Assumption
3.6; in Appendix B.6, we present additional experimental results; in Appendix B.7, we discuss
potential limitations of our work.

B.1 DISCUSSIONS ON THE CAUSAL MODELING OF DECISION-DISTRIBUTION INTERPLAY

In Appendix B.1.1, we provide additional details of the involved dynamics in the causal modeling of
the decision-distribution interplay. In Appendix B.1.2, we discuss the relation between the practical
scenarios and the modeled dynamics.

B.1.1 ADDITIONAL MODELING DETAILS OF THE INVOLVED DYNAMICS

We use Xt,i’s to represent three different patterns (instead of the number of count) of variables with
respect to how observed features are caused by the protected feature At and the latent causal factor
Ht. There are three types of observed features: (1) features that only have the latent causal factor Ht

as the case, e.g., Xt,1, (2) features that have both the latent causal factor Ht and the protected feature
At as cause, e.g., Xt,2, and (3) features that only have the protected feature At as the cause, e.g,.
Xt,3. For conciseness, we omit features that are not relevant to the practical scenario of interest, i.e.,
variables that are not causally relevant to (Ht, At). One can replace Xt,i’s with the actual number of
additional features together with the causal relations among them in specific practical scenarios.

At every time step T = t, the decision-making strategy Dt is trained on the joint distribution
(At, Xt,i, Y

(obs)
t ). However, when making the decision, Dt only takes (At, Xt,i) as input. Since we

are modeling causal relations in data generating processes, we only include a directed edge in the
DAG if there is a causal relation between variables. Therefore, the data generating process of Dt

does not involve an edge between Y
(obs)
t and Dt.

B.1.2 THE PRACTICAL SCENARIOS OF INTEREST

As we can see from previous literature (discussed in Appendix A.2), the modeling choices are closely
related to the practical scenarios of interest, and therefore, can be very different in terms of modeling
details of the involved dynamics in long-term and dynamic settings.
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Our causal modeling of repetitive resource application and allocation keeps track of individual-
level situation changes, and enables informative and principled analysis on the decision-distribution
interplay in different practical scenarios. For example, in credit application (e.g., Liu et al. 2018),
the agents are clients and the latent causal factor (tier) can be individual’s socio-economic status or
creditworthiness; in predictive policing (e.g., Ensign et al. 2018), the agents are neighborhoods and
the latent tier can be neighborhood’s safety ratings; in the dual market pipeline (e.g., temporary labor
markets followed by the permanent labor market considered in Hu & Chen 2018) or the admission-
followed-by-hiring pipeline (e.g., Kannan et al. 2019), the agents are applicants who subject to a
sequence of decisions and the latent tier can be the relevant qualification for the school program and
the job.

However, when the decision received by the individual is once in a lifetime (or at least very long time
compared to the timescale of the decision-making), repeated application and allocation of resource
may not be a suitable modeling choice. For example, college admission decisions are made on a
yearly basis but an individual does not repeatedly apply for college every single year (Mouzannar
et al., 2019). In this case, if we focus on the decision made by a specific college, it is more natural to
study changes in the population in terms of the group-level qualification profiles (Mouzannar et al.,
2019). As another example, in the context of health care (e.g., Mhasawade & Chunara 2021), when
the resource takes the form of the medical treatment for the purpose of improving health outcome, not
all treatment requires regular doses and therefore, repeated allocation modeled on the individual-level
may not be an optimal choice. One can, for instance, resort to the modeling at the level of subgroups
as an alternative (Mhasawade & Chunara, 2021).

Considering the difference in semantics of fairness in various practical scenarios, previous literature
has pointed out that there is in general no one-size-fits-all solution for algorithmic fairness (e.g.,
Kearns & Roth 2019). By presenting a detailed causal modeling for the decision-distribution interplay,
we do not intend to provide a general framework to encompass long-term fairness considerations in
all practical scenarios. Instead, we would like to demonstrate the opportunities and challenges and
hope our work can inspire further research.

B.2 WHEN TIER BALANCING IS INITIALLY SATISFIED

In the paper we have presented possibility and impossibility results to achieve, or get closer to, the
long-term fairness goal when Tier Balancing is not initially satisfied. It is natural to wonder what
we should do if we find out that Tier Balancing happen to be satisfied during fairness audit. In
fact, as we shall see in Proposition B.1, if Tier Balancing is satisfied as the initial condition, under
the specified dynamics, one can use Demographic Parity (Calders et al., 2009) decision-making
strategy to maintain the status of satisfying Tier Balancing. This indicates that when Tier Balancing
is satisfied (as a lucky initial condition, or as a result of K-step interventions), we have at least one
way to maintain the fair state of affairs.

Proposition B.1. When Tier Balancing is initially satisfied, i.e., Ht⊥⊥At, under Fact 3.2, Assumption
3.3, and Assumption 3.4, as well as the specified dynamics, the Demographic Parity decision-
making strategy, i.e., Dt ⊥⊥At, can ensure Tier Balancing still holds true for the next time step, i.e.,
Ht+1 ⊥⊥At+1.

Proof. To begin with, since Ht ⊥⊥ At, by Fact 3.2, Ht is not a function of At. As a direct result,
Y (ori)
t is also not a function of At (since the distribution of Y (ori)

t is fully determined by the value of
Ht = ht). Besides, since Dt satisfies Demographic Parity, Dt ⊥⊥At, and therefore by Fact 3.2, Dt

is not a function of At.

According to Assumption 3.3, under the specified dynamics, Ht+1 is fully determined by
(Ht, Dt, Y

(ori)
t ), among which none of them is a function of At. Then, we have Ht+1 is not a

function of At.

Recall that in the specified dynamics, the same group of agents repetitively apply for credit with the
entire group unchanged. According to Assumption 3.4, At+1 is an identical copy of At. Therefore
we have Ht+1 is not a function of At+1, i.e., Ht+1 ⊥⊥At+1.
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Figure 4: The causal modeling of the decision-distribution interplay. The circle indicates that the
corresponding variable is unobserved. We use diamond to denote the underlying causal
factor and explicitly indicate the (potential) non-stationary nature of the decision-making
strategies across time.

B.3 A REMARK ON FACT 3.2

Let us first present the definition of a functional causal model (Spirtes et al., 1993; Pearl, 2009):

Definition B.2 (Functional Causal Model). We can represent a causal model with a tuple (E, V,F)
such that:

(1) V is a set of observed variables involved in the system of interest;

(2) E is a set of exogenous variables that we cannot directly observe but contains the background
information representing all other causes of V and jointly follows a distribution P (E);

(3) F is a set of functions (also known as structural equations) {f1, f2, . . . , fn} where each fi
corresponds to one variable Vi ∈ V and is a mapping E ∪ V \ {Vi} → Vi.

The triplet (E, V,F) is known as the functional causal model (FCM). We can also capture causal
relations among variables via a directed acyclic graph (DAG), where nodes (vertices) represent
variables and edges represent functional relations between variables and the corresponding direct
causes (i.e., observed parents and unobserved exogenous terms).

For the purpose of illustration, in Figure 4 we present the DAG (at time step T = t) with the
exogenous terms Et explicitly modeled, where Et is the concatenation of individual exogenous
terms:

Et =
(
ϵ̃Ht , ϵ̃Y (obs)

t
, ϵ

Y
(ori)
t

, ϵXt,i , ϵDt

)
. (B.1)

We use the ·̃ symbol on certain exogenous noise terms, e.g., ϵ̃Ht
and ϵ̃

Y
(obs)
t

, to denote the fact that
the corresponding variables are affected by previous time step (T = t− 1), and such influence are
encapsulated into exogenous terms from the standpoint of current time step (T = t). For example,
the influence from the randomness in Dt−1 (when T = t− 1) on current Y (obs)

t is encapsulated into
an exogenous term ϵ̃

Y
(obs)
t

when T = t.

As we can see from Figure 4, (At, Et) are root causes of all other variables
(Ht, Xt,i, Y

(ori)
t , Y

(obs)
t , Dt). Applying Definition B.2, we can utilize the functional causal model

and represent each variable with a function (the structural equation) of its direct causes (including
observed parents and unobserved exogenous terms). Then, we can iteratively replace variables with its
corresponding structural equation and eventually represent variables in (Ht, Xt,i, Y

(ori)
t , Y

(obs)
t , Dt)

with functions of only root causes (At, Et), as summarized in Fact 3.2.
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The noise terms Et are the unobserved exogenous terms that signify the unique characteristics of
an individual. The utilization of such uniqueness of individual can be found in the estimation of
counterfactual causal effect by making use of the posterior distribution of exogenous noise terms
conditioning on the observed features, e.g., Kusner et al. (2017).

B.4 DETAILED DERIVATION OF ∆STIR|t+1
t (SECTION 3.2.1)

In this section, we provide the derivation detail of the Single-step Tier Imbalance Reduction (STIR)
term:

∆STIR|t+1
t := E [ |ft+1(0, Et+1)− ft+1(1, Et+1)| ]− E [ |ft(0, Et)− ft(1, Et)| ] (B.2)

Firstly, in Appendix B.4.1, we characterize the conditional joint density of
(
fT (0, ET ), fT (1, ET )

)
.

Then, in Appendix B.4.2, we focus on the situation changes of each individual from T = t to
T = t + 1 induced by the specified dynamics. Finally, in Appendix B.4.3, we can calculate the
expectation in Equation B.2 by aggregating situation changes for each individual from T = t to
T = t+ 1.

B.4.1 CHARACTERIZING CONDITIONAL JOINT DENSITY

We can view ft(0, Et) and ft(1, Et) as two dependent random variables. Given combinations of Dt

and Yt, we can define their conditional joint probability density when Et = ϵ as qt
(
ft(0, ϵ), ft(1, ϵ) |

d, d′, y, y′
)

and calculate it as following:

qt
(
ft(0, ϵ), ft(1, ϵ) | d, d′, y, y′

)

:= qt
(
ft(0, ϵ), ft(1, ϵ) | gDt (0, ϵ) = d, gDt (1, ϵ) = d′, gY

(ori)

t (0, ϵ) = y, gY
(ori)

t (1, ϵ) = y′
)

=

∫

ξ∈E
1{ft(0, ξ) = ft(0, ϵ), ft(1, ξ) = ft(1, ϵ)}

· pt
(
Et = ξ | gDt (0, ϵ) = d, gDt (1, ϵ) = d′, gY

(ori)

t (0, ϵ) = y, gY
(ori)

t (1, ϵ) = y′
)
dξ,

(B.3)

where 1{·} is the indicator function, and the subscript t of the conditional probability densities (e.g.,
qt(·) and pt(·)) indicates that they (might) change over time with different time step T = t. The
functional form of ft can be convoluted and it is not necessarily the case that ft(0, ·) and ft(1, ·) are
injective mappings E → (0, 1]. Therefore, for the purpose of generality, in Equation B.3 we explicitly
introduce the identity function 1{ft(0, ξ) = ft(0, ϵ), ft(1, ξ) = ft(1, ϵ)} when characterizing the
conditional joint density qt.

B.4.2 CAPTURING SITUATION CHANGES FOR AN INDIVIDUAL

For a specific individual (j), given the value of individual’s exogenous terms E
(j)
t = e

(j)
t , let us

denote the difference between ft(0, e
(j)
t ) and ft(1, e

(j)
t ) as φt(e

(j)
t ) := ft(0, e

(j)
t )− ft(1, e

(j)
t ), and

the sum of ft(0, e
(j)
t ) and ft(1, e

(j)
t ) as ηt(e

(j)
t ) := ft(0, e

(j)
t ) + ft(1, e

(j)
t ). We introduce φt(·) and

ηt(·) for the conciseness of notation, and we can always map
(
φt(·), ηt(·)

)
back to

(
ft(0, ·), ft(1, ·)

)
via a coordinate transformation:

[
ft(0, e

(j)
t )

ft(1, e
(j)
t )

]
=

√
2

2

[
cos π

4 sin π
4− sin π

4 cos π
4

][
φt(e

(j)
t )

ηt(e
(j)
t )

]
. (B.4)

Let us consider the connection between φt+1(e
(j)
t+1) = ft+1(0, e

(j)
t+1) − ft+1(1, e

(j)
t+1) in the time

step T = t + 1 and φt(e
(j)
t ) = ft(0, e

(j)
t ) − ft(1, e

(j)
t ) in the time step T = t. We use different

time step subscripts for the exogenous terms, e.g., e(j)t+1 in φt+1(e
(j)
t+1) and e

(j)
t in φt(e

(j)
t ), since it

is not necessarily the case that e(j)t+1 = e
(j)
t , even if we are focusing on the same individual from

T = t to T = t+1. Nevertheless, for the given functional forms of ft, gDt , gY
(ori)

t , the combination of
(d(j), d′(j), y(j), y′(j)), the value of exogenous term e

(j)
t in the initial situation of the current one-step

analysis (when T = t), and the hyperparameters (αD, αY ), we can uniquely derive the value of
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Figure 5: An illustration of the connection between qualitative and quantitative assumptions in
terms of the one-step update of the conditional joint distribution qT

(
fT (0, eT ), fT (1, eT ) |

d, d′, y, y′
)

(when y < y′, and from T = t to T = t+ 1).

φt+1(e
(j)
t+1) = ft+1(0, e

(j)
t+1) − ft+1(1, e

(j)
t+1), and list all possible instantiations of φt+1(e

(j)
t+1) in

Table 4 (if αD > αY ), Table 5 (if αD < αY ), and Table 6 (if αD = αY ).

Let us denote such mapping from φt(e
(j)
t ) to φt+1(e

(j)
t+1) with the function Gt. For the purpose

of simplifying notations, we can omit the superscript (j) if without ambiguity, since the value of
exogenous terms eT signify the unique characteristics of an individual:

φt+1(et+1) := ft+1(0, et+1)− ft+1(1, et+1) = Gt(ft, g
D
t , gY

(ori)

t ; d, d′, y, y′, et, αD, αY ). (B.5)

Notice that the value of the function Gt only relies on the information available at time step T = t.

B.4.3 AGGREGATING INDIVIDUAL-LEVEL SITUATION CHANGES

We can calculate Single-step Tier Imbalance Reduction, i.e., the term ∆STIR|t+1
t , as following:

∆STIR|t+1
t := E [ |ft+1(0, Et+1)− ft+1(1, Et+1)| ]− E [ |ft(0, Et)− ft(1, Et)| ]

(i)
= E [ |φt+1(Et+1)| − |φt(Et)| ]
(ii)
= E

{
E
[
|φt+1(ξ)| − |φt(ϵ)|

∣∣∣ Et+1 = ξ,︸ ︷︷ ︸
The value of exogenous terms of an individual take value ξ at T = t + 1.

Et = ϵ,︸ ︷︷ ︸
The value of exogenous terms of an individual take value ϵ at T = t.

φt+1(ξ) = Gt(ft, g
D
t , gY

(ori)

t ; d, d′, y, y′, ϵ, αD, αY )︸ ︷︷ ︸
This is to make sure that we are keeping track of the same individual in the sense that,
φt+1(ξ) when T = t + 1 is indeed a valid instantiation from φt(ϵ) when T = t.

If φt+1(·) is not a valid instantiation from φt(·), the contribution to the expectation is 0.

]}

(iii)
=

∑

d,d′,y,y′∈{0,1}
Pt(d, d

′, y, y′) ·
∫

ϵ∈E

∫

ξ∈E
qt
(
ft(0, ϵ), ft(1, ϵ) | d, d′, y, y′

)

·
(
|φt+1(ξ)| − |φt(ϵ)|

)
· 1{φt+1(ξ) = Gt(ft, g

D
t , gY

(ori)

t ; d, d′, y, y′, ϵ, αD, αY )}dξdϵ,
(B.6)

where the equality (i) is based on the definition of φt(·) and φt+1(·); the equality (ii) is derived
from the Law of Iterated Expectation, keeping track of individual-level situation changes in the inner
conditional expectation; the equality (iii) is the aggregation of individual-level situation changes by
plugging in the conditional joint density qt calculated in Appendix B.4.1, joint probability Pt, and
the individual-level situation changes discussed in Appendix B.4.2.

The indicator function 1{φt+1(ξ) = Gt(ft, g
D
t , gY

(ori)

t ; d, d′, y, y′, ϵ, αD, αY )} makes sure that we
are keeping track of the same individual (whose exogenous noise term equals to ϵ at time t) before
and after the one-step dynamic, even if his/her exogenous noise term equals to ξ at time t+ 1, and
that ϵ might not be equal to ξ.
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Figure 6: Illustration of the interplay between decision with accuracy-oriented predictors and the
data dynamics (20 steps) on the credit score data set. Panel (a) and (b) present the step-by-
step tracks of update in tier, accuracy, and approval rates for different groups; panel (c)
presents group-conditioned distributions of tier before (left) and after (right) 20 steps of
interventions. The legend is shared across panel (a), (b), and (c).

The fact that we are keeping track of the same individual also justifies the practice of only inte-
grating over (conditional) densities with subscript t, e.g., qt(·) and Pt(·), instead of both t and
t + 1. To see this from a different angle, keeping track of situation changes of each individual
(when comparing φt+1(et+1) with φt(et)) also alleviates us from the trouble of estimating (condi-
tional) densities that involve future information. At the time step t, we do not know the densities
qt+1

(
ft+1(0, Et+1), ft+1(1, Et+1) | d, d′, y, y′

)
and Pt+1(d, d

′, y, y′) since they involve future in-
formation Dt+1 and Yt+1 at the standpoint of time step T = t.

B.5 FURTHER ILLUSTRATION ON ASSUMPTION 3.5 AND ASSUMPTION 3.6

In this subsection, we provide further illustrations of the connection between Assumption 3.5 and
Assumption 3.6. In Figure 5 we present the one-step update of the conditional joint distribution
qT

(
fT (0, eT ), fT (1, eT ) | d, d′, y, y′

)
from T = t to T = t + 1 (we present the case when y < y′

as an example). For panel (a) and (b), the joint distribution of (fT (0, ET ), fT (1, ET )) is plotted
before and after one-step dynamics, with quantitative and qualitative assumptions respectively. The
distributions are color-coded, the deeper the color, the larger the value of the joint density.

Compared to the qualitative assumption (Assumption 3.5, illustrated in Figure 5b), the quantitative
assumption (Assumption 3.6, illustrated in Figure 5a) is just a special case, with quantitative char-
acteristics built-in for technical purposes (we will make use of Assumption 3.6 in the proofs for
Theorem 4.2 and Theorem 4.3 in Appendix C). From the illustrations in Figure 5, we can also see that
the behaviors of the one-step update of conditional joint density under qualitative and quantitative
assumptions are similar, with deeper color patterns occurring on the upper-left corner, indicating sim-
ilar changes in the corresponding conditional joint densities qT

(
fT (0, eT ), fT (1, eT ) | d, d′, y, y′

)

(when y < y′, and from T = t to T = t+ 1).

B.6 ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional experimental results on the preprocessed FICO credit score data
set (Board of Governors of the Federal Reserve System (US), 2007; Hardt et al., 2016). Similar to
the experiment summarized in Figure 3, we convert the cumulative distribution function (CDF) of
group-wise TransRisk scores into group-wise density distributions of the credit score, and use them
as the initial tier distributions for different groups.

We consider utility-maximizing decision-making strategies, i.e., the decision-making policy is ac-
curacy oriented and there is no explicit fairness consideration. In Figure 6 we present the summary
of a 20-step interplay between decision with accuracy-oriented predictors and the underlying data
generating process on the credit score data set. The accuracy-oriented decision-making strategy
is retrained after each one-step data dynamics. From Figure 6(a), there is no obvious evidence
that the gap between step-by-step tracks of tiers for different groups is decreasing over time. This
observation aligns with our theoretical analysis (Theorem 4.2) and simulation results (Figure 2) for
perfect predictors.
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B.7 POTENTIAL LIMITATIONS OF OUR WORK

In this subsection, we discuss potential limitations of our work.

B.7.1 SPECIFIED DYNAMICS VS. CAUSAL DISCOVERY

In this paper, we present a detailed causal modeling of decision-distribution interplay on DAG
(Section 2.1) and formulate the dynamic fairness notion, Tier Balancing, that captures the long-term
fairness goal over the underlying causal factor.

The research of causal discovery, where the goal is to discover the causal relations among variables
(Spirtes et al., 1993; Shimizu et al., 2006; Zhang & Hyvärinen, 2009; Zhang et al., 2011), is a highly
relevant area but is out of the scope of our paper. Our Tier Balancing notion of dynamic fairness, as
well as our analyzing framework, does not rely on a causal model derived from causal discovery. As
we discussed in the comparison with previous literature in dynamic fairness studies (Appendix A),
our causal model is richer and more complex, which provides the potential of a more principled
reasoning of the essential decision-distribution interplay in the pursuit of long-term fairness. We
acknowledge the fact that it is nice to have the ability to discover the underlying causal model of the
involved dynamics, which would provide further refinements of our dynamic modeling based on the
specific practical scenario of interest. Causal discovery can act as the icing on the cake, but not a
necessary component, of our analysis.

B.7.2 THE NUMBER AND DIMENSION OF LATENT CAUSAL FACTORS

In the causal modeling of decision-distribution interplay we present in the paper, we consider one
latent causal factor that carries on the influence of current decision to future distributions. Recent
developments in the identification of causal structures that involve (more than one) latent factors
(Xie et al., 2020; Adams et al., 2021; Kivva et al., 2021; Xie et al., 2022) provide not only a
theoretical justification, but also an indication of the potential, for our effort in exploring long-term
fairness inquires over latent causal factors. We believe that our detailed causal modeling of decision-
distribution interplay (on both observed variables and latent causal factors) and our formulation of
Tier Balancing notion of long-term fairness act as an important first step.

C PROOF OF RESULTS

In this section, we provide proofs for results presented in the paper. For better readability, we provide
an additional Proof (sketch) before proving Theorem 4.1 (proof in Appendix C.2), Theorem 4.2
(proof in Appendix C.3), and Theorem 4.3 (proof in Appendix C.4), respectively.

C.1 PROOF FOR PROPOSITION 3.1

Proposition. At time step T = t, for any Ht = ht ∈ (0, 1], under the specified dynamics, among the
population where ground truth is actually observable, i.e., Y (obs)

t is not undefined, we have:

Y (obs)
t ∼ Bernoulli(ht).

Proof. To begin with, according the d-separation relation among Dt−1, Ht, and Y (ori)
t on Figure 1,

we notice that Y (ori)
t ⊥⊥Dt−1 | Ht. Therefore we have:

Y (ori)
t ∼ Bernoulli(ht),

P (Y (ori)
t = 1 | Ht = ht) = ht,

P (Dt−1 = 1 | Ht = ht) = d(ht),

where d(·) is a function d : (0, 1] → [0, 1].

Notice that there is no claim that Dt−1 can be uniquely determined by a function of only ht. We only
represent the conditional probability mass P (Dt−1 = 1 | Ht = ht) with a function of ht without
specifying the exact functional form. In fact, as we shall see in the later part of this proof, the exact
functional form of d(·) does not affect the validity of the result.
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Since Y (obs)
t is in fact Y (ori)

t masked by Dt−1, i.e., Y (obs)
t is observable only when Dt−1 = 1 and is

undefined when Dt−1 = 0, we have:

P (Dt−1 = 0, Y (obs)
t = 0 | Ht = ht) = P (Dt−1 = 0, Y (obs)

t = 1 | Ht = ht) = 0.

This indicates that among the population where Y (obs)
t is not undefined (the population itself may

change at different time step), ∀y ∈ {0, 1}:

P (Y (obs)
t = y | Ht = ht)

= P (Dt−1 = 0, Y (obs)
t = y | Ht = ht) + P (Dt−1 = 1, Y (obs)

t = y | Ht = ht)

= P (Dt−1 = 1, Y (obs)
t = y | Ht = ht)

= P (Dt−1 = 1, Y (ori)
t = y | Ht = ht).

Then, when d(ht) ∈ (0, 1), we can calculate the following probability:

P (Y (obs)
t = 1 | Ht = ht)

=
P (Y (obs)

t = 1 | Ht = ht)

P (Y (obs)
t = 1 | Ht = ht) + P (Y (obs)

t = 0 | Ht = ht)

=
P (Dt−1 = 1, Y (ori)

t = 1 | Ht = ht)

P (Dt−1 = 1, Y (ori)
t = 1 | Ht = ht) + P (Dt−1 = 1, Y (ori)

t = 0 | Ht = ht)

=
d(ht)ht

d(ht)ht + d(ht)(1− ht)

=ht

=P (Y (ori)
t = 1 | Ht = ht);

when d(ht) = 1, this indicates that if Ht = ht, we know for sure that this individual received
a positive decision in the previous time step (when T = t − 1), and we have Y (ori)

t = Y (obs)
t by

definition; when d(ht) = 0, this indicates that if Ht = ht, we know for sure that this individual did
not receive a positive decision in the previous time step (when T = t− 1), and in this case Y (obs)

t is
undefined.

Therefore, among the population where ground truth is actually observable, i.e., Y (obs)
t is not undefined,

we have:
Y (obs)
t ∼ Bernoulli(ht).

C.2 PROOF FOR THEOREM 4.1

Theorem. Let us consider the general situation where both Dt and Y (ori)
t are dependent with At,

i.e., Dt ⊥̸⊥At, Y
(ori)
t ⊥̸⊥At. Then under Fact 3.2, Assumption 3.3, and Assumption 3.4, as well as the

specified dynamics, when Ht ⊥̸⊥At, only if at least one of the following conditions holds true for all
et ∈ E can we possibly attain Ht+1 ⊥⊥At+1:

(1) The ratio ft(0,et)
ft(1,et)

has a specific domain of value:

ft(0, et)

ft(1, et)
=

1± αD ± αY

1± αD ± αY
;

(2) Positive (negative) labels only appear in the advantaged (disadvantaged) group, and the
decision for everyone is positive (if αD > αY ):





ft(0, et) ∈ [ 1
1+αD−αY

, 1],

ft(1, et) ∈ [ 1
1+αD+αY

, 1],

gY
(ori)

t (0, et) = 0, gY
(ori)

t (1, et) = 1,

gDt (0, et) = gDt (1, et) = 1;

22



Published as a conference paper at ICLR 2023

(3) Negative (positive) labels only appear in the advantaged (disadvantaged) group, and the
decision for everyone is positive (if αD > αY ):





ft(0, et) ∈ [ 1
1+αD+αY

, 1],

ft(1, et) ∈ [ 1
1+αD−αY

, 1],

gY
(ori)

t (0, et) = 1, gY
(ori)

t (1, et) = 0,

gDt (0, et) = gDt (1, et) = 1;

(4) Everyone has a positive label, but the positive decision is exclusive to the advantaged group
(if αD < αY ): 




ft(0, et) ∈ [ 1
1−αD+αY

, 1],

ft(1, et) ∈ [ 1
1+αD+αY

, 1],

gY
(ori)

t (0, et) = gY
(ori)

t (1, et) = 1,

gDt (0, et) = 0, gDt (1, et) = 1;

(5) Everyone has a positive label, but the positive decision is exclusive to the disadvantaged
group (if αD < αY ): 




ft(0, et) ∈ [ 1
1+αD+αY

, 1],

ft(1, et) ∈ [ 1
1−αD+αY

, 1],

gY
(ori)

t (0, et) = gY
(ori)

t (1, et) = 1,

gDt (0, et) = 1, gDt (1, et) = 0.

Proof (sketch). In order to see the exact condition under which it is possible to achieve Ht+1⊥⊥At+1,
we consider the necessary and sufficient condition such that Ht+1 = ft+1(At+1, Et+1) is not a
function of At+1. This, together with Fact 3.2, Assumption 3.3, and Assumption 3.4, indicates that
we need to consider the condition under which Ht+1 = min

{
1, ft(At, Et)

[
1 + αD(2Dt − 1) +

αY (2Y
(ori)
t − 1)

]}
is not a function of At.

Since both Dt and Y (ori)
t are binary, we can exhaustively consider all value combinations of Dt and

Y (ori)
t , and list every possible value Ht+1 can take in each case in Table 1 (if αD > αY ), Table 2

(if αD < αY ), or Table 3 (if αD = αY ). By exhaustively going through possible cases, we can
have a full picture of the update of Ht+1 based on (Ht, Y

(ori)
t , Dt), and then derive conditions under

which Ht+1 is not a function of At, i.e., we have the conditions under which it is possible to attain
Ht+1 ⊥⊥At+1.

Proof (full). In order to see the exact condition under which it is possible to achieve Ht+1⊥⊥At+1, we
consider the necessary and sufficient condition such that Ht+1 = ft+1(At+1, Et+1) is not a function
of At+1. By Fact 3.2, Assumption 3.3, and Assumption 3.4, it is necessary and sufficient to consider
the condition under which Ht+1 = min

{
1, ft(At, Et)

[
1 + αD(2Dt − 1) + αY (2Y

(ori)
t − 1)

]}
is

not a function of At.

Considering the fact that both Dt and Y (ori)
t are binary, we can compare the values of Ht+1 when

At = 0 and At = 1 for all possible combinations of Dt and Y (ori)
t . For any fixed et ∈ E , we can list

all the cases in Table 1 (if αD > αY ), Table 2 (if αD < αY ), or Table 3 (if αD = αY ), and see if for
all et ∈ E , there is no difference in the value of Ht+1 between the cases when At = 0 and At = 1.

From Table 1, Table 2, and Table 3, we can see that if and only the following hold true can we achieve
Ht+1 ⊥⊥ At+1: for every et ∈ E , whenever the joint probability P

(
gDt (0, et) = d, gY

(ori)

t (0, et) =

y, gDt (1, et) = d′, gY
(ori)

t (1, et) = y′
)

is nonzero, the last two columns of the corresponding row(s)
in the table, i.e., the exact values of Ht+1, need to match. For example, when αD > αY , if we
know P

(
gDt (0, et) = 0, gY

(ori)

t (0, et) = 0, gDt (1, et) = 0, gY
(ori)

t (1, et) = 0
)
̸= 0, we need the last

two columns of Case (i) of Table 1 to equal to each other, i.e., we need ft(0, et) = ft(1, et) to hold
true.
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Without further assumptions on the joint distribution of the data, we do not know which combination
of (d, y, d′, y′) will result in a nonzero joint probability:

P
(
gDt (0, et) = d, gY

(ori)

t (0, et) = y, gDt (1, et) = d′, gY
(ori)

t (1, et) = y′
)
̸= 0.

However, considering the fact that
∑

d,d′∈D,y,y′∈Y P
(
gDt (0, et) = d, gY

(ori)

t (0, et) = y, gDt (1, et) =

d′, gY
(ori)

t (1, et) = y′
)
= 1 holds for all et ∈ E , we do know that for any fixed et ∈ E , there is at least

one possible instantiation of (d∗, y∗, d′∗, y′∗) such that:

P
(
gDt (0, et) = d∗, gY

(ori)

t (0, et) = y∗, gDt (1, et) = d′∗, gY
(ori)

t (1, et) = y′∗
)
̸= 0. (C.1)

Let us first consider situations where αD > αY and focus on Table 1. The analysis on situations
where αD < αY (i.e., Table 2) or αD = αY (i.e, Table 3), is of the same flavor and therefore we
omit the detail in the proof.

To begin with, we can observe that not every entry of the last two columns explicitly keeps the
min{·, 1} operator. On the one hand, since αD > αY (αD, αY ∈ [0, 1

2 ), as of Assumption 3.3), we
have (1−αD ±αY ) ∈ (0, 1) and ft(at, et)(1−αD ±αY ) ∈ (0, 1) (since Ht = ft(at, et) ∈ (0, 1]);
therefore, we do not need to keep the min{·, 1} operator explicit, for instance, in the second to last
column of Case (v - viii). On the other hand, when the coefficients (1 + αD ± αY ) > 1 we are not
sure if ft(at, et)(1 + αD ± αY ) exceed 1; therefore, we need to keep the min{·, 1} operator explicit,
for instance, in the last column of Case (v - viii).

Besides, if only one entry of the last two columns explicitly has the min{·, 1} operator, it is equivalent
to require that the terms themselves (before applying the operator) are equal (since the one without
the min{·, 1} operator is known to be within the (0, 1) interval). For instance, Case (ix) requires
that min{ft(0, et)(1 + αD − αY ), 1} = ft(1, et)(1− αD − αY ), which is equivalent to requiring
ft(0, et)(1 + αD − αY ) = ft(1, et)(1− αD − αY ).

Furthermore, if both entries of the last two columns explicitly has the min{·, 1} operator, the exact
condition of matching the last two columns depends on the actual value of ft(0, et) and ft(1, et). For
instance, Case (xv) requires that min{ft(0, et)(1+αD+αY ), 1} = min{ft(1, et)(1+αD−αY ), 1},
which could be equivalent to one of the following conditions (recall that 1 + αD ± αY > 1):

• if we have ft(0, et) ∈ [ 1
1+αD+αY

, 1] and ft(1, et) ∈ [ 1
1+αD−αY

, 1], we require 1 = 1,
which trivially holds true;

• if we have ft(0, et) ∈ (0, 1
1+αD+αY

) and ft(1, et) ∈ [ 1
1+αD−αY

, 1], we require
ft(0, et)(1 + αD + αY ) = 1, which cannot hold true;

• if we have ft(0, et) ∈ [ 1
1+αD+αY

, 1] and ft(1, et) ∈ (0, 1
1+αD−αY

), we require 1 =

ft(1, et)(1 + αD − αY ) which cannot hold true;

• if we have ft(0, et) ∈ (0, 1
1+αD+αY

) and ft(1, et) ∈ (0, 1
1+αD−αY

), we require ft(0,et)
ft(1,et)

=
1+αD−αY

1+αD+αY
.

Recall that without further assumptions on the data distribution, we do not know which row(s)
of the table correspond to a nonzero probability P

(
gDt (0, et) = d, gY

(ori)

t (0, et) = y, gDt (1, et) =

d′, gY
(ori)

t (1, et) = y′
)
. As a result, in general, we do not know which set of requirements we should

enforce for each et ∈ E . Therefore, we cannot derive a necessary and sufficient condition for attaining
Ht+1 ⊥⊥At+1 in general cases. Nevertheless, we can summarize the previous analysis and derive the
necessary condition of attaining Ht+1 ⊥⊥At+1, i.e., only if at least one of the following conditions
holds true for all et ∈ E can we possibly attain Ht+1 ⊥⊥At+1:

(1) The ratio ft(0,et)
ft(1,et)

has a specific domain of value:

ft(0, et)

ft(1, et)
=

1± αD ± αY

1± αD ± αY
;
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(2) Positive (negative) labels only appear in the advantaged (disadvantaged) group, and the
decision for everyone is positive (if αD > αY ):




ft(0, et) ∈ [ 1
1+αD−αY

, 1],

ft(1, et) ∈ [ 1
1+αD+αY

, 1],

gY
(ori)

t (0, et) = 0, gY
(ori)

t (1, et) = 1,

gDt (0, et) = gDt (1, et) = 1;

(3) Negative (positive) labels only appear in the advantaged (disadvantaged) group, and the
decision for everyone is positive (if αD > αY ):




ft(0, et) ∈ [ 1
1+αD+αY

, 1],

ft(1, et) ∈ [ 1
1+αD−αY

, 1],

gY
(ori)

t (0, et) = 1, gY
(ori)

t (1, et) = 0,

gDt (0, et) = gDt (1, et) = 1;

(4) Everyone has a positive label, but the positive decision is exclusive to the advantaged group
(if αD < αY ): 




ft(0, et) ∈ [ 1
1−αD+αY

, 1],

ft(1, et) ∈ [ 1
1+αD+αY

, 1],

gY
(ori)

t (0, et) = gY
(ori)

t (1, et) = 1,

gDt (0, et) = 0, gDt (1, et) = 1;

(5) Everyone has a positive label, but the positive decision is exclusive to the disadvantaged
group (if αD < αY ): 




ft(0, et) ∈ [ 1
1+αD+αY

, 1],

ft(1, et) ∈ [ 1
1−αD+αY

, 1],

gY
(ori)

t (0, et) = gY
(ori)

t (1, et) = 1,

gDt (0, et) = 1, gDt (1, et) = 0.

C.3 PROOF FOR THEOREM 4.2

Theorem. Let us consider the general situation where both Dt and Y (ori)
t are dependent with At, i.e.,

Dt ⊥̸⊥At, Y
(ori)
t ⊥̸⊥At. Under Fact 3.2, Assumption 3.3, Assumption 3.4, and Assumption 3.6, as well

as the specified dynamics, when Ht ⊥̸⊥ At, the perfect predictor does not have the potential to get
closer to the long-term fairness goal after one-step intervention, i.e.,

Dt = Y (ori)
t =⇒ ∆

(Perfect Predictor)
STIR

∣∣t+1

t
> 0.

Proof (sketch). The goal is to calculate if it is possible for Single-step Tier Imbalance Reduction
∆STIR|t+1

t to be smaller than 0 when using perfect predictors. As defined in Equation 5, ∆STIR|t+1
t is

a weighted aggregation (integration followed by summation) of |φ(et+1)| − |φ(et)|. The quantitative
analysis involves three key components: instantiations of φt+1(et+1), the knowledge/assumptions on
qt
(
ft(0, ϵ), ft(1, ϵ) | d, d′, y, y′

)
, and characteristics of Pt(d, d

′, y′, y′).

For the first component, we can list all possible instantiations of φt+1(et+1) in Table 4 (if αD > αY ),
Table 5 (if αD < αY ), and Table 6 (if αD = αY ), respectively. For the second component, we can
introduce a quantitative assumption on qt

(
ft(0, ϵ), ft(1, ϵ) | d, d′, y, y′

)
(Assumption 3.6). For the

third component, we need to exploit the characteristic of the predictor of interest to gain further insight
into the joint distribution Pt(d, d

′, y, y′). For perfect predictors, we have Pt(d, d
′, y, y′) satisfies

Equation 8 (as we have discussed in Section 4.2.1).

For the purpose of calculating the value of ∆STIR|t+1
t , the proof contains two steps: (1) exhaustively

derive the value of |φ(et+1)| − |φ(et)| after one-step dynamics in all possible cases, and (2) aggre-
gate the difference |φ(et+1)| − |φ(et)| with the help of the additional knowledge/assumptions on
qt
(
ft(0, ϵ), ft(1, ϵ) | d, d′, y, y′

)
and Pt(d, d

′, y, y′).
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Proof (full). For the perfect predictor Dt = Y (ori)
t , among all possible instantiations of φt+1(et+1)

as listed in Table 4, Table 5, and Table 6, not every case corresponds to a nonzero Pt(d, d
′, y, y′)

and therefore may not contribute to the computation of ∆STIR|t+1
t as detailed in Equation 5. By

applying Equation 8 we only need to consider Case (i), Case (vi), Case (xi), and Case (xvi) in Table 4
(if αD > αY ), Table 5 (if αD < αY ), and Table 6 (if αD = αY ), respectively. We list all possible
values of |φ(et+1)| − |φ(et)| for each of the aforementioned cases (the result applies to scenarios
where αD > αY , αD < αY , or αD = αY ).

When (d, d′, y, y′) = (0, 1, 0, 1), i.e., for Case (vi):

(vi.1.1) |φ(et+1)| − |φ(et)| = −(αD + αY )
(
ft(0, et) + ft(1, et)

)
< 0

if we have

{
ft(0, et) ∈ (0, 1], ft(1, et) ∈ (0, 1

1+αD+αY
)

ft(1, et) ≤ tan
(
arctan 1

αD+αY
− π

4

) ;

(vi.1.2) |φ(et+1)| − |φ(et)| = (αD + αY − 2)ft(0, et) + (αD + αY + 2)ft(1, et) < 0

if we have





ft(0, et) ∈ (0, 1], ft(1, et) ∈ (0, 1
1+αD+αY

)

ft(1, et) < tan
(
arctan 2

αD+αY
− π

4

)

ft(1, et) ≥ tan
(
arctan 1

αD+αY
− π

4

) ;

(vi.1.3) |φ(et+1)| − |φ(et)| = (αD + αY − 2)ft(0, et) + (αD + αY + 2)ft(1, et) > 0

if we have





ft(0, et) ∈ (0, 1], ft(1, et) ∈ (0, 1
1+αD+αY

)

ft(1, et) < ft(0, et)

ft(1, et) ≥ tan
(
arctan 2

αD+αY
− π

4

) ;

(vi.1.4) |φ(et+1)| − |φ(et)| = (αD + αY )
(
ft(0, et) + ft(1, et)

)
> 0

if we have

{
ft(0, et) ∈ (0, 1], ft(1, et) ∈ (0, 1

1+αD+αY
)

ft(1, et) ≥ ft(0, et)
;

(vi.2.1) |φ(et+1)| − |φ(et)| = 1− (2− αD − αY )ft(0, et) + ft(1, et) > 0

if we have

{
ft(0, et) ∈ (0, 1], ft(1, et) ∈ [ 1

1+αD+αY
, 1]

ft(1, et) < ft(0, et)
;

(vi.2.2) |φ(et+1)| − |φ(et)| = 1 + (αD + αY )ft(0, et)− ft(1, et) > 0

if we have

{
ft(0, et) ∈ (0, 1], ft(1, et) ∈ [ 1

1+αD+αY
, 1]

ft(1, et) ≥ ft(0, et)
.

When (d, d′, y, y′) = (1, 0, 1, 0), i.e., for Case (xi):

(xi.1.1) |φ(et+1)| − |φ(et)| = −(αD + αY )
(
ft(0, et) + ft(1, et)

)
< 0

if we have

{
ft(0, et) ∈ (0, 1

1+αD+αY
), ft(1, et) ∈ (0, 1]

ft(1, et) ≥ tan
(
3π
4 − arctan 1

αD+αY

) ;

(xi.1.2) |φ(et+1)| − |φ(et)| = (αD + αY + 2)ft(0, et) + (αD + αY − 2)ft(1, et) < 0

if we have





ft(0, et) ∈ (0, 1
1+αD+αY

), ft(1, et) ∈ (0, 1]

ft(1, et) < tan
(
3π
4 − arctan 1

αD+αY

)

ft(1, et) ≥ tan
(
3π
4 − arctan 2

αD+αY

) ;
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ft(0, et)

ft(1, et)

(
1,

1

1 + αD + αY

)

(
1, tan

(
arctan

2

αD + αY
− π

4

))

(
1, tan

(
arctan

1

αD + αY
− π

4

))

(vi.1.1)

(vi.
1.2)

(vi.1.4)

(vi
.1.
3)

(vi.2.2)

(v
i.2
.1
)

(a) Case (vi), (d, d′, y, y′) = (0, 1, 0, 1)

( 1

1 +
αD

+ αY

, 1

)

ft(0, et)

ft(1, et)

(xi.1.4)

(x
i.
1.
2)

(x
i.
1.
1)

(x
i.1
.3
)

(xi.2.2)

(x
i.2
.1
)

(
tan

−1
( 3π

4
− arct

an

1

αD
+ αY

)
, 1

)

(
tan

−1
( 3π

4
− arct

an

2

αD
+ αY

)
, 1

)

(b) Case (xi), (d, d′, y, y′) = (1, 0, 1, 0)

Figure 7: Illustration of the sliced squares on the
(
ft(0, et), ft(1, et)

)
plane. Depending on the initial

situation, i.e., the slice that the
(
ft(0, et), ft(1, et)

)
pair falls upon, the term |φ(et+1)| −

|φ(et)| takes different values. The shaded slices indicate that if the initial situation satisfies
the corresponding condition, the calculated |φ(et+1)| − |φ(et)| < 0.

(xi.1.3) |φ(et+1)| − |φ(et)| = (αD + αY + 2)ft(0, et) + (αD + αY − 2)ft(1, et) > 0

if we have





ft(0, et) ∈ (0, 1
1+αD+αY

), ft(1, et) ∈ (0, 1]

ft(1, et) < tan
(
3π
4 − arctan 2

αD+αY

)

ft(1, et) ≥ ft(0, et)

;

(xi.1.4) |φ(et+1)| − |φ(et)| = (αD + αY )
(
ft(0, et) + ft(1, et)

)
> 0

if we have

{
ft(0, et) ∈ (0, 1

1+αD+αY
), ft(1, et) ∈ (0, 1]

ft(1, et) < ft(0, et)
;

(xi.2.1) |φ(et+1)| − |φ(et)| = 1 + ft(0, et)− (2− αD − αY )ft(1, et) > 0

if we have

{
ft(0, et) ∈ [ 1

1+αD+αY
, 1], ft(1, et) ∈ (0, 1]

ft(1, et) ≥ ft(0, et)
;

(xi.2.2) |φ(et+1)| − |φ(et)| = 1− ft(0, et) + (αD + αY )ft(1, et) > 0

if we have

{
ft(0, et) ∈ [ 1

1+αD+αY
, 1], ft(1, et) ∈ (0, 1]

ft(1, et) < ft(0, et)
.

When (d, d′, y, y′) = (0, 0, 0, 0), i.e., for Case (i), or (d, d′, y, y′) = (1, 1, 1, 1), i.e., for Case (xvi),
|φ(et+1)| − |φ(et)| = 0.

Now we proceed to the second step and aggregate |φ(et+1)| − |φ(et)| terms. According to Equation
5 and Equation B.5, for the perfect predictor we have:

∆
(Perfect Predictor)
STIR

∣∣t+1

t
= Pt(0, 1, 0, 1) ·

∫

ϵ∈E

∫

ξ∈E

(
|φt+1(ξ)| − |φt(ϵ)|

)

· 1{φt+1(ξ) = G(ft, g
D
t , gY

(ori)

t ; 0, 1, 0, 1, ϵ, αD, αY )}
· qt

(
ft(0, ϵ), ft(1, ϵ) | 0, 1, 0, 1

)
dξdϵ

+ Pt(1, 0, 1, 0) ·
∫

ϵ∈E

∫

ξ∈E

(
|φt+1(ξ)| − |φt(ϵ)|

)

· 1{φt+1(ξ) = G(ft, g
D
t , gY

(ori)

t ; 1, 0, 1, 0, ϵ, αD, αY )}
· qt

(
ft(0, ϵ), ft(1, ϵ) | 1, 0, 1, 0

)
dξdϵ.

(C.2)
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As we can see from Equation C.2, we need to perform two-dimensional integrations on the(
ft(0, et), ft(1, et)

)
plane, calculating the expectation of the term |φ(et+1)| − |φ(et)| over the

conditional densities qt
(
ft(0, ϵ), ft(1, ϵ) | 0, 1, 0, 1

)
and qt

(
ft(0, ϵ), ft(1, ϵ) | 1, 0, 1, 0

)
. Since these

conditional joint densities could be convoluted in general cases, the calculation of conditional ex-
pectations in Equation C.2 could be rather complicated. Therefore, we propose to take advantage
of Assumption 3.6 to quantitatively simplify the calculation yet remain consistent with the rather
mild qualitative assumption (Assumption 3.5), and derive a result that is numerically clear and infor-
mative. For the purpose of better illustrating the connection between (qualitative and quantitative)
assumptions on qt

(
ft(0, ϵ), ft(1, ϵ) | d, d′, y, y′

)
and the computation of ∆STIR|t+1

t , we also provide
illustrative figures as shown in Figure 7.

With the help of Assumption 3.6, we convert the conditional expectations in Equation C.2 into
calculations of multiple integrals on slices within a 1× 1 square on the 2-D plane, where ϕ0 and ϕ1

axes correspond to the value of ft(0, Et) and ft(1, Et) respectively:

∫

ϵ∈E

∫

ξ∈E

(
|φt+1(ξ)| − |φt(ϵ)|

)
· 1{φt+1(ξ) = G(ft, g

D
t , gY

(ori)

t ; 0, 1, 0, 1, ϵ, αD, αY )}

· qt
(
ft(0, ϵ), ft(1, ϵ) | 0, 1, 0, 1

)
dξdϵ

= γ(low)
0101 ·

{∫ 1

0

∫ tan
(
arctan 1

αD+αY
−π

4

)
ϕ0

0

−(αD + αY )(ϕ0 + ϕ1) dϕ1dϕ0

+

∫ 1
1+αD+αY

0

∫ ϕ0

tan
(
arctan 1

αD+αY
−π

4

)
ϕ0

(αD + αY − 2)ϕ0 + (αD + αY + 2)ϕ1 dϕ1dϕ0

+

∫ 1

1
1+αD+αY

∫ 1
1+αD+αY

tan
(
arctan 1

αD+αY
−π

4

)
ϕ0

(αD + αY − 2)ϕ0 + (αD + αY + 2)ϕ1 dϕ1dϕ0

+

∫ 1

1
1+αD+αY

∫ ϕ0

1
1+αD+αY

1− (2− αD − αY )ϕ0 + ϕ1 dϕ1dϕ0

}

+ γ(up)
0101 ·

{∫ 1
1+αD+αY

0

∫ 1
1+αD+αY

ϕ0

(αD + αY )(ϕ0 + ϕ1) dϕ1dϕ0

+

∫ 1
1+αD+αY

0

∫ 1

1
1+αD+αY

1 + (αD + αY )ϕ0 − ϕ1 dϕ1dϕ0

+

∫ 1

1
1+αD+αY

∫ 1

ϕ0

1 + (αD + αY )ϕ0 − ϕ1 dϕ1dϕ0

}
,

28



Published as a conference paper at ICLR 2023

∫

ϵ∈E

∫

ξ∈E

(
|φt+1(ξ)| − |φt(ϵ)|

)
· 1{φt+1(ξ) = G(ft, g

D
t , gY

(ori)

t ; 1, 0, 1, 0, ϵ, αD, αY )}

· qt
(
ft(0, ϵ), ft(1, ϵ) | 1, 0, 1, 0

)
dξdϵ

= γ(up)
1010 ·

{∫ 1

0

∫ tan−1
(

3π
4 −arctan 1

αD+αY

)
ϕ1

0

−(αD + αY )(ϕ0 + ϕ1) dϕ0dϕ1

+

∫ 1
1+αD+αY

0

∫ ϕ1

tan−1
(

3π
4 −arctan 1

αD+αY

)
ϕ1

(αD + αY + 2)ϕ0 + (αD + αY − 2)ϕ1 dϕ0dϕ1

+

∫ 1

1
1+αD+αY

∫ 1
1+αD+αY

tan−1
(

3π
4 −arctan 1

αD+αY

)
ϕ1

(αD + αY + 2)ϕ0 + (αD + αY − 2)ϕ1 dϕ0dϕ1

+

∫ 1

1
1+αD+αY

∫ ϕ1

1
1+αD+αY

1 + ϕ0 − (2− αD − αY )ϕ1 dϕ0dϕ1

}

+ γ(low)
1010 ·

{∫ 1
1+αD+αY

0

∫ 1
1+αD+αY

ϕ1

(αD + αY )(ϕ0 + ϕ1) dϕ0dϕ1

+

∫ 1
1+αD+αY

0

∫ 1

1
1+αD+αY

1− ϕ0 + (αD + αY )ϕ1 dϕ0dϕ1

+

∫ 1

1
1+αD+αY

∫ 1

ϕ1

1− ϕ0 + (αD + αY )ϕ1 dϕ0dϕ1

}
.

Since γ(low)
0101 + γ(up)

0101 = 2 and γ(low)
1010 + γ(up)

1010 = 2, we can derive the form of ∆(Perfect Predictor)
STIR

∣∣t+1

t
:

∆
(Perfect Predictor)
STIR

∣∣t+1

t
=

(
Pt(0, 1, 0, 1) · γ(low)

0101 + Pt(1, 0, 1, 0) · γ(up)
1010

)
·
{

− 1 + αD + αY

3
· tan2

(
arctan

1

αD + αY
− π

4

)

+
2(1− αD − αY )

3
· tan

(
arctan

1

αD + αY
− π

4

)

− 1− αD − αY

6
+

3− αD − αY

2(1 + αD + αY )

+
3(αD + αY )

3 − 6(αD + αY )
2 − 19(αD + αY )− 10

6(1 + αD + αY )3

}

+
(
Pt(0, 1, 0, 1) + Pt(1, 0, 1, 0)

)
·
[

αD + αY − 2

3
+

αD + αY

1 + αD + αY
+

3(αD + αY )
2 + 5(αD + αY ) + 2

3(1 + αD + αY )3

]
,

where γ(low)
0101, γ

(up)
1010 ∈ (0, 1) (according to Assumption 3.6), and αD, αY ∈ [0, 1

2 ) (according to
Assumption 3.3).

Let us denote β(αD, αY ) := tan
(
arctan 1

αD+αY
− π

4

)
to simplify the notation. Without loss of

generality let us assume that Pt(0, 1, 0, 1) · γ(low)
0101 + Pt(1, 0, 1, 0) · γ(up)

1010 > 0.
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We can further compute the partial derivatives and find out that:

∂∆
(Perfect Predictor)
STIR

∣∣t+1

t

∂
(
Pt(0, 1, 0, 1) · γ(low)

0101 + Pt(1, 0, 1, 0) · γ(up)
1010

)

= −1 + αD + αY

3
· β2(αD, αY )

+
2(1− αD − αY )

3
· β(αD, αY )

− 1− αD − αY

6
+

3− αD − αY

2(1 + αD + αY )

+
3(αD + αY )

3 − 6(αD + αY )
2 − 19(αD + αY )− 10

6(1 + αD + αY )3

< 0, ∀ αD, αY ∈ [0,
1

2
),

and that:

∂∆
(Perfect Predictor)
STIR

∣∣t+1

t

∂(αD + αY )
=

(
Pt(0, 1, 0, 1) + Pt(1, 0, 1, 0)

)
·
[
1

3
+

2

3(1 + αD + αY )3

]

+
(
Pt(0, 1, 0, 1) · γ(low)

0101 + Pt(1, 0, 1, 0) · γ(up)
1010

)
·
[

− 2(1 + αD + αY )

3
· β(αD, αY ) ·

∂β(αD, αY )

∂(αD + αY )

+
2(1− αD − αY )

3
· ∂β(αD, αY )

∂(αD + αY )

+
1

6
− 2

(1 + αD + αY )2
+

15(αD + αY ) + 11

6(1 + αD + αY )3

]

=
(
Pt(0, 1, 0, 1) + Pt(1, 0, 1, 0)

)
·
[
1

3
+

2

3(1 + αD + αY )3

]

+
(
Pt(0, 1, 0, 1) · γ(low)

0101 + Pt(1, 0, 1, 0) · γ(up)
1010

)
·
[

2
(
1 + β2(αD, αY )

)
·
[
(1 + αD + αY )β(αD, αY ) + αD + αY − 1

]

3(1 + αD + αY )3

+
(αD + αY )

3 + 3(αD + αY )
2 + 6(αD + αY )

6(1 + αD + αY )3

]

> 0, ∀ γ(low)
0101, γ

(up)
1010 ∈ (0, 1), αD, αY ∈ [0,

1

2
),

where we utilize the fact that ∂β(αD,αY )
∂(αD+αY ) =

(
1 + β2(αD, αY )

)
· 1
1+(αD+αY )2 .
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Therefore, we can conclude that

∆
(Perfect Predictor)
STIR

∣∣t+1

t
> lim

γ(low)
0101→1

γ(up)
1010→1

αD+αY →0

(
Pt(0, 1, 0, 1) · γ(low)

0101 + Pt(1, 0, 1, 0) · γ(up)
1010

)
·
{

− 1 + αD + αY

3
· tan2

(
arctan

1

αD + αY
− π

4

)

+
2(1− αD − αY )

3
· tan

(
arctan

1

αD + αY
− π

4

)

− 1− αD − αY

6
+

3− αD − αY

2(1 + αD + αY )

+
3(αD + αY )

3 − 6(αD + αY )
2 − 19(αD + αY )− 10

6(1 + αD + αY )3

}

+
(
Pt(0, 1, 0, 1) + Pt(1, 0, 1, 0)

)
·
[

αD + αY − 2

3
+

αD + αY

1 + αD + αY
+

3(αD + αY )
2 + 5(αD + αY ) + 2

3(1 + αD + αY )3

]

= 0,

i.e., under the specified assumptions and dynamics, we have

∀ γ(low)
0101, γ

(up)
1010 ∈ (0, 1), αD, αY ∈ [0,

1

2
) : ∆

(Perfect Predictor)
STIR

∣∣t+1

t
> 0. (C.3)

C.4 PROOF FOR THEOREM 4.3

Theorem. Let us consider the general situation where both Dt and Y (ori)
t are dependent with At, i.e.,

Dt ⊥̸⊥At, Y
(ori)
t ⊥̸⊥At. Let us further assume that the data dynamics satisfies αD ∈ (0, 1

2 ), αY = 0.
Then under Fact 3.2, Assumption 3.3, and Assumption 3.4, and Assumption 3.6, as well as the
specified dynamics, when Ht ⊥̸⊥At, it is possible for the Counterfactual Fair predictor to get closer
to the long-term fairness goal after one-step intervention, if certain properties of the data dynamics
and the predictor behavior are satisfied simultaneously, i.e.,





gDt (0, Et) = gDt (1, Et)
Pt(1,1,0,1)+Pt(1,1,1,0)
Pt(0,0,0,1)+Pt(0,0,1,0)

< 27
8

αD ∈
((Pt(1,1,0,1)+Pt(1,1,1,0)

Pt(0,0,0,1)+Pt(0,0,1,0)

) 1
3 − 1, 1

2

)

αY = 0

=⇒ ∆
(Counterfactual Fair)
STIR

∣∣t+1

t
< 0.

Proof (sketch). Similar to proving Theorem 4.2 (proof in Appendix C.3), the goal is to calculate if it
is possible for the Single-step Tier Imbalance Reduction ∆STIR|t+1

t to be smaller than 0 when using
Counterfactual Fair predictors.

Since ∆STIR|t+1
t is a weighted aggregation of |φ(et+1)| − |φ(et)| (as defined in Equation 5),

the quantitative analysis involves three key components: instantiations of φt+1(et+1), the knowl-
edge/assumptions on qt

(
ft(0, ϵ), ft(1, ϵ) | d, d′, y, y′

)
, and characteristics of Pt(d, d

′, y′, y′).

For the first component, since αY = 0 is a special case of scenarios where αD > αY , we can list
all possible instantiations of φt+1(et+1) in Table 4 (when αD > αY ). For the second component,
we can introduce a quantitative assumption on qt

(
ft(0, ϵ), ft(1, ϵ) | d, d′, y, y′

)
(Assumption 3.6).

For the third component, we need to exploit the characteristic of the predictor of interest to gain
further insight into the joint distribution Pt(d, d

′, y, y′). For Counterfactual Fair predictors, we have
Pt(d, d

′, y, y′) satisfies Equation 10 (as we have discussed in Section 4.2.2).
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For the purpose of calculating the value of ∆STIR|t+1
t , the proof contains two steps: (1) exhaustively

derive the value of |φ(et+1)| − |φ(et)| after one-step dynamics (finished in Appendix C.3 when
proving Theorem 4.2), and (2) aggregate the difference |φ(et+1)| − |φ(et)| with the help of the
additional knowledge/assumptions on qt

(
ft(0, ϵ), ft(1, ϵ) | d, d′, y, y′

)
and Pt(d, d

′, y, y′).

Proof (full). Based on the definition of ∆STIR|t+1
t , the proof calculates the aggregation (integra-

tion followed by summation) of the difference |φ(et+1)| − |φ(et)| with the help of the additional
knowledge/assumptions on qt

(
ft(0, ϵ), ft(1, ϵ) | d, d′, y, y′

)
and Pt(d, d

′, y, y′).

Since we assume αD ∈ (0, 1
2 ), αY = 0, we focus on possible instantiations of φt+1(et+1) as listed

in Table 4 (αD > αY ). For the Counterfactual Fair predictor that satisfies gDt (0, Et) = gDt (1, Et),
not every case in Table 4 corresponds to a nonzero Pt(d, d

′, y, y′) and therefore may not contribute
to the computation of ∆STIR|t+1

t as detailed in Equation 5. By applying Equation 10 we need to
consider Case (i), Case (ii), Case (iii), Case (iv), Case (xiii), Case (xiv), Case (xv), and Case (xvi) in
Table 4.

When (d, d′, y, y′) satisfies y = y′, i.e, for Case (i), Case (iv), Case (xiii), and Case (xvi), we have
|φ(et+1)| − |φ(et)| = 0. Therefore we only need to calculate ∆

(Counterfactual Fair)
STIR

∣∣t+1

t
for Case (ii),

Case (iii), Case (xiv), and Case (xv) (although αY = 0, we explicitly keep the hyperparameter αY in
the proof for the purpose of notation consistency).

According to Equation 5 and Equation B.5, for the Counterfactual Fair predictor we have:

∆
(Counterfactual Fair)
STIR

∣∣t+1

t
= Pt(0, 0, 0, 1) ·

∫

ϵ∈E

∫

ξ∈E

(
|φt+1(ξ)| − |φt(ϵ)|

)

· 1{φt+1(ξ) = G(ft, g
D
t , gY

(ori)

t ; 0, 0, 0, 1, ϵ, αD, αY )}
· qt

(
ft(0, ϵ), ft(1, ϵ) | 0, 0, 0, 1

)
dξdϵ

+ Pt(0, 0, 1, 0) ·
∫

ϵ∈E

∫

ξ∈E

(
|φt+1(ξ)| − |φt(ϵ)|

)

· 1{φt+1(ξ) = G(ft, g
D
t , gY

(ori)

t ; 0, 0, 1, 0, ϵ, αD, αY )}
· qt

(
ft(0, ϵ), ft(1, ϵ) | 0, 0, 1, 0

)
dξdϵ

+ Pt(1, 1, 0, 1) ·
∫

ϵ∈E

∫

ξ∈E

(
|φt+1(ξ)| − |φt(ϵ)|

)

· 1{φt+1(ξ) = G(ft, g
D
t , gY

(ori)

t ; 1, 1, 0, 1, ϵ, αD, αY )}
· qt

(
ft(0, ϵ), ft(1, ϵ) | 1, 1, 0, 1

)
dξdϵ

+ Pt(1, 1, 1, 0) ·
∫

ϵ∈E

∫

ξ∈E

(
|φt+1(ξ)| − |φt(ϵ)|

)

· 1{φt+1(ξ) = G(ft, g
D
t , gY

(ori)

t ; 1, 1, 1, 0, ϵ, αD, αY )}
· qt

(
ft(0, ϵ), ft(1, ϵ) | 1, 1, 1, 0

)
dξdϵ.

(C.4)

Similar to the proof of the result for perfect predictors presented in Appendix C.3, with the help of
Assumption 3.6, we convert the conditional expectations in Equation C.4 into calculations of multiple
integrals on slices within a 1× 1 square on the 2-D plane, where ϕ0 and ϕ1 axes correspond to the
value of ft(0, Et) and ft(1, Et) respectively:
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∫

ϵ∈E

∫

ξ∈E

(
|φt+1(ξ)| − |φt(ϵ)|

)
· 1{φt+1(ξ) = G(ft, g

D
t , gY

(ori)

t ; 0, 0, 0, 1, ϵ, αD, αY )}

· qt
(
ft(0, ϵ), ft(1, ϵ) | 0, 0, 0, 1

)
dξdϵ

= γ(low)
0001 ·

{∫ 1

0

∫ 1−αD−αY
1−αD+αY

ϕ0

0

−(αD + αY )ϕ0 + (αD − αY )ϕ1 dϕ1dϕ0

+

∫ 1

0

∫ ϕ0

1−αD−αY
1−αD+αY

ϕ0

−(2− αD − αY )ϕ0 + (2− αD + αY )ϕ1 dϕ1dϕ0

}

+ γ(up)
0001 ·

∫ 1

0

∫ ϕ1

0

(αD + αY )ϕ0 − (αD − αY )ϕ1 dϕ0dϕ1,

∫

ϵ∈E

∫

ξ∈E

(
|φt+1(ξ)| − |φt(ϵ)|

)
· 1{φt+1(ξ) = G(ft, g

D
t , gY

(ori)

t ; 0, 0, 1, 0, ϵ, αD, αY )}

· qt
(
ft(0, ϵ), ft(1, ϵ) | 0, 0, 1, 0

)
dξdϵ

= γ(up)
0010 ·

{∫ 1

0

∫ 1−αD−αY
1−αD+αY

ϕ1

0

(αD − αY )ϕ0 − (αD + αY )ϕ1 dϕ0dϕ1

+

∫ 1

0

∫ ϕ1

1−αD−αY
1−αD+αY

ϕ1

(2− αD + αY )ϕ0 − (2− αD − αY )ϕ1 dϕ0dϕ1

}

+ γ(low)
0010 ·

∫ 1

0

∫ ϕ0

0

−(αD − αY )ϕ0 + (αD + αY )ϕ1 dϕ1dϕ0,
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∫

ϵ∈E

∫

ξ∈E

(
|φt+1(ξ)| − |φt(ϵ)|

)
· 1{φt+1(ξ) = G(ft, g

D
t , gY

(ori)

t ; 1, 1, 0, 1, ϵ, αD, αY )}

· qt
(
ft(0, ϵ), ft(1, ϵ) | 1, 1, 0, 1

)
dξdϵ

= γ(low)
1101 ·

{∫ 1
1+αD+αY

0

∫ 1+αD+αY
1+αD−αY

ϕ1

ϕ1

−(2 + αD − αY )ϕ0 + (2 + αD + αY )ϕ1 dϕ0dϕ1

+

∫ 1
1+αD−αY

0

∫ 1+αD−αY
1+αD+αY

ϕ0

0

(αD − αY )ϕ0 − (αD + αY )ϕ1 dϕ1dϕ0

+

∫ 1
1+αD−αY

1
1+αD+αY

∫ ϕ0

1
1+αD+αY

1− (2 + αD − αY )ϕ0 + ϕ1 dϕ1dϕ0

}

+ γ(up)
1101 ·

{∫ 1
1+αD+αY

0

∫ ϕ1

0

−(αD − αY )ϕ0 + (αD + αY )ϕ1 dϕ0dϕ1

+

∫ 1
1+αD+αY

0

∫ 1

1
1+αD+αY

1− (αD − αY )ϕ0 − ϕ1 dϕ1dϕ0

+

∫ 1
1+αD−αY

1
1+αD+αY

∫ 1

ϕ0

1− (αD − αY )ϕ0 − ϕ1 dϕ1dϕ0

}
,

∫

ϵ∈E

∫

ξ∈E

(
|φt+1(ξ)| − |φt(ϵ)|

)
· 1{φt+1(ξ) = G(ft, g

D
t , gY

(ori)

t ; 1, 1, 1, 0, ϵ, αD, αY )}

· qt
(
ft(0, ϵ), ft(1, ϵ) | 1, 1, 1, 0

)
dξdϵ

= γ(up)
1110 ·

{∫ 1
1+αD+αY

0

∫ 1+αD+αY
1+αD−αY

ϕ0

ϕ0

(2 + αD + αY )ϕ0 − (2 + αD − αY )ϕ1 dϕ1dϕ0

+

∫ 1
1+αD−αY

0

∫ 1+αD−αY
1+αD+αY

ϕ1

0

−(αD + αY )ϕ0 + (αD − αY )ϕ1 dϕ0dϕ1

+

∫ 1

1
1+αD−αY

∫ 1
1+αD+αY

0

1− ϕ0 − (αD + αY )ϕ1 dϕ1dϕ0

}

+ γ(low)
1110 ·

∫ 1
1+αD+αY

0

∫ ϕ0

0

(αD + αY )ϕ0 − (αD − αY )ϕ1 dϕ1dϕ0.
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Since γ(low)
0001 + γ(up)

0001 = 2, γ(low)
0010 + γ(up)

0010 = 2, γ(low)
1101 + γ(up)

1101 = 2, and γ(low)
1110 + γ(up)

1110 = 2, we can
derive the form of the term ∆

(Counterfactual Fair)
STIR

∣∣t+1

t
:

∆
(Counterfactual Fair)
STIR

∣∣t+1

t
=

(
Pt(0, 0, 0, 1) · γ(low)

0001 + Pt(0, 0, 1, 0) · γ(up)
0010

)
·
{

(αD − αY )(1− αD − αY )
2

6(1− αD + αY )2
− (αD + αY )(1− αD − αY )

3(1− αD + αY )

+
2αY

3(1− αD + αY )

[
− (2− αD − αY ) +

(2− αD + αY )(1− αD)

1− αD + αY

]
+

αD

6
− αY

2

}

+ Pt(1, 1, 0, 1) · γ(low)
1101 ·

{

2αY

3(1 + αD − αY )(1 + αD + αY )3

[
(2 + αD + αY )−

(2 + αD − αY )(1 + αD)

1 + αD − αY

]

+
1

3(1 + αD + αY )(1 + αD − αY )3

[

(αD − αY )(1 + αD − αY )−
(αD + αY )(1 + αD − αY )

2

2(1 + αD + αY )

]

− 1

(1 + αD + αY )3
(αD

6
+

αY

2

)

− 2

3
(1 + αD − αY ) ·

[
1

(1 + αD − αY )3
− 1

(1 + αD + αY )3

]

+

[
3 + 2αD

2(1 + αD + αY )
+

1 + αD − αY

2

]
·
[

1

(1 + αD − αY )2
− 1

(1 + αD + αY )2

]

−
[

3 + 2αD + 2αY

2(1 + αD + αY )2
+

1

2

]
·
[

1

1 + αD − αY
− 1

1 + αD + αY

]
− (αD + αY )αY

(1 + αD + αY )3

}

+ Pt(1, 1, 1, 0) · γ(up)
1110 ·

{

2αY

3(1 + αD − αY )(1 + αD + αY )3

[
(2 + αD + αY )−

(2 + αD − αY )(1 + αD)

1 + αD − αY

]

+
1

3(1 + αD + αY )(1 + αD − αY )3

[

(αD − αY )(1 + αD − αY )−
(αD + αY )(1 + αD − αY )

2

2(1 + αD + αY )

]

+
αD − αY

(1 + αD + αY )(1 + αD − αY )
− (αD + αY )(αD − αY )

2(1 + αD + αY )2(1 + αD − αY )

− 1

2(1 + αD + αY )

[
1− 1

(1 + αD − αY )2

]
−

(αD

6
+

αY

2

) 1

(1 + αD + αY )3

}

+
(
Pt(0, 0, 0, 1) + Pt(0, 0, 1, 0)

)
·
(
− αD

3
+ αY

)

+ Pt(1, 1, 0, 1) ·
{

1

(1 + αD + αY )3
(αD

3
+ αY

)

+
2(αD + αY )αY

(1 + αD + αY )3
+

1

1 + αD − αY
− 1

1 + αD + αY

+
(1
3
+

2αD

3
− 2αY

3

)
·
[

1

(1 + αD − αY )3
− 1

(1 + αD + αY )3

]

− (1 + αD − αY ) ·
[

1

(1 + αD − αY )2
− 1

(1 + αD + αY )2

]}

+ Pt(1, 1, 1, 0) ·
(αD

3
+ αY

) 1

(1 + αD + αY )3
,

35



Published as a conference paper at ICLR 2023

where γ(low)
0101, γ

(up)
1010 ∈ (0, 1) (according to Assumption 3.6), and αD, αY ∈ [0, 1

2 ) (according to
Assumption 3.3).

Now let us consider the data dynamics where αY = 0 and simplify the form of ∆(Counterfactual Fair)
STIR

∣∣t+1

t
:

∆
(Counterfactual Fair)
STIR

∣∣t+1

t

= −αD

3
·
(
Pt(0, 0, 0, 1) + Pt(0, 0, 1, 0)

)
+

αD

3(1 + αD)3
·
(
Pt(1, 1, 0, 1) + Pt(1, 1, 1, 0)

)
.

As we can see, as long as we have Pt(1,1,0,1)+Pt(1,1,1,0)
Pt(0,0,0,1)+Pt(0,0,1,0)

< 27
8 and at the same time the parameter

satisfies αD ∈ (
(Pt(1,1,0,1)+Pt(1,1,1,0)
Pt(0,0,0,1)+Pt(0,0,1,0)

) 1
3 − 1, 1

2 ), it is possible for the counterfactual fair predictor
to achieve a negative value for ∆STIR|t+1

t after a one-step intervention:




Pt(1,1,0,1)+Pt(1,1,1,0)
Pt(0,0,0,1)+Pt(0,0,1,0)

< 27
8

αD ∈ (
(Pt(1,1,0,1)+Pt(1,1,1,0)
Pt(0,0,0,1)+Pt(0,0,1,0)

) 1
3 − 1, 1

2 )

αY = 0

=⇒ ∆
(Counterfactual Fair)
STIR

∣∣t+1

t
< 0.
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Table 1: When αD > αY , compare cases of Ht+1 with different values of At.

Case
Dt Y (ori)

t Ht+1

if At = 0 if At = 1 if At = 0 if At = 1 if At = 0 if At = 1

(i) 0 0 0 0 ft(0, et) ft(1, et)

(ii) 0 0 0 1 ft(0, et)(1− αD − αY ) ft(1, et)(1− αD + αY )

(iii) 0 0 1 0 ft(0, et)(1− αD + αY ) ft(1, et)(1− αD − αY )

(iv) 0 0 1 1 ft(0, et) ft(1, et)

(v) 0 1 0 0 ft(0, et)(1− αD − αY ) min{ft(1, et)(1 + αD − αY ), 1}
(vi) 0 1 0 1 ft(0, et)(1− αD − αY ) min{ft(1, et)(1 + αD + αY ), 1}
(vii) 0 1 1 0 ft(0, et)(1− αD + αY ) min{ft(1, et)(1 + αD − αY ), 1}
(viii) 0 1 1 1 ft(0, et)(1− αD + αY ) min{ft(1, et)(1 + αD + αY ), 1}
(ix) 1 0 0 0 min{ft(0, et)(1 + αD − αY ), 1} ft(1, et)(1− αD − αY )

(x) 1 0 0 1 min{ft(0, et)(1 + αD − αY ), 1} ft(1, et)(1− αD + αY )

(xi) 1 0 1 0 min{ft(0, et)(1 + αD + αY ), 1} ft(1, et)(1− αD − αY )

(xii) 1 0 1 1 min{ft(0, et)(1 + αD + αY ), 1} ft(1, et)(1− αD + αY )

(xiii) 1 1 0 0 ft(0, et) ft(1, et)

(xiv) 1 1 0 1 min{ft(0, et)(1 + αD − αY ), 1} min{ft(1, et)(1 + αD + αY ), 1}
(xv) 1 1 1 0 min{ft(0, et)(1 + αD + αY ), 1} min{ft(1, et)(1 + αD − αY ), 1}
(xvi) 1 1 1 1 ft(0, et) ft(1, et)
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Table 2: When αD < αY , compare cases of Ht+1 with different values of At.

Case
Dt Y (ori)

t Ht+1

if At = 0 if At = 1 if At = 0 if At = 1 if At = 0 if At = 1

(i) 0 0 0 0 ft(0, et) ft(1, et)

(ii) 0 0 0 1 ft(0, et)(1− αD − αY ) min{ft(1, et)(1− αD + αY ), 1}
(iii) 0 0 1 0 min{ft(0, et)(1− αD + αY ), 1} ft(1, et)(1− αD − αY )

(iv) 0 0 1 1 ft(0, et) ft(1, et)

(v) 0 1 0 0 ft(0, et)(1− αD − αY ) ft(1, et)(1 + αD − αY )

(vi) 0 1 0 1 ft(0, et)(1− αD − αY ) min{ft(1, et)(1 + αD + αY ), 1}
(vii) 0 1 1 0 min{ft(0, et)(1− αD + αY ), 1} ft(1, et)(1 + αD − αY )

(viii) 0 1 1 1 min{ft(0, et)(1− αD + αY ), 1} min{ft(1, et)(1 + αD + αY ), 1}
(ix) 1 0 0 0 ft(0, et)(1 + αD − αY ) ft(1, et)(1− αD − αY )

(x) 1 0 0 1 ft(0, et)(1 + αD − αY ) min{ft(1, et)(1− αD + αY ), 1}
(xi) 1 0 1 0 min{ft(0, et)(1 + αD + αY ), 1} ft(1, et)(1− αD − αY )

(xii) 1 0 1 1 min{ft(0, et)(1 + αD + αY ), 1} min{ft(1, et)(1− αD + αY ), 1}
(xiii) 1 1 0 0 ft(0, et) ft(1, et)

(xiv) 1 1 0 1 ft(0, et)(1 + αD − αY ) min{ft(1, et)(1 + αD + αY ), 1}
(xv) 1 1 1 0 min{ft(0, et)(1 + αD + αY ), 1} ft(1, et)(1 + αD − αY )

(xvi) 1 1 1 1 ft(0, et) ft(1, et)
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Table 3: When αD = αY = α, compare cases of Ht+1 with different values of At.

Case
Dt Y (ori)

t Ht+1

if At = 0 if At = 1 if At = 0 if At = 1 if At = 0 if At = 1

(i) 0 0 0 0 ft(0, et) ft(1, et)

(ii) 0 0 0 1 ft(0, et)(1− 2α) ft(1, et)

(iii) 0 0 1 0 ft(0, et) ft(1, et)(1− 2α)

(iv) 0 0 1 1 ft(0, et) ft(1, et)

(v) 0 1 0 0 ft(0, et)(1− 2α) ft(1, et)

(vi) 0 1 0 1 ft(0, et)(1− 2α) min{ft(1, et)(1 + 2α), 1}
(vii) 0 1 1 0 ft(0, et) ft(1, et)

(viii) 0 1 1 1 ft(0, et) min{ft(1, et)(1 + 2α), 1}
(ix) 1 0 0 0 ft(0, et) ft(1, et)(1− 2α)

(x) 1 0 0 1 ft(0, et) ft(1, et)

(xi) 1 0 1 0 min{ft(0, et)(1 + 2α), 1} ft(1, et)(1− 2α)

(xii) 1 0 1 1 min{ft(0, et)(1 + 2α), 1} ft(1, et)

(xiii) 1 1 0 0 ft(0, et) ft(1, et)

(xiv) 1 1 0 1 ft(0, et) min{ft(1, et)(1 + 2α), 1}
(xv) 1 1 1 0 min{ft(0, et)(1 + 2α), 1} ft(1, et)

(xvi) 1 1 1 1 ft(0, et) ft(1, et)
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Table 4: When αD > αY , list possible instantiations of φt+1(et+1).

Case
Dt Y (ori)

t φt+1(et+1) = ft+1(0, et+1)− ft+1(1, et+1)

if At = 0 if At = 1 if At = 0 if At = 1

(i) 0 0 0 0 φt(et)

(ii) 0 0 0 1 φt(et)(1− αD)− αY ηt(et)

(iii) 0 0 1 0 φt(et)(1− αD) + αY ηt(et)

(iv) 0 0 1 1 φt(et)

(v) 0 1 0 0 (v.1) φt(et)(1− αY )− αDηt(et), if ft(1, et) ∈ (0, 1
1+αD−αY

)

- - - - (v.2) ft(0, et)(1− αD − αY )− 1, otherwise

(vi) 0 1 0 1 (vi.1) φt(et)− (αD + αY )ηt(et), if ft(1, et) ∈ (0, 1
1+αD+αY

)

- - - - (vi.2) ft(0, et)(1− αD − αY )− 1, otherwise

(vii) 0 1 1 0 (vii.1) φt(et)− (αD − αY )ηt(et), if ft(1, et) ∈ (0, 1
1+αD−αY

)

- - - - (vii.2) ft(0, et)(1− αD + αY )− 1, otherwise

(viii) 0 1 1 1 (viii.1) φt(et)(1 + αY )− αDηt(et), if ft(1, et) ∈ (0, 1
1+αD+αY

)

- - - - (viii.2) ft(0, et)(1− αD + αY )− 1, otherwise

(ix) 1 0 0 0 (ix.1) φt(et)(1− αY ) + αDηt(et), if ft(0, et) ∈ (0, 1
1+αD−αY

)

- - - - (ix.2) 1− ft(1, et)(1− αD − αY ), otherwise

(x) 1 0 0 1 (x.1) φt(et) + (αD − αY )ηt(et), if ft(0, et) ∈ (0, 1
1+αD−αY

)

- - - - (x.2) 1− ft(1, et)(1− αD + αY ), otherwise

(xi) 1 0 1 0 (xi.1) φt(et) + (αD + αY )ηt(et), if ft(0, et) ∈ (0, 1
1+αD+αY

)

- - - - (xi.2) 1− ft(1, et)(1− αD − αY ), otherwise

(xii) 1 0 1 1 (xii.1) φt(et)(1 + αY ) + αDηt(et), if ft(0, et) ∈ (0, 1
1+αD+αY

)

(xii.2) 1− ft(1, et)(1− αD + αY ), otherwise
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Table 4 (continued from the previous page)

Case
Dt Y (ori)

t φt+1(et+1) = ft+1(0, et+1)− ft+1(1, et+1)

if At = 0 if At = 1 if At = 0 if At = 1

(xiii) 1 1 0 0 φt(et)

(xiv) 1 1 0 1 (xiv.1) φt(et)(1 + αD)− αY ηt(et), if ft(0, et) ∈ (0, 1
1+αD−αY

) and ft(1, et) ∈ (0, 1
1+αD+αY

)

- - - - (xiv.2) ft(0, et)(1 + αD − αY )− 1, if ft(0, et) ∈ (0, 1
1+αD−αY

) and ft(1, et) ∈ [ 1
1+αD+αY

, 1]

- - - - (xiv.3) 1− ft(1, et)(1 + αD + αY ), if ft(0, et) ∈ [ 1
1+αD−αY

, 1] and ft(1, et) ∈ (0, 1
1+αD+αY

)

- - - - (xiv.4) 0, otherwise

(xv) 1 1 1 0 (xv.1) φt(et)(1 + αD) + αY ηt(et), if ft(0, et) ∈ (0, 1
1+αD+αY

) and ft(1, et) ∈ (0, 1
1+αD−αY

)

- - - - (xv.2) ft(0, et)(1 + αD + αY )− 1, if ft(0, et) ∈ (0, 1
1+αD+αY

) and ft(1, et) ∈ [ 1
1+αD−αY

, 1]

- - - - (xv.3) 1− ft(1, et)(1 + αD − αY ), if ft(0, et) ∈ [ 1
1+αD+αY

, 1] and ft(1, et) ∈ (0, 1
1+αD−αY

)

- - - - (xv.4) 0, otherwise

(xvi) 1 1 1 1 φt(et)
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Table 5: When αD < αY , list possible instantiations of φt+1(et+1).

Case
Dt Y (ori)

t φt+1(et+1) = ft+1(0, et+1)− ft+1(1, et+1)

if At = 0 if At = 1 if At = 0 if At = 1

(i) 0 0 0 0 φt(et)

(ii) 0 0 0 1 (ii.1) φt(et)(1− αD)− αY ηt(et), if ft(1, et) ∈ (0, 1
1−αD+αY

)

- - - - (ii.2) ft(0, et)(1− αD − αY )− 1, otherwise

(iii) 0 0 1 0 (iii.1) φt(et)(1− αD) + αY ηt(et), if ft(0, et) ∈ (0, 1
1−αD+αY

)

- - - - (iii.2) 1− ft(1, et)(1− αD − αY ), otherwise

(iv) 0 0 1 1 φt(et)

(v) 0 1 0 0 φt(et)(1− αY )− αDηt(et)

(vi) 0 1 0 1 (vi.1) φt(et)− (αD + αY )ηt(et), if ft(1, et) ∈ (0, 1
1+αD+αY

)

- - - - (vi.2) ft(0, et)(1− αD − αY )− 1, otherwise

(vii) 0 1 1 0 (vii.1) φt(et)− (αD − αY )ηt(et), if ft(0, et) ∈ (0, 1
1−αD+αY

)

- - - - (vii.2) 1− ft(1, et)(1 + αD − αY ), otherwise

(viii) 0 1 1 1 (viii.1) φt(et)(1 + αY )− αDηt(et), if ft(0, et) ∈ (0, 1
1−αD+αY

) and ft(1, et) ∈ (0, 1
1+αD+αY

)

- - - - (viii.2) ft(0, et)(1− αD + αY )− 1, if ft(0, et) ∈ (0, 1
1−αD+αY

) and ft(1, et) ∈ [ 1
1+αD+αY

, 1]

- - - - (viii.3) 1− ft(1, et)(1 + αD + αY ), if ft(0, et) ∈ [ 1
1−αD+αY

, 1] and ft(1, et) ∈ (0, 1
1+αD+αY

)

- - - - (viii.4) 0, otherwise

(ix) 1 0 0 0 φt(et)(1− αY ) + αDηt(et)

(x) 1 0 0 1 (x.1) φt(et) + (αD − αY )ηt(et), if ft(1, et) ∈ (0, 1
1−αD+αY

)

- - - - (x.2) ft(0, et)(1 + αD − αY )− 1, otherwise

(xi) 1 0 1 0 (xi.1) φt(et) + (αD + αY )ηt(et), if ft(0, et) ∈ (0, 1
1+αD+αY

)

- - - - (xi.2) 1− ft(1, et)(1− αD − αY ), otherwise
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Table 5 (continued from the previous page)

Case
Dt Y (ori)

t φt+1(et+1) = ft+1(0, et+1)− ft+1(1, et+1)

if At = 0 if At = 1 if At = 0 if At = 1

(xii) 1 0 1 1 (xii.1) φt(et)(1 + αY ) + αDηt(et), if ft(0, et) ∈ (0, 1
1+αD+αY

) and ft(1, et) ∈ (0, 1
1−αD+αY

)

- - - - (xii.2) ft(0, et)(1 + αD + αY )− 1, if ft(0, et) ∈ (0, 1
1+αD+αY

) and ft(1, et) ∈ [ 1
1−αD+αY

, 1]

- - - - (xii.3) 1− ft(1, et)(1− αD + αY ), if ft(0, et) ∈ [ 1
1+αD+αY

, 1] and ft(1, et) ∈ (0, 1
1−αD+αY

)

- - - - (xii.4) 0, otherwise

(xiii) 1 1 0 0 φt(et)

(xiv) 1 1 0 1 (xiv.1) φt(et)(1 + αD)− αY ηt(et), if ft(1, et) ∈ (0, 1
1+αD+αY

)

- - - - (xiv.2) ft(0, et)(1 + αD − αY )− 1, otherwise

(xv) 1 1 1 0 (xv.1) φt(et)(1 + αD) + αY ηt(et), if ft(0, et) ∈ (0, 1
1+αD+αY

)

- - - - (xv.2) 1− ft(1, et)(1 + αD − αY ), otherwise

(xvi) 1 1 1 1 φt(et)
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Table 6: When αD = αY = α, list possible instantiations of φt+1(et+1).

Case
Dt Y (ori)

t φt+1(et+1) = ft+1(0, et+1)− ft+1(1, et+1)

if At = 0 if At = 1 if At = 0 if At = 1

(i) 0 0 0 0 φt(et)

(ii) 0 0 0 1 φt(et)(1− α)− αηt(et)

(iii) 0 0 1 0 φt(et)(1− α) + αηt(et)

(iv) 0 0 1 1 φt(et)

(v) 0 1 0 0 φt(et)(1− α)− αηt(et)

(vi) 0 1 0 1 (vi.1) φt(et)− 2αηt(et), if ft(1, et) ∈ (0, 1
1+2α )

- - - - (vi.2) ft(0, et)(1− 2α)− 1, otherwise
(vii) 0 1 1 0 φt(et)

(viii) 0 1 1 1 (viii.1) φt(et)(1 + α)− αηt(et), if ft(1, et) ∈ (0, 1
1+2α )

- - - - (viii.2) ft(0, et)− 1, otherwise
(ix) 1 0 0 0 φt(et)(1− α) + αηt(et)

(x) 1 0 0 1 φt(et)

(xi) 1 0 1 0 (xi.1) φt(et) + 2αηt(et), if ft(0, et) ∈ (0, 1
1+2α )

- - - - (xi.2) 1− ft(1, et)(1− 2α), otherwise
(xii) 1 0 1 1 (xii.1) φt(et)(1 + α) + αηt(et), if ft(0, et) ∈ (0, 1

1+2α )

- - - - (xii.2) 1− ft(1, et), otherwise
(xiii) 1 1 0 0 φt(et)

(xiv) 1 1 0 1 (xiv.1) φt(et)(1 + α)− αηt(et), if ft(1, et) ∈ (0, 1
1+2α )

- - - - (xiv.2) ft(0, et)− 1, otherwise
(xv) 1 1 1 0 (xv.1) φt(et)(1 + α) + αηt(et), if ft(0, et) ∈ (0, 1

1+2α )

- - - - (xv.2) 1− ft(1, et), otherwise
(xvi) 1 1 1 1 φt(et)
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