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A Details of GC-Bench30

A.1 Datasets31

The evaluation node-level datasets include 5 homogeneous datasets (3 transductive datasets, i.e.,32

Cora, Citeseer [14] and ogbn-arxiv [11], and 2 inductive datasets, i.e., Flickr [38] and Reddit [10])33

and 2 heterogeneous datasets (ACM [41] and DBLP [6]). The evaluation graph-level datasets include34

5 datasets ( NCI1 [29], DD [3], ogbg-molbace [11], ogbg-molhiv [11], ogbg-molbbbp [11]).35

We utilize the standard data splits provided by PyTorch Geometric [5] and the Open Graph Benchmark36

(OGB) [11] for our experiments. For datasets in TUDataset [25], we split the data into 10% for37

testing, 10% for validation, and 80% for training. For ACM and DBLP datasets, we follow the settings38

outlined in [23]. Dataset statistics are shown in Table A1.39

Table A1: Dataset statistics. For heterogeneous datasets, the features are from the target nodes (papers
in ACM and authors in DBLP).

Dataset #Nodes /
#Avg. Nodes

#Edges /
#Avg. Edges #Classes #Features /

Graphs

N
od

e-
le

ve
l

Cora 2,708 5,429 7 1,433
Citeseer 3,327 4,732 6 3,703
ogbn-arxiv 169,343 1,166,243 40 128
Flickr 89,250 899,756 7 500
Reddit 232,965 57,307,946 210 602
ACM 10,942 547,872 3 1,902
DBLP 37,791 170,794 4 334

G
ra

ph
-le

ve
l ogbg-molhiv 25.5 54.9 2 41,127

ogbg-molbace 34.1 36.9 2 1,513
ogbg-molbbbp 24.1 26.0 2 2,039
NCI1 29.8 32.3 2 4,110
DD 284.3 715.7 2 1,178

A.2 Algorithms40

We summarize the current GC algorithms in Table A2. We choose 12 representative ones for41

evaluation in this paper including Random, K-Center [27], Herding [33], GCond [13], DosCond [12],42

SGDD [37], GCDM [18], DM [22], SFGC [42], GEOM [40], KiDD [36], Mirage [9]. We will43

continue to update and improve the benchmark to include more algorithms. Here we introduce44

the GC algorithms in detail:45

• Traditional Core-set Methods46

− Random: For node classification tasks, nodes are randomly selected to form a new subgraph.47

For graph classification, the graphs are randomly selected to create a new subset.48

− Herding [33]: The nodes or graphs are selected samples that are closest to the cluster center.49

− K-Center [27]: Nodes or graphs are chosen such that they have the minimal distance to the50

nearest cluster center, which is generated using the K-Means Clustering method.51

• Gradient Matching Methods52

− GCond [13]: In GCond, the optimization of the synthetic dataset is framed as a bi-level53

problem. It adapts a gradient matching scheme to match the gradients of GNN parameters54

between the condensed and original graphs, while optimizing the model’s performance on55

the datasets. For generating the synthetic adjacency matrix, GCond employs a Multi-Layer56

Perceptron (MLP) to model the edges by using node features as input, maintaining the57

correlations between node features and graph structures.58

− DosCond [12]: In DosCond, the gradient matching scheme only matches the network59

gradients for model initialization θ0 while discarding the training trajectory of θt, which60

accelerated the entire condensation process by only informing the direction to update the61
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Table A2: Summary of Graph Condensation (GC) algorithms. We also provide public access to
the official algorithm implementations. “KRR” is short for Kernel Ridge Regression and “CTC”
is short for computation tree compression. “GNN” is short for Graph, “GNTK” is short for graph
neural tangent kernel, “SD” is short for spectral decomposition. “NC” is short for node classification,
“LP” is short for link prediction, “AD” is short for anomaly detection, and “GC” is short for graph
classification.

Taxonomy Method Initialization Backbone
Model

Downstream
Task Code Venue

Random — — — — —
Herding [33] — — — link ICML, 2009
K-Center [27] — — — link ICLR, 2018

Traditional
Methods

GCond [13] Random Sample GNN NC link ICLR, 2021
DosCond [12] Random Sample GNN NC, GC link SIGKDD, 2022

MSGC [7] Zero Matrix GNN NC — KBS, 2023
SGDD [37] Random Sample GNN NC, LP, AD link NeurIPS, 2023

GCARe [24] — GNN NC — Appl. Sci. 2023
CTRL [39] K-Means GNN NC, GC link arxiv, 2024
GroC [17] Random Sample GNN NC, GC — arxiv, 2023
EXGC [4] Random Sample GNN NC link1 WWW 2024

Gradient
Matching

MCond [8] Random Sample GNN NC — ICDE, 2024
GCDM [18] Random Sample GNN NC — arxiv, 2022
DM [20, 22] Random Sample GNN NC — ICDM, 2023
GDEM [19] Eigenbasis Approximation SD NC link ICML, 2024

Distribution
Matching

FedGKD [26] Random Noise GNN NC — arxiv, 2023
SFGC [42] K-Center GNN NC link NeurIPS, 2023Trajectory

Matching GEOM [40] K-Center GNN NC link ICML, 2024
GC-SNTK [31] Random Noise GNTK NC link WWW, 2024KRR KiDD [36] Random Sample GNTK GC link SIGKDD, 2023

CTC Mirage [9] — GNN GC link ICLR, 2024
1 The code repository for EXGC is not fully developed.

synthetic dataset. DosCond also modeled the discrete graph structure as a probabilistic62

model and each element in the adjacency matrix follows a Bernoulli distribution.63

− MSGC [7]: MSGC condenses a large-scale graph into multiple small-scale sparse graphs,64

leveraging neighborhood patterns as substructures to enable the construction of various65

connection schemes. This process enriches the diversity of embeddings generated by GNNs,66

enhances the representation power of GNNs con complex graphs.67

− SGDD [37]: SGDD uses graphon approximation to ensure that the structural information68

of the original graph is retained in the synthetic, condensed graph. The condensed graph69

structure is optimized by minimizing the optimal transport (OT) distance between the original70

structure and the condensed structure.71

− GCARe [24]: GCARe addresses biases in condensed graphs by regularizing the condensa-72

tion process, ensuring that the knowledge of different subgroups is distilled fairly into the73

resulting graphs.74

− CTRL [39]: CTRL clusters each class of the original graph into sub-clusters and uses these75

as initial value for the synthetic graph. By considering both the direction and magnitude76

of gradients during gradient matching, it effectively minimizes matching errors during the77

condensation phase.78

− GroC [17]: GroC uses an adversarial training (bi-level optimization) framework to explore79

the most impactful parameter spaces and employs a Shock Absorber operator to apply80

targeted adversarial perturbation.81

− EXGC [4]: EXGC leverages Mean-Field variational approximation to address inefficiency82

in the current gradient matching schemes and uses the Gradient Information Bottleneck83

objective to tackle node redundancy.84

− MCond [8]: MCond addresses the limitations of traditional condensed graphs in handling85

unseen data by learning a one-to-many node mapping from original nodes to synthetic nodes86

and uses an alternating optimization scheme to enhance the learning of synthetic graph and87

mapping matrix.88

• Distribution Matching Methods89
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− GCDM [18]: GCDM synthesizes small graphs with receptive fields that share a similar90

distribution to the original graph, achieved through a distribution matching loss quantified91

by maximum mean discrepancy (MMD).92

− DM [20, 22]: DM can be regarded as a one-step variant of GCDM. In DM, the optimization93

is centered on the initial parameters. Notably, in [20] and [22], DM does not learn any94

structures for efficiency. However, for better comparison in our experiments, we continue to95

learn the adjacency matrix.96

− FedGKD [26]: FedGKD trains models on condensed local graphs within each client to97

mitigate the potential leakage of the training set membership. FedGKD features a Federated98

Graph Neural Network framework that enhances client collaboration using a task feature99

extractor for graph data distillation and a task relator for globally-aware model aggregation.100

• Trajectory Matching Methods101

− SFGC [42]: SFGC uses trajectory matching instead of a gradient matching scheme. It first102

trains a set of GNNs on original graphs to acquire and store an expert parameter distribution103

offline. The expert trajectory guides the optimization of the condensed graph-free data. The104

generated graphs are evaluated using closed-form solutions of GNNs under the graph neural105

tangent kernel (GNTK) ridge regression, avoiding iterative GNN training.106

− GEOM [40]: GEOM makes the first attempt toward lossless graph condensation using107

curriculum-based trajectory matching. A homophily-based difficulty score is assigned to108

each node and the easy nodes are learned in the early stages while more difficult ones are109

learned in the later stages. On top of that, GEOM incorporated a Knowledge Embedding110

Extraction (KEE) loss into a matching loss.111

• Kernel Ridge Regression Methods112

− GC-SNTK [31]: GC-SNTK introduces a Structure-based Neural Tangent Kernel(SNTK)113

to capture graph topology, replacing the inner GNNs training in traditional GC paradigm,114

avoiding multiple iterations.115

− KiDD [36]: KiDD uses kernel ridge regression (KRR) with a graph neural tangent kernel116

(GNTK) for graph-level tasks. To enhance efficiency, KiDD introduces LiteGNTK, a117

simplified GNTK, and proposes KiDD-LR for faster low-rank approximation and KiDD-D118

for handling discrete graph topology using the Gumbel-Max reparameterization trick. We119

use KiDD-LR for experiments as it has generally demonstrated better performance compared120

to KiDD-D.121

• Computation Tree Compression Methods122

− Mirage [9]: Mirage decomposes graphs in datasets into a collection of computation trees123

and then mines frequently co-occurring trees from this set. Mirage then uses aggregation124

functions (MEANPOOL, SUMPOOL, etc.) on the embeddings of the root node of each tree125

to approximate the graph embedding.126

A.3 Hyper-Parameter Setting127

For the implementation of various graph condensation methods, we adhere to the default parameters128

as specified by the authors in their respective original implementations. This approach ensures that129

our results are comparable to those reported in the foundational studies. For condensation ratios130

that were not explored in the original publications, we employ a grid search strategy to identify131

the optimal hyperparameters within the predefined search space. This includes experimenting with132

various combinations, such as differing learning rates for the feature optimizer and the adjacency133

matrix optimizer. The corresponding hyperparameter space are shown in Table A3.134

A.4 Computation resources135

All experiments were conducted on a high-performance GPU cluster to ensure a fair comparison.136

The cluster consists of 32 identical dell-GPU nodes, each featuring 256GB of memory, 2 Intel Xeon137

processors, and 4 NVIDIA Tesla V100 GPUs, with each GPU having 64 GB of GPU memory. If any138

experiment setting exceeds the GPU memory limit, it is reported as out-of-memory (OOM).139
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Table A3: Hyperparameter search space of different methods
Method Hyperparameter Values

General
Settings

Learning Rate 0.1, 0.01, 0.001, 0.0001, 0.00001
Epochs 300, 400, 500, 800, 1000, 2000, 3000, 4000, 5000
Layers 2, 3
Dropout Rate 0, 0.05, 0.1, 0.5, 0.6, 0.7, 0.8
Weight Decay 0, 0.0005
Hidden Units 128, 256
Pooling sum, mean
Activation LeakyReLU, ReLU, Sigmoid, Softmax
Batch Size (16,6000)

SGDD mx_size 50, 100
opt_scale 5, 10

GCond, DosCond, SGDD, GCDM, DM outer loop 1, 2, 5, 10, 15, 20

GCond, SGDD, GCDM inner loop 1, 5, 10, 15, 20

SFGC,
GEOM

expert_epochs 50, 70, 100, 350, 600, 800, 1000, 1500, 1600, 1900
start_epoch 10, 20, 50, 100, 200, 300
teacher_epochs 800, 1000, 1200, 2400, 3000

GEOM
lam 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95
T 250, 500, 600, 800, 1000, 1200
scheduler linear, geom, root

KiDD
scale uniform, degree
rank 8, 16, 32
orth_reg 0.01, 0.001, 0.0001

A.5 Discussion on Existing Benchmarks140

To the best of our knowledge, the only concurrent work is GCondenser [21]. The comparison141

of GCondser and our GC-Bench are list in Table A4. GCondenser [21] focus the node-level GC142

methods for node classification on homogeneous graphs with limited evaluation dimensions in terms143

of performance and time efficiency. Our GC-Bench analyzes more GC methods on a wider variety of144

datasets (both homogeneous and heterogeneous) and tasks (node classification, graph classification),145

encompassing both node-level and graph-level methods. In addition to performance and efficiency146

analysis, we further explore the transferability across different tasks (link prediction, node clustering,147

anomaly detection) and backbones (GNN models and the popular Graph Transformer). With GC-148

Bench covering more in-depth investigation over a wider scope, we believe it will provide valuable149

insights into existing works and future directions.150

B Settings and Additional Results151

In this section, we provide more details of the experimental settings and the additional results for the152

proposed 6 research questions, respectively.153

B.1 Settings and Additional Results of Performance Comparison (RQ1)154

B.1.1 Comparison Setting155

Node Classification Graph Dataset Setting. We compared ten state-of-the-art GC methods. The156

selection of the condensation ratio r is based on the labeling rates of different datasets. For datasets157

like Cora and Citeseer, the labeling rates are less than 50%, we select r as a proportion of the labeling158

rate, specifically at {5%, 10%, 25%, 50%, 75%, 100%}. For datasets like ogbn-arxiv, and inductive159

datasets where all nodes in the training graphs are labeled, with a relatively higher labeling rate, r160

is chosen to be {5%, 10%, 25%, 50%, 75%, 100%}. Corresponding condensation rates are shown in161

Table B2.162

Graph Classification Graph Dataset Setting. We compared three state-of-the-art GC algorithms163

on graph classification datasets: DosCond [12], KiDD [36], and Mirage [9]. Mirage [9] does not164

condense datasets into unified graphs measurable by Ǵraphs per Class(́GPC) as DosCond [12] and165
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Table A4: Comparison of GCondenser and GC-Bench
Benchmark Coverage GCondenser GC-Bench

Traditional Core-set Methods Random, K-Center Random, K-Center, Herding
Gradient Matching GCond, DosCond, SGDD GCond, DosCond, SGDD
Distribution Matching GCDM, DM GCDM, DM
Trajectory Matching SFGC SFGC, GEOM
KRR — KiDDA

lg
or

ith
m

s

CTC — Mirage

Node-level Homogenerous Cora, Citeseer, ogbn-arxiv
Flickr, Reddit, PubMed

Cora, Citeseer, ogbn-arxiv
Flickr, Reddit

Node-level Heterogenerous — ACM, DBLP

D
at

as
et

s

Graph-level — NCI1, DD, ogbg-molbace
ogbg-molbbbp, ogbg-molhiv

Nodel-level node classification

node classification
link prediction
node clustering
anomaly detectionTa

sk
s

Graph-level — graph classification
Condensation
Ratios ✓ ✓

Impact of
Struture structure v.s. structure-free

structure v.s. structure-free
structure properties
(Heterogeneity, Heterophily)Perf. Impact of

Initialization ✓ ✓

Backbone
Trans. .

SGC and GCN transfer to
SGC, GCN, GraphSAGE,
APPNP, CHebyNet, MLP

SGC, GCN and Graph Transformer
transfer to
SGC, GCN, GraphSAGE, APPNP,
ChebyNet, MLP, Graph TransformerTrans.

Task Trans. —

node classification
link prediction
node clustering
anomaly detection

Time ✓ ✓

E
va

lu
at

io
n

D
im

en
si

on
s

Efficiency Space — ✓

KiDD [36] do. Therefore, we measure the condensed dataset size by storing its elements in .pt format,166

similar to DosCond [12] and KiDD [36]. We select the Mirage-condensed dataset size closest to167

DosCond’s as the corresponding GPC. KiDD [36] generally occupies more disk space than DosCond168

under the same GPC. The size of Mirage datasets is determined by two parameters: the number of169

GNN layers (L) and the frequency threshold Θ. We fix L = 2, consistent with the 2-layer model used170

for validation, and employ a grid search strategy to identify the threshold combination that yields a171

dataset size closest to the targeted GPC. The corresponding disk space, GPC, and threshold choices172

are presented in Table B1. Note that for small thresholds, the MP Tree search algorithms used in173

Mirage [9] may reach recursive limits. Consequently, in DD and ogbg-molbace, certain GPCs lack174

corresponding threshold values.175

Heterogeneous Graph Dataset Setting. Due to the absence of condensation methods specifically176

for heterogeneous graphs, we convert heterogeneous datasets into homogeneous graphs for conden-177

sation, focusing on target nodes. We uniformly summed the adjacency matrices corresponding to178

various meta-paths as in [23], and applied zero-padding to match the maximum feature dimension as179

well as one-hot encoding for nodes without features. Specifically, in GEOM [40], when calculating180

heterophily, all nodes without labels (non-target nodes) are assigned the same distinct label, ensuring181

a consistent heterophily calculation.182

B.1.2 Additional Results183

The graph classification performance on GCN is shown in Table B3. DosCond [12] with GCN184

demonstrates significant advantages in 12 out of 25 cases, while KiDD [36] underperforms in most185

scenarios. Notably, DosCond [12] and Mirage [9] even outperform the results of the whole dataset on186
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Table B1: Comparison of Disk Size and Graph per Class (GPC) for condensed datasets between
Mirage and DosCond.

Dataset Graph/
Cls

Mirage
Disk Size (Bytes)

DosCond
Disk Size (Bytes)

Class 0
Threshold

Class 1
Threshold

NCI1 [29]
1 14,455 18,425 451 441
5 81,622 82,745 351 381

10 142,228 162,301 301 291
20 195,609 324,035 251 231
50 995,277 806,403 201 171

DD [3]
1 38,352 855,077 15 9
5 — 4,265,957 — —

10 — 8,529,583 — —
20 — 17,056,751 — —
50 — 42,638,383 — —

ogbg-molbace [11]
1 13,836 14143 120 90
5 60,047 60,927 230 80

10 106,077 119,497 120 80
20 232,191 236,489 140 70
50 — 587,337 — —

ogbg-molbbbp [11]
1 8,817 8,831 29 198
5 34,699 34,175 49 109

10 66,433 65,929 30 90
20 104,091 129,289 20 80
50 324,425 319,369 17 87

ogbg-molhiv [11]
1 9,606 9,717 8,000 250
5 54,669 38,837 1,760 170

10 74,524 75,263 1,680 130
20 148,028 148,095 1,420 110
50 330,498 366,463 800 110

Table B2: Different condensation ratios of transductive datasets. For heterogeneous datasets, the
number of nodes in the original graph is the sum of all types of nodes.

Ratio (r) Cora Citeseer ACM DBLP

5% 0.26% 0.18% 0.003% 0.002%
10% 0.52% 0.36% 0.007% 0.004%
25% 1.30% 0.90% 0.013% 0.007%
50% 2.60% 1.80% 0.033% 0.019%
75% 3.90% 2.70% 0.066% 0.037%

100% 5.20% 3.60% 0.332% 0.186%

ogbg-molbace. For Mirage [9], due to the algorithm’s recursive depth under low threshold parameters,187

we have only one result corresponding to GPC 1 on DD. However, this single result already surpasses188

all datasets condensed by KiDD [36] and the dataset with GPC 1 condensed by DosCond.189

B.2 Settings and Additional Results of Structure in Graph Condensation (RQ2)190

B.2.1 Experimental Settings191

The homophily ratio we use is the edge homophily ratio, which represents the fraction of edges that192

connect nodes with the same labels. It can be calculated as:193

H(G) =
1

|E|
∑

(j,k)∈E

1(yj = yk), i ∈ V, (A.1)

where V is the node set, E is the edge set, |E| is the number of edges in the graph, yi is the label of194

node i and 1(·) is the indicator function. A graph is typically considered to be highly homophilous195

when H is large (typically, 0.5 ≤ H ≤ 1 ), such as Cora and Reddit. Conversely, a graph with a low196

edge homophily ratio is considered to be heterophilous, such as Flickr.197

We also calculate the homophily ratio of condensed datasets. Since the condensed datasets have198

weighted edges, we first sparsify the graph by removing all edges with weights less than 0.05,199
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Table B3: Graph classification performance on GCN (mean±std) across datasets with varying con-
densation ratios r. The best results are shown in bold and the runner-ups are shown in underlined .
Red color highlights entries that exceed the whole dataset values.

Dataset Graph
/Cls Ratio(r) Traditional Core-set methods Gradient KRR CTC Whole

DatasetRandom Herding K-Center DosCond KiDD Mirage

NCI1
Acc. (%)

1 0.06% 53.30±0.6 55.20±2.6 55.20±2.6 57.30±0.9 49.30±1.1 49.10±0.9

71.1±0.8

5 0.24% 55.00±1.4 56.50±0.9 53.20±0.6 58.40±1.4 56.10±1.0 49.60±2.2

10 0.49% 58.10±2.2 58.60±0.8 57.00±2.6 57.80±1.6 57.50±1.1 48.60±0.1

20 0.97% 54.40±0.8 59.10±1.1 60.10±1.3 60.10±3.2 56.40±0.6 48.70±0.0

50 2.43% 56.80±1.1 58.70±1.1 64.40±0.9 58.20±2.8 59.90±0.6 48.60±0.1

DD
Acc. (%)

1 0.21% 59.70±1.5 66.90±2.8 66.90±2.8 68.30±6.6 58.60±2.4 71.20±6.6

78.4±1.7

5 1.06% 61.90±1.1 66.20±2.5 62.00±1.7 73.10±2.2 58.60±1.1 -
10 2.12% 63.70±2.8 68.00±3.6 62.50±2.3 71.30±8.3 61.60±3.8 -
20 4.25% 64.70±5.3 69.70±0.8 63.10±1.9 73.00±5.8 62.60±1.4 -
50 10.62% 66.60±2.1 68.50±1.4 68.90±1.8 74.20±3.6 59.30±0.0 -

ogbg-molbace
ROC-AUC

1 0.17% 0.510±.083 0.515±.040 0.517±.044 0.658±.064 0.568±.047 0.733±.012

0.711±.019

5 0.83% 0.612±.036 0.653±.043 0.508±.087 0.691±.06 0.356±.022 0.760±.002

10 1.65% 0.620±.054 0.658±.046 0.646±.047 0.702±.045 0.542±.027 0.759±.002

20 3.31% 0.642±.053 0.631±.051 0.575±.03 0.659±.049 0.526±.014 0.761±.003

50 8.26% 0.677±.015 0.629±.053 0.576±.087 0.714±.032 0.446±.042 -

ogbg-molbbbp
ROC-AUC

1 0.12% 0.534±.041 0.560±.017 0.560±.017 0.600±.023 0.504±.042 0.600±.002

0.646±.013

5 0.61% 0.561±.014 0.574±.022 0.585±.005 0.579±.056 0.561±.004 0.609±.061

10 1.23% 0.566±.011 0.590±.024 0.598±.025 0.556±.063 0.550±.005 0.517±.028

20 2.45% 0.593±.023 0.568±.019 0.545±.009 0.590±.057 0.594±.022 0.626±.032

50 6.13% 0.587±.007 0.579±.022 0.621±.011 0.598±.024 0.603±.01 0.602±.018

ogbg-molhiv
ROC-AUC

1 0.01% 0.733±.008 0.727±.012 0.727±.012 0.734±.002 0.725±.007 0.728±.012

0.750±.010

5 0.03% 0.729±.006 0.720±.018 0.739±.01 0.736±.008 0.738±.003 0.717±.003

10 0.06% 0.724±.011 0.726±.014 0.723±.012 0.736±.007 0.731±.008 0.735±.028

20 0.12% 0.723±.015 0.726±.015 0.724±.01 0.733±.007 0.703±.097 0.710±.016

50 0.30% 0.712±.014 0.723±.019 0.721±.012 0.731±.011 0.723±.011 0.718±.022

∗Mirage cannot directly generate graphs with the required ratio. Thus, we search the parameter space and aligned the generated graph
to match DosCond’s disk usage as substitution (see Appendix B.1).

then calculate the homophily ratio by adjusting the fraction to a weighted fraction, which can be200

represented as:201

H(G) =

∑
(j,k)∈E wjk1(yj = yk)∑

(j,k)∈E wjk
, i ∈ V, (A.2)

where wjk is the weight of the edge between nodes j and k.202

B.2.2 Additional Results203

The results of homophily ratios of condensed datasets are shown in Table B4. It appears that204

condensed datasets often struggle to preserve the homophily properties of the original datasets. For205

instance, in the case of the heterophilous dataset Flickr, an increase in the homophily rate is observed206

under most methods and ratios.207

Table B4: Homophily ratio comparison of different condensed datasets
Whole

Dataset Ratio (r) GCDM DM DosCond GCond SGDD

1.30% 0.76 ↓ 0.88 ↑ 0.20 ↓ 0.64 ↓ 0.19 ↓
2.60% 0.11 ↓ 0.74 ↓ 0.16 ↓ 0.55 ↓ 0.19 ↓Cora 0.81
5.20% 1.00 ↑ 0.21 ↓ 0.15 ↓ 0.62 ↓ 0.15 ↓
0.90% 0.16 ↓ 0.75 ↑ 0.19 ↓ 0.57 ↓ 0.14 ↓
1.80% 0.08 ↓ 0.30 ↓ 0.20 ↓ 0.36 ↓ 0.19 ↓Citeseer 0.74
3.60% 1.00 ↑ 0.34 ↓ 0.15 ↓ 0.22 ↓ 0.15 ↓
0.05% 0.28 ↑ 0.29 ↑ 0.25 ↑ 0.28 ↑ 0.32 ↑
0.50% 0.29 ↑ 0.22↓ 0.08 ↓ 0.28 ↑ 0.30 ↑Flickr 0.24
1.00% 0.36 ↑ 0.18 ↓ 0.06 ↓ 0.28 ↑ 0.26 ↑

We visualize the condensed datasets using force-directed graph visualization, as shown in Figure B.1,208

Figure B.2, and Figure B.3. Since SFGC [42] and GEOM [40] synthesize edge-free datasets, we209
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do not visualize the datasets they condensed. As shown in the visualization, graphs condensed210

by different methods exhibit distinct structural characteristics. For example, distribution matching211

methods often result in less pronounced community structures compared to other methods.212

We also visualize the node degree distribution of the original graph and the condesed graphs in213

Figure B.4. Note that the graphs condensed by GCDM [18] and DM [22] are dense and each edge has214

an extremely small weight under most situations, the degree of each node is also small. We observe215

that the degree distributions of most condensed datasets deviate significantly from the original graph.216

Among them, SGDD [37] demonstrates a relatively similar degree distribution to that of the original217

graph.218

(a) GCDM (b) DM (c) DosCond (d) GCond (e) SGDD

Figure B.1: Visualization of the Condensed Citeseer (1.80%) Dataset. Only the top 20% of edges
ranked by weight are visualized.

(a) GCDM (b) DM (c) DosCond (d) GCond (e) SGDD

Figure B.2: Visualization of the Condensed Cora (2.60%) Dataset. Only the top 20% of edges ranked
by weight are visualized.

(a) GCDM (b) DM (c) DosCond (d) GCond (e) SGDD

Figure B.3: Visualization of the Condensed Flickr (0.50%) Dataset. Only the top 1% of edges ranked
by weight are visualized.

B.3 Settings and Additional Results of Transferability in Different Tasks (RQ3)219

B.3.1 Link Prediction220

For the link prediction task, we utilize a graph autoencoder (GAE)[15] based on Graph Convolutional221

Networks (GCN[14]). The GAE consists of a two-layer GCN encoder that creates node embeddings.222

During training, we enhance the dataset by randomly adding negative links and use a decoder to223

perform binary classification on edges. During evaluation, we test the model using the test set of the224

original graph. Since trajectory matching methods do not generate any edges, we do not use them225

for link prediction tasks. The results of condensed datasets on the link prediction task are shown in226

9
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Figure B.4: Degree distribution in the condensed graphs for Citeseer (1.80%), Cora (2.60%), and
Flickr (0.05%). The first, second, and third columns correspond to Citeseer, Cora, and Flickr,
respectively.

Table B5. We observe that most condensed datasets underperform in link prediction tasks, especially227

on ogbn-arxiv and Flickr. Most methods’ condensed datasets consistently underperform compared to228

traditional core-set methods, indicating room for improvement.229

B.3.2 Node Clustering230

For the node clustering tasks on condensed datasets, we utilize DAEGC [30] to train on synthetic231

datasets condensed using the node classification task. We then test the trained model on the original232

large-scale datasets and include the results of other methods on the original graph for comprehensive233

comparison. Due to the performance degradation of GAT with large neighborhood sizes, we use234

GCN as the encoder.Performance metrics include Accuracy (Acc.), Normalized Mutual Information235

(NMI), F-score, and Adjusted Rand Index (ARI).236

To fully leverage the condensed datasets, we include the results of node clustering with pertaining. In237

this experiment, the GCN encoder is first trained on the synthetic datasets with a node classification238

task, which incorporates the synthetic labels’ information. Using the pre-trained GCN as an encoder,239

we then perform node clustering on the synthetic datasets and the original graph. Results of node240

clustering tasks, both without and with pertaining are shown in Table B6 and Table B7 respectively.241

We observe that most condensed datasets perform worse in the node clustering task compared to the242

original dataset. However, when additional information from the pretraining of the node classification243
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Table B5: Link Prediction Accuracy (%) of different condensed datasets. The best results are shown
in bold.

Dataset Ratio
(r) Random Herding K-Center GCDM DM DosCond GCond SGDD Whole

Dataset
0.90% 0.52 0.52 0.55 0.53 0.53 0.50 0.65 0.69
1.80% 0.52 0.52 0.54 0.51 0.52 0.51 0.51 0.67Citeseer
3.60% 0.54 0.53 0.53 0.53 0.53 0.53 0.53 0.61

0.82

1.30% 0.58 0.54 0.58 0.72 0.71 0.67 0.61 0.51
2.60% 0.55 0.55 0.56 0.69 0.67 0.58 0.77 0.62Cora
5.20% 0.57 0.56 0.58 0.70 0.71 0.59 0.65 0.56

0.78

0.05% 0.76 0.68 0.67 0.66 0.68 0.63 0.60 0.70
0.20% 0.72 0.72 0.73 0.72 0.72 0.69 0.71 0.51ogbn-arxiv
0.50% 0.74 0.73 0.74 0.71 0.73 0.72 0.72 0.70

0.75

0.05% 0.55 0.54 0.53 0.60 0.53 0.52 0.54 0.51
0.20% 0.63 0.63 0.63 0.63 0.51 0.53 0.57 0.70Flickr
0.50% 0.70 0.68 0.70 0.56 0.65 0.62 0.67 0.61

0.75

task on condensed dataset is utilized, the results of node clustering significantly improve. Notably,244

some datasets in Table B6 exhibit identical results with the Adjusted Rand Index (ARI) being 0 or245

even negative. This occurs because the clustering results do not match the number of classes in246

the labels, requiring manual splitting of clusters in such scenarios. An ARI of 0 indicates that the247

clustering result is as good as random, while a negative ARI suggests it is worse than random.248

B.3.3 Anomaly Detection249

For the anomaly detection tasks, we generate two types of anomalies, Contextual Anomalies and250

Structural Anomalies, following the method described in [2]. We set the anomaly rate to 0.05; if the251

condensed dataset is too small, we inject one contextual anomaly and two structural anomalies.252

Contextual Anomalies: Each outlier is generated by randomly selecting a node and substituting its253

attributes with those from another node with the maximum Euclidean distance in attribute space.254

Structural Anomalies: Outliers are generated by randomly selecting a small group of nodes and255

making them fully connected, forming a clique. The nodes in this clique are then regarded as structural256

outliers. This process is repeated iteratively until a predefined number of cliques are generated.257

We conduct anomaly detection by training a DOMINANT model [2], which features a shared graph258

convolutional encoder, a structure reconstruction decoder, and an attribute reconstruction decoder.259

Initially, we inject predefined anomalies into the test set of the original graph and use it for evaluation260

across different condensed datasets derived from this graph. The model is then trained on these261

condensed datasets, which were injected with specific types of anomalies before training. The262

DOMINANT model measures reconstruction errors as anomaly scores for both the graph structure263

and node attributes, combining these scores to detect anomalies. The results are evaluated using the264

ROC-AUC metric, as shown in Table B8 and B9.265

B.4 Settings and Additional Results of Transferability across Backbone Model Architectures266

(RQ4)267

B.4.1 Experimental Settings268

For transferability evaluation, we use different models as backbones to test the condensation methods.269

For distribution matching methods, two backbone models with shared parameters are used to generate270

embeddings that are matched. For trajectory matching methods, two backbone models are used271

to generate expert trajectories and student trajectories, respectively, to match the corresponding272

parameters. For gradient matching methods, two backbone models with shared parameters are273

used to generate gradients for real and synthetic data. Models are selected using grid-searched274

hyperparameters. The details of the backbone architecture are as follows:275

• MLP: MLP is a simple neural network consisting of fully connected layers. The MLP we use276

is structured similarly to a GCN but without the adjacency matrix input, effectively functioning277
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Table B6: Node Clustering without Pretraining Results on Cora and Citeseer with varying
condensation ratios (r). The best results are highlighted in bold, the runner-ups are underlined, and
the best results of condensed datasets are shaded in gray .

Citeseer Cora
Methods Ratio (r) Acc. NMI ARI F1 Ratio(r) Acc. NMI ARI F1

K-means 54.4 31.2 28.5 41.3 50.0 31.7 37.6 23.9
DAEGC [30] Full 67.2 39.7 41.0 63.6 Full 70.4 52.8 68.2 49.6

0.90% 40.6 19.1 17.5 36.0 1.30% 36.6 13.5 9.0 34.3
1.80% 38.3 14.8 13.6 34.5 2.60% 33.5 13.9 7.1 33.4Random
3.60% 41.8 18.1 16.9 39.4 5.20% 30.2 0.4 0.0 6.8
0.90% 41.9 16.9 15.3 40.0 1.30% 37.4 18.2 11.7 35.0
1.80% 44.9 18.7 16.0 41.1 2.60% 36.6 16.4 11.9 34.0Herding
3.60% 58.1 27.8 29.2 52.3 5.20% 26.7 13.7 2.9 20.6
0.90% 37.9 13.4 11.1 35.2 1.30% 34.3 13.5 7.8 32.4
1.80% 50.0 23.5 22.9 46.5 2.60% 42.5 22.3 15.0 42.3K-Center
3.60% 31.9 14.0 10.2 31.0 5.20% 30.2 0.4 0.0 6.8
0.90% 41.4 16.9 16.2 38.6 1.30% 30.2 0.4 0.0 6.8
1.80% 44.1 18.1 18.1 38.8 2.60% 30.2 0.4 0.0 6.8GCDM
3.60% 22.8 1.8 1.2 20.9 5.20% 30.2 0.4 0.0 6.8
0.90% 23.5 2.1 1.1 17.7 1.30% 30.2 0.4 0.0 6.8
1.80% 45.3 19.1 17.7 42.9 2.60% 29.2 2.0 0.0 9.5DM
3.60% 25.9 4.5 3.5 20.0 5.20% 30.2 0.4 0.0 6.8
0.90% 28.6 10.2 6.3 25.1 1.30% 30.2 0.4 0.0 6.8
1.80% 57.1 31.4 26.2 49.5 2.60% 30.2 0.4 0.0 6.8DosCond
3.60% 44.3 20.6 17.0 38.6 5.20% 29.6 16.2 7.7 23.4
0.90% 61.8 34.0 34.7 55.9 1.30% 46.6 36.7 27.3 41.2
1.80% 59.6 33.0 32.6 50.3 2.60% 49.9 39.3 27.9 44.3GCond
3.60% 57.8 32.0 30.2 54.8 5.20% 44.6 40.9 25.1 37.3
0.90% 56.5 27.3 26.8 50.6 1.30% 30.2 0.4 0.0 6.8
1.80% 45.4 24.0 20.0 43.9 2.60% 30.2 0.4 0.0 6.8SGDD
3.60% 42.5 23.6 20.8 38.2 5.20% 33.2 17.9 8.8 25.5
0.90% 46.7 19.9 18.8 43.4 1.30% 42.1 23.5 17.7 39.2
1.80% 56.8 27.4 27.6 52.8 2.60% 54.4 31.8 26.4 50.2SFGC
3.60% 47.7 19.0 16.9 45.3 5.20% 30.1 0.4 -0.1 6.8
0.90% 41.4 16.9 16.2 38.6 1.30% 40.7 16.9 11.6 37.3
1.80% 44.1 18.1 18.1 38.8 2.60% 30.8 12.9 9.3 29.2GEOM
3.60% 22.8 1.8 1.2 20.9 5.20% 35.6 16.0 11.5 33.6

as a standard multi-layer perceptron (MLP). The MLP we adopted consists of 2 layers with 256278

hidden units in each layer.279

• GCN [14]: GCN is the most common architecture for evaluating condensed datasets in main-280

stream GC methods. GCN defines a localized, first-order approximation of spectral graph281

convolutions, effectively aggregating and combining features from a node’s local neighborhood,282

leveraging the graph’s adjacency matrix to update node representations through multiple layers.283

We adhere to the setting in previous work [13] and use 2 graph convolutional layers for node284

classification, each followed by ReLu activation and batch normalization depending on the config-285

uration. For graph classification, we use a 3-layer GCN with a sum pooling function. The hidden286

unit size is set to 256.287

• SGC [34]: SGC is the standardized model used for condensation in previous works. It can be288

regarded as a simplified version of GCN, which ignores the nonlinear activation function but still289

keeps two Graph Convolution layers, thereby preserving similar graph filtering behaviors. In the290

experiments, we use 2-layer SGC with no bias.291

• Cheby [1]: Cheby utilizes Chebyshev polynomials to approximate the graph convolution op-292

erations, which retains the essential graph filtering properties of GCN while reducing the com-293
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Table B7: Node Clustering with Pretraining Results on Cora and Citeseer with varying condensa-
tion ratios (r). The best results are highlighted in bold and the runner-ups are underlined.

Citeseer Cora
Methods Ratio (r) Acc. NMI ARI F1 Ratio (r) Acc. NMI ARI F1

0.90% 27.3 5.5 4.7 24.6 1.30% 41.7 15.8 13.5 37.3
1.80% 32.7 9.7 7.8 31.4 2.60% 36.5 14.6 9.1 35.4Random
3.60% 44.6 16.0 14.1 43.0 5.20% 44.4 23.5 14.9 45.7
0.90% 36.7 12.8 11.1 34.4 1.30% 40.7 18.3 12.9 40.0
1.80% 36.8 13.1 10.2 36.2 2.60% 36.1 14.6 8.7 34.9Herding
3.60% 39.4 16.9 14.1 38.1 5.20% 35.0 16.6 10.9 32.0
0.90% 33.7 9.7 8.3 29.5 1.30% 41.8 19.3 14.5 39.2
1.80% 37.6 15.6 13.9 34.9 2.60% 38.5 20.8 14.8 38.3K-Center
3.60% 41.7 17.1 14.3 40.5 5.20% 38.5 17.4 10.9 36.3
0.90% 31.1 9.6 6.6 27.3 1.30% 21.3 3.7 1.7 20.1
1.80% 33.1 11.9 11.1 30.4 2.60% 27.0 10.9 5.7 26.7GCDM
3.60% 39.7 18.0 15.2 34.4 5.20% 30.0 12.4 7.0 29.6
0.90% 36.5 15.7 12.9 30.0 1.30% 27.3 9.3 4.5 25.7
1.80% 37.1 10.6 8.6 31.4 2.60% 20.8 3.3 0.9 19.0DM
3.60% 29.2 6.0 4.0 23.6 5.20% 23.5 4.8 1.6 16.3
0.90% 62.7 35.9 35.1 60.6 1.30% 60.2 42.5 29.4 61.2
1.80% 45.2 17.9 15.4 40.8 2.60% 44.5 30.1 16.6 46.5DosCond
3.60% 58.6 29.6 28.5 55.8 5.20% 25.4 9.8 5.0 25.0
0.90% 44.0 22.5 18.7 40.3 1.30% 67.4 45.1 40.4 65.8
1.80% 58.5 30.9 29.6 54.9 2.60% 63.7 44.5 36.2 61.8GCond
3.60% 52.0 26.8 22.5 46.6 5.20% 60.9 47.1 37.1 56.0
0.90% 46.7 23.5 19.1 42.3 1.30% 65.1 44.6 37.1 64.6
1.80% 55.4 28.0 25.8 50.9 2.60% 35.7 19.2 11.7 34.8SGDD
3.60% 40.5 18.3 14.3 34.8 5.20% 74.8 51.9 53.1 72.8
0.90% 34.2 9.8 8.4 32.2 1.30% 41.2 21.2 13.9 40.2
1.80% 47.1 21.7 20.6 43.5 2.60% 38.7 20.7 13.5 36.2SFGC
3.60% 48.5 23.3 21.5 44.8 5.20% 37.3 21.1 14.4 34.1
0.90% 32.7 10.5 8.6 31.7 1.30% 39.1 20.1 11.4 40.0
1.80% 48.2 23.6 22.7 45.2 2.60% 32.2 14.5 8.9 29.4GEOM
3.60% 54.2 25.7 24.9 52.1 5.20% 38.1 22.0 12.7 34.7

Table B8: Structural Anomaly Detection results (ROC-AUC) on Cora and Citeseer with varying
condensation ratios. The best results are shown in bold and the runner-ups are shown in underline.

Dataset Ratio
(r) Random Herding K-Center GCDM DM DosCond GCond SGDD SFGC GEOM

Citeseer
0.90% 0.44 0.38 0.44 0.76 0.76 0.73 0.77 0.67 0.62 0.59
1.80% 0.46 0.45 0.46 0.78 0.78 0.66 0.75 0.68 0.60 0.56
3.60% 0.44 0.40 0.44 0.76 0.76 0.70 0.74 0.75 0.59 0.57

Cora
1.30% 0.56 0.59 0.62 0.80 0.80 0.79 0.81 0.75 0.54 0.51
2.60% 0.50 0.65 0.67 0.80 0.80 0.82 0.79 0.81 0.53 0.53
5.20% 0.65 0.55 0.67 0.82 0.82 0.82 0.81 0.71 0.54 0.55

putational complexity. We use a 2-layer Cheby with 256 hidden units and ReLU activation294

function.295

• GraphSAGE [10]: GraphSAGE is a spatial-based graph neural network that directly samples296

and aggregates features from a node’s local neighborhood. In the experiments, We use a two-layer297

architecture and a hidden dimension size of 256 while using a mean aggregator.298

• APPNP [16]: APPNP leverages personalized PageRank to propagate information throughout299

the graph. This method decouples the neural network used for prediction from the propagation300

mechanism, enabling the use of personalized PageRank for message passing. In the experiments,301

we use a 2-layer model implemented with ReLU activation and sparse dropout to condense and302

evaluate.303
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Table B9: Contextual Anomaly Detection results (ROC-AUC) on Cora and Citeseer with varying
condensation ratios. The best results are shown in bold and the runner-ups are shown in underline.

Dataset Ratio
(r) Random Herding K-Center GCDM DM DosCond GCond SGDD SFGC GEOM

Citeseer
0.90% 0.62 0.60 0.62 0.65 0.65 0.55 0.70 0.74 0.62 0.59
1.80% 0.60 0.54 0.60 0.64 0.65 0.58 0.68 0.67 0.60 0.56
3.60% 0.57 0.56 0.57 0.68 0.68 0.59 0.68 0.52 0.59 0.57

Cora
1.30% 0.52 0.48 0.53 0.52 0.52 0.45 0.54 0.41 0.54 0.51
2.60% 0.50 0.45 0.54 0.54 0.54 0.56 0.55 0.57 0.53 0.53
5.20% 0.56 0.58 0.59 0.55 0.55 0.55 0.57 0.62 0.54 0.55

• GIN [35]: GIN aggregates features by linearly combining the node features with those of their304

neighbors, achieving classification power as strong as the Weisfeiler-Lehman graph isomorphism305

test. We specifically applied a 3-layer GIN with a mean pooling function to compress and evaluate306

graph classification datasets. For the datasets DD and NCI1, we use negative log-likelihood loss307

function for training and softmax activation in the final layer. For ogbg-molhiv, ogbg-molbbbp308

and ogbg-molbace, we use binary cross-entropy with logits and sigmoid activation in the final309

layer.310

• Graph Transformer [28]: The Graph Transformer leverages the self-attention mechanism of the311

Transformer to capture long-range dependencies between nodes in a graph. It employs multi-head312

self-attention to dynamically weigh the importance of different nodes, effectively modeling313

complex relationships within the graph. We use a two-layer model with layer normalization and314

gated residual connections, following the settings outlined in [28].315

B.4.2 Additional Results316

Table B10 shows the node classification accuracy of datasets condensed by traditional core-set317

methods, which is backbone-free, evaluated across different backbone architectures on Cora.318

Table B10: Node Classification Accuracy (%) of core-set datasets across different backbone
architectures on Cora (2.6%).

Methods SGC GCN GraphSage APPNP Cheby GTrans. MLP
Full Dataset 80.8 80.8 80.8 80.3 78.8 69.6 81.0
Herding 74.8 74.0 74.1 73.3 69.6 65.4 74.1
K-Center 72.5 72.4 71.8 71.5 63.0 64.3 72.2
Random 71.7 72.4 71.6 71.3 65.3 62.7 71.6

B.5 Settings and Additional Results of Initialization Impacts (RQ5)319

B.5.1 Experimental Settings320

The details of evaluated initialization mechanism are as follows:321

• Random Sample. We randomly select features from nodes in the original graph that correspond322

to the same label, using these features to initialize the synthetic nodes.323

• Random Noise. Consistent with prevalent dataset condensation methods, we initialize node324

features by sampling from a Gaussian distribution.325

• Center. This method involves extracting features from nodes within the same label, applying the326

K-Means clustering algorithm to these features while treating the graph as a singular cluster and327

utilizing the centroid of this cluster as the initialization point for all synthetic nodes bearing the328

same label.329

• K-Center. Similar to the Center initialization method, but employ the K-Means Clustering330

method on original nodes by dividing each class of the original graph nodes into n clusters,331

where n is the number of synthetic nodes per class. We select the center of these clusters as the332

initialization of synthetic nodes in this class.333
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• K-Means. Similar to the K-Center initialization method, but instead of using the centroids of334

clusters to initialize the synthetic dataset, randomly select one node from each cluster to serve as335

the initial state for the synthetic node.336

B.5.2 Additional Results337

The performance of different initialization mechanism on Cora (2.6%) and Cora (0.26%) are shown338

in Table B11 and Table B12, respectively. It is evident that distribution matching methods are highly339

sensitive to the choice of initialization, especially when the dataset is condensed to a smaller scale.340

Additionally, trajectory matching methods perform poorly with random noise initialization and often341

fail to converge.

Table B11: Performance comparison of differ-
ent initialization on various methods for Cora
(2.60%).The best results are shown in bold .

Methods Random
Noise

Random
Sample Center K-Center K-Means

GCDM 34.5 73.3 77.4 78.7 75.9
DM 34.5 73.7 77.7 78.1 75.9

DosCond 78.8 81.9 81.8 82.5 81.8
GCond 74.8 75.1 76.3 76.2 75.1
SGDD 81.7 81.8 82.6 82.7 82.5
SFGC 52.5 80.7 79.7 81.5 81.8
GEOM - 77.9 48.3 78.8 78.9

Table B12: Performance comparison of differ-
ent initialization on various methods for Cora
(0.26%). The best results are shown in bold .

Methods Random
Noise

Random
Sample Center K-Center K-Means

GCDM 32.3 37.8 78.7 78.7 34.3
DM 32.2 38.4 77.9 77.9 34.2

DosCond 78.7 82.4 80.5 82.0 81.9
GCond 80.2 81.6 80.1 81.2 80.7
SGDD 82.2 82.2 82.7 82.7 81.5
SFGC 79.7 79.7 79.8 79.8 72.0
GEOM - 49.6 51.3 51.3 65.0

342

B.6 Settings and Additional Results of Efficiency and Scalability (RQ6)343

B.6.1 Experimental Settings344

For a fair comparison, all the experiments are conducted on a single NVIDIA A100 GPU. Then we345

report the overall condensation time (min) when achieving the best validation performance, the peak346

CPU memory usage (MB) and the peak GPU memory usage (MB).347

B.6.2 Additional Results348

The detailed time and space consumption of the node-level GC methods on ogbn-arxiv (0.50%) and349

graph-level GC methods on ogbg-molhiv (1 Graph/Cls) are shown in Table B13 and Table B14350

respectively. For node-level methods, although trajectory matching methods (SFGC [42], GEOM [40])351

may consume less time and memory due to their offline matching mechanism, the expert trajectories352

generated before matching can occupy up to 764 GB of space as shown in Table B15, significantly353

impacting storage requirements. Among all the graph-level GC methods, Mirage [9] stands out by354

not relying on any GPU resources for calculation and can condense data extremely quickly, taking355

only 1% of the time required by other methods.

Table B13: Time and memory consumption of different methods on ogbn-arxiv (0.50%).
Consumption GCDM DM DosCond GCond SGDD SFGC GEOM

Time (min) 212.90 57.70 117.38 266.57 226.62 245.65 148.37
Acc. (%) 58.09 58.09 60.73 61.28 61.51 67.13 67.29

CPU Memory (MB) 2720.88 2708.70 5372.60 5270.70 5426.30 3075.30 3335.10
GPU Memory (MB) 2719.74 2552.63 3850.24 3850.24 8326.35 4050.12 5308.42

356

C Reproducibility and Limitations357

Accessibility and license. All the datasets, algorithm implementations, and experimental settings358

are publicly available in our open project (https://github.com/RingBDStack/GC-Bench). Our359

package (codes and datasets) is licensed under the MIT License. This license permits users to freely360

use, copy, modify, merge, publish, distribute, sublicense, and sell copies of the software, provided361

15

https://github.com/RingBDStack/GC-Bench


Table B14: Time and memory consumption of
different methods on ogbg-molhiv (1 Graph/Cls).

Consumption DosCond KiDD Mirage
Time (min) 218.11 202.38 2.91
Acc. (%) 67.41 66.44 71.09

CPU Memory (MB) 2666.29 3660.79 752.22
GPU Memory (MB) 1005.98 6776.42 0.00

Table B15: Expert trajectory size (GB) for
trajectory matching methods.
Citeseer Cora ogbn-arxiv

129 152 15
Flickr Reddit ACM DBLP

21 42 312 764

that the original copyright notice and permission notice are included in all copies or or substantial362

portions of the software. The MIT License is widely accepted for its simplicity and permissive terms,363

ensuring ease of use and contribution to the codes and datasets. We bear all responsibility in case of364

violation of rights, etc, and confirmation of the data license.365

Datasets. Cora, Citeseer, Flickr, Reddit and DBLP are publicly available online1 with the MIT366

license. ogbn-arxiv, ogbg-molbace, ogbg-molbbbp and ogbg-molhiv are released by OGB [11]367

with the MIT license. ACM [41] is the subset hosted in [32] with the MIT license. NCI1 [29] and368

DD [3] are available in TU Datasets [25] with the MIT license. All the datasets are consented to by369

the authors for academic usage. All the datasets do not contain personally identifiable information or370

offensive content.371

Limitations. GC-Bench has some limitations that we aim to address in future work. Our current372

benchmark is limited to a specific set of graph types and graph tasks and might not reflect the full373

potential and versatility of GC methods. We hope to implement more GC algorithms for various tasks374

(e.g. subgraph classification, community detection) on more types of graphs (e.g., dynamic graph,375

directed graph). Besides, due to resource constraints and the availability of implementations, we376

could not include some of the latest GC algorithms in our benchmark. We will continuously update377

our repository to keep track of the latest advances in the field. We are also open to any suggestions378

and contributions that will improve the usability and effectiveness of our benchmark, ensuring it379

remains a valuable resource for the IGL research community.380
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