
1 SUPPLEMENTARY MATERIAL

1.1 CODE

We provide an executable python script that runs a trial of the algorithmic experiment (section 5.3.),
which is the only experiment that uses normal training methods. We also provide pytorch modules
for the Multiplexer, the FNNR, the MFNNR, and the SMFR.

The code we provide is not optimized for performance because we favored readability over speed.
The modules use lists of tensor-blocks that we loop over instead of combining all blocks into a single
tensor and using a single more complicated matrix operation. The code could be sped up significantly
by refactoring the lists of block-tensors into single larger tensors. Our modules are written the way
they are because we applied debugging and analysis code that is easier to interpret in this format than
for runtime-optimized code.

1.2 EXPERIMENT DETAILS, GENERAL

For all of our experiments, we used an Adam optimizer with a learning rate of 3e-4 and gradient
clipping at 0.1. We used LeakyRelu with a negative slope of 0.01 as the activation function. The
FNNs contained inside SMFRs had a width of 100 and variable depth.

We used single-digit numbers in the addition/multiplication experiment and the double-addition
experiment. We ran some exploratory tests with two digits as well and got similar results. We focused
our analysis on single digit experiments because those converged faster, so we could run more trials.

1.2.1 EXPERIMENT DETAILS: ADDITION/MULTIPLICATION EXPERIMENTS

We performed grid search over the following parameters:

• The threshold value before switching training regimes: 0.7, 0.8, 0.9, 0.95, 1.0

• For FNNs

– Layer widths: 100, 200, 300
– Layer depths: 2, 3, 4
– Random seeds: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

• For SMFRs

– Stack widths: 1, 2, 3, 4, 5, 6, 7
– Stack depths: 1, 2, 3
– Contained FNN layer depths: 1, 2, 3
– Attention type: Softmax, Straight Through Gumbel-Softmax

This resulted in model sizes in the range of roughly 13k to 280k parameters for both FNNs and
SMFRs.

Table 1 shows the effect of model size on the accuracy after catastrophic interference. HIGH refers to
all models with at least 200,000 parameters, LOW refers to models with less than 50,000 parameters,
and MID refers to the rest. The table shows that FNNs perform better at higher model sizes. It should
be noted that the model sizes of FNNs and SMFRs were varied in different ways. The table indicates
that growing SMFRs by stacking more MFNNR modules together is not as effective as increasing the
FNNs inside the SMFRs.

Table 2 shows that SMFRs with more complex FNNs inside them performed better, especially at low
thresholds. However this also had diminishing returns at 3 layers.

Architecture Optimization. Note that we varied the model sizes of FNNs and SMFRs in different
ways, and this may explain some of our findings. Our tests only included small variations on this
because we focused on varying the number of blocks and MFNNR modules instead of the complexity
of each FNN contained within them. Additionally, we only altered the depths of the contained FNNs,
not their width as well, as we did for the baseline FNNs that weren’t part of an MFNNR. For FNNs,
altering the width made a large difference. Increasing the width of the FNNs inside the SMFRs as

1



Table 1: Effects of model size on performance
Threshold Architecture Softmax/Gumbel HIGH MID LOW

0.7 FNN 0.054 0.024 0.035
0.7 SMFR Softmax 0.204 0.146 0.107
0.7 SMFR Gumbel 0.146 0.094 0.049

0.8 FNN 0.089 0.053 0.052
0.8 SMFR Softmax 0.186 0.205 0.116
0.8 SMFR Gumbel 0.118 0.138 0.063

0.9 FNN 0.179 0.134 0.098
0.9 SMFR Softmax 0.300 0.274 0.198
0.9 SMFR Gumbel 0.266 0.232 0.109

0.95 FNN 0.325 0.223 0.150
0.95 SMFR Softmax 0.346 0.349 0.245
0.95 SMFR Gumbel 0.274 0.333 0.172

1.0 FNN 0.468 0.413 0.259
1.0 SMFR Softmax 0.450 0.448 0.382
1.0 SMFR Gumbel 0.408 0.415 0.327

Table 2: Complexity of FNNs within MFNNRs
Threshold 1 hidden layer 2 hidden layers 3 hidden layers

0.7 0.099 0.134 0.192
0.8 0.125 0.216 0.210
0.9 0.194 0.299 0.284
0.95 0.275 0.365 0.338
1.0 0.365 0.489 0.449

well would have led to much larger SMFR models, which is why we did not test this. Therefore, the
reason that Pure FNNs performed slightly better than SMFRs at high model sizes and thresholds may
be because we grew the complexity of SMFRs in a suboptimal way. It remains future work to test if
tuning the FNNs inside the SMFRs gives even better results than varying the number of blocks and
MFNNR modules.

1.2.2 EXPERIMENT DETAILS: DOUBLE-ADDITION EXPERIMENTS

We performed grid search over the following parameters:

• Type of split for the training data: high vs. low, even vs. odd
• For FNNs

– Layer widths: 100, 200, 300
– Layer depths: 2, 3, 4
– Random seeds: 0, 1, 2, 3, 4

• For SMFRs
– Stack widths: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
– Stack depths: 0, 1, 2
– Contained FNN layer depths: 1, 2
– Attention type: Softmax, Straight Through Gumbel-Softmax

Module size between FNN and SMFR is largely irrelevant here because we noticed early on that all
FNNs fail.

Table 3 shows all 25 architectures with an OOD of 1.0, because a detailed breakdown over several di-
mensions is much more confusing to look at. This shows that model size correlates with performance.

2



Table 3: Best architectures for the double-addition task
alternate split Attention type depth width FNN layers model size

True soft 1 9 2 95364
True soft 1 5 1 36096
False soft 1 9 1 54964
False soft 1 8 1 50247
False soft 1 10 1 59681
False soft 1 7 1 45530
False gumbel 1 8 1 50249
False soft 1 6 1 40813
True soft 1 10 1 59681
True soft 1 9 1 54964
True soft 1 8 1 50247
True soft 1 7 1 45530
True soft 1 6 1 40813
False gumbel 1 10 1 59683
True soft 2 10 1 111091
True gumbel 1 6 1 40815
False gumbel 1 7 1 45532
False gumbel 1 6 1 40815
True soft 1 6 2 81213
True soft 1 8 2 90647
True gumbel 1 9 1 54966
True soft 1 10 2 100081
True soft 2 9 2 160944
True soft 2 5 2 119976
False gumbel 1 9 1 54966

However, bigger models are not always better because the number of FNN layers was often 1 instead
of 2, even though this parameter has a large impact on the model size.

Figure 1: Each line shows the OOD accuracy of one SMFR experiment as training progresses.

Figure 1 shows examples of the development of the OOD accuracy over time for different SMFR
architectures. Each line represents one training run. The colors are meaningless and are just there to
make it possible to tell the lines apart. Most experiments with a perfect OOD accuracy converged to
1.0 almost immediately. It happened more often that OOD accuracy increased than that it dropped.
Perhaps most importantly, the OOD accuracy never dropped after reaching 1.0. In other words,
the SMFR usually came to reuse modules more rather than less as the training progressed and
remained stable once converged. This suggests that module reuse will also occur if SMFRs are used
as components inside larger architectures that train for longer.

3



1.2.3 EXPERIMENT DETAILS: ALGORITHMIC EXPERIMENTS

We performed grid search over the following parameters:

• Increment the value after applying the formula of the task: True, False
• For FNNs

– Layer widths: 100, 200, 300
– Layer depths: 2, 3, 4, 5, 6
– Random seeds: 0, 1

• For SMFRs
– Stack widths: 6, 8, 10
– Stack depths: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
– Contained FNN layer depths: 1, 2, 3

This resulted in model sizes in the range of roughly 20k to 500k parameters for both FNNs and
SMFRs.

Table 4: Effect of model size on OOD performance
Architecture model size category OOD accuracy on iteration 1

FNN high 0.229
FNN mid 0.211
FNN low 0.157
SMFR high 0.889
SMFR mid 0.975
SMFR low 0.414

Table 3 shows that FNNs again benefitted more from larger model sizes than SMFRs, and SMFRs
reached their best performance at lower model sizes. However, even the largest FNNs we tested
performed much worse than the SMFRs on OOD iterations.

1.3 REGULARIZATION LOSS

As mentioned in the Limitations, our model used to suffer from a stability issue that we have since
fixed. The problem was that softmax and sigmoid weights sometimes kept growing even after
becoming extreme enough that they had 0 gradient. Our inspection showed that this was caused
by the fact that the softmax and sigmoid values are based on computations that are also used for
generating data in the MFNNRs. This means that they are subject to destructive interference. They
effectively receive gradients from two sources: The softmax/sigmoid they are supposed to work on
and incidental gradients from other parts of the model, but the former irrecoverably become zero.

We fixed this by adding a regularization loss: Whenever the absolute of the weight used for a softmax
or sigmoid exceeds a threshold value, we apply an MSE-loss to that weight, pushing it back to the
threshold. The target value of the MSE-loss is simply the tensor itself with each neuron clamped to a
threshold value. We found that a threshold of 20 works well empirically.

It should be noted that we introduced the regularization loss while working on a larger, more complex
experiment that we will report in a subsequent paper. It is possible that this loss is not needed for
many of the experiments we report in this paper. We have noticed that using it slows convergence but
increases reliability. We have opted to always use it because reliability is more important to us than
convergence speed while developing new architectures. As mentioned above, there is a lot of room
for improvement in speeding up our code that we haven’t done, yet.

After submitting this paper but while creating reproducible code as supplementary material, we
noticed that not using the regularization loss appeared to give better results in the algorithm task from
Experiments section 4.3, although we did not run enough trials yet to be certain. We will investigate
this more deeply in future experiments to determine under what circumstances the regularization loss
is needed and under what circumstances it is detrimental.

4



1.4 INTERPRETABILITY

To inspect an SMFR model, it is often enough to look at the weights that determine routing decisions:
The softmax values in the Multiplexer, and the gating weight in the FNNR. It can be helpful to have a
set of example inputs for which you expect different routing behavior and to compare the routing
weights for these.

On the double-addition task, our inspection showed the following: It is possible to measure the
degree of modularity in our SMFR directly by investigating the softmax weights on example
inputs. We manually inspected the values of the weights that the multiplexers and FNNR modules
use in a trial that achieved good OOD performance and had a simple architecture, with depth 1
and width 2. The architecture had only 12 Multiplexer weights and 3 FNNR residual weights,
which made it very easy to investigate how data is routed in the network for any given input. Our
inspection showed that the irrelevant inputs did correctly receive a weight of 0, while the ones that
are important received a weight of 0.5. As it turns out, the network learned to use the correct pair of
numbers and used interpolation in a single block to take advantage of symmetry. Instead of always
moving block A1 to B1 and A2 to B2 as a human would intuitively do it, it learned to interpolate
B1 = 0.5 ∗A1 + 0.5 ∗A2, which is actually more efficient. We also found that the gating weights
of several FNNR modules approached zero as training progressed. This implied that the network
came to rely more and more on copy operations and less on FNN operations. It was quite easy to
inspect the network and learn this information, since we only needed to inspect the gating weights.
In larger networks used for practical tasks, the number of network weights may be too large for a
manual analysis. However there should still be few enough of them for an automated analysis to yield
useful results, especially since the gating weights have inherent meaning (does a block of data get
used or not?), unlike normal neurons in a fully-connected neural network, which can mean anything.

On the algorithmic task, our inspection confirmed that the SMFRs can learn to pass blocks through
without altering them where doing so is useful, and to alter only the ones that need to be altered.
We were able to confirm this desired behavior by only looking at the routing weights. In an FNN,
confirming such behavior would have required a much more complex correlation analysis of the
neurons.

5


	Supplementary Material
	Code
	Experiment Details, General
	Experiment details: Addition/Multiplication Experiments
	Experiment Details: Double-Addition Experiments
	Experiment Details: Algorithmic Experiments

	Regularization Loss
	Interpretability


