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ABSTRACT

Recently, many self-supervised learning methods for image reconstruction have
been proposed that can learn from noisy data alone, bypassing the need for
ground-truth references. Most existing methods cluster around two classes: i)
Stein’s Unbiased Risk Estimate (SURE) and similar approaches that assume
full knowledge of the noise distribution, and ii) Noise2Self and similar cross-
validation methods that require very mild knowledge about the noise distribu-
tion. The first class of methods tends to be impractical, as the noise level is of-
ten unknown in real-world applications, and the second class is often suboptimal
compared to supervised learning. In this paper, we provide a theoretical frame-
work that characterizes this expressivity-robustness trade-off and propose a new
approach based on SURE, but unlike the standard SURE, does not require knowl-
edge about the noise level. Throughout a series of experiments, we show that the
proposed estimator outperforms other existing self-supervised methods on various
imaging inverse problems.

1 INTRODUCTION

Learning-based reconstruction methods have recently shown state-of-the-art results in a wide variety
of imaging inverse problems, from medical imaging to computational photography (Ongie et al.,
2020). However, most methods rely on ground-truth reference data for training, which is often
expensive or even impossible to obtain (eg. in medical and scientific imaging applications). This
limitation can be overcome by employing self-supervised learning losses, which only require access
to noisy (and possibly incomplete) measurement data (Tachella et al., 2023a).

Self-supervised denoising methods cluster around two classes: i) SURE (Metzler et al., 2020), Nois-
ier2Noise (Moran et al., 2020) and similar methods which assume full knowledge about the noise
distribution, and ii) Noise2Self (Batson & Royer, 2019) and other cross-validation methods which
only require independence of the noise across pixels. While networks trained via SURE perform
better than cross-validation methods, they are brittle to misspecification of the noise level, which is
often not fully known in real-world imaging settings. This phenomenon can be seen as a robustness-
expressivity trade-off, where leveraging more information about the noise distribution results in
more optimal estimators, which are at the same time less robust to errors about the noise model. In
this paper, we show that this trade-off can be understood through the set of constraints imposed on
the derivatives of the estimator: SURE-like estimators do not impose any constraints on derivatives,
whereas cross-validation methods add strong constraints on them. Our analysis paves the way for a

∗Code associated to this paper is available at github.com/tachella/unsure.
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new family of self-supervised estimators, which we name UNSURE, which lie between these two
extremes, by only constraining the expected divergence of the estimator to be zero.

The contributions of the paper are the following:

1. We present a theoretical framework for understanding the robustness-expressivity trade-off
of different self-supervised learning methods.

2. We propose a new self-supervised objective that extends the SURE loss for the case where
the noise level is unknown and provide generalizations to spatially correlated Gaussian
noise (with unknown correlation structure), Poisson-Gaussian noise, and certain noise dis-
tributions in the exponential family.

3. Throughout a series of experiments in imaging inverse problems, we demonstrate state-of-
the-art self-supervised learning performance in settings where the noise level (or its spatial
correlation) is unknown.

1.1 RELATED WORK

SURE Stein’s unbiased risk estimate is a popular strategy for learning from noisy measurement
data alone, which requires knowledge of the noise distribution (Stein, 1981; Efron, 2004; Aggarwal
et al., 2023). The SURE loss has been extended for large classes of noise distributions (Hudson,
1978; Raphan & Simoncelli, 2011; Le Montagner et al., 2014), and has been used to train networks
in a self-supervised way when the noise distribution is known (Metzler et al., 2020; Chen et al.,
2022). ENSURE (Aggarwal et al., 2023), despite having a similar name to this work, proposes a
weighting correction to SURE in the case where we obtain observations from multiple operators, and
does not handle unknown noise levels. Zhussip et al. (2019) presents a variant of SURE that takes
into account two noisy images instead of a single one, and assumes that the noise level is known.
SURE belongs more broadly to the class of empirical Bayes methods (Raphan & Simoncelli, 2011;
Efron, 2011; Robbins, 1964; Efron, 2012), which build estimators from measurement data alone
for a large class of noise distributions, however, to the best of our knowledge, the case of partially
unknown noise distribution has not been considered.

Noise2Noise It is possible to learn an estimator in a self-supervised way if two independent noisy
realizations of the same image are available for training, without explicit knowledge of the noise dis-
tribution (Mallows, 1973). This idea was popularized in imaging by the Noise2Noise method (Lehti-
nen et al., 2018). However, obtaining two independent noise realizations of the same signal is often
impossible.

Noisier2Noise and Related Methods Noisier2Noise (Moran et al., 2020), the coupled bootstrap
estimator (Oliveira et al., 2022) and Recorrupted2Recorrupted (R2R) Pang et al. (2021), leverage
the fact that two independent noisy images can be obtained from a single noisy image by adding
additional noise. However, the added noise must have the same noise covariance as the original noise
in the image, and thus full information about the noise distribution is required. Noise2Score (Kim
& Ye, 2021), propose to learn the score of the noisy data distribution, and then denoise the images
via Tweedie’s formula which requires knowledge about the noise level. (Kim et al., 2022) proposes
a way to estimate the noise level using the learned score function. However, the method relies
on a Noisier2Noise approximation, whereas we provide closed-form formulas for the noise level
estimation.

Noise2Void and Cross-Validation Methods When the noise is iid, a denoiser that does not take
into account the input pixel to estimate the denoised version of the pixel cannot overfit the noise.
This idea goes back to cross-validation-based estimators (Efron, 2004). One line of work (Krull
et al., 2019) leverages this idea to build self-supervised losses that remove the center pixel from the
input, whereas another line of work builds network architectures whose output does not depend on
the center input pixel (Laine et al., 2019). These methods require mild knowledge about the noise
distribution (Batson & Royer, 2019) (in particular, that the distribution is independent across pixels),
but often provide suboptimal performances due to the discarded information. Several extensions
have been proposed: Neighbor2Neighbor (Huang et al., 2021) is among the best-performing for
denoising, and SSDU (Yaman et al., 2020) and Noise2Inverse (Hendriksen et al., 2020) generalize
the idea for linear inverse problems.
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Learning From Incomplete Data In many inverse problems, such as sparse-angle tomography,
image inpainting and magnetic resonance imaging, the forward operator is incomplete as there are
fewer measurements than pixels to reconstruct. In this setting, most self-supervised denoising meth-
ods fail to provide information in the nullspace of the forward operator. There are two ways to
overcome this limitation (Tachella et al., 2023a): using measurements from different forward opera-
tors (Bora et al., 2018; Tachella et al., 2022; Yaman et al., 2020; Daras et al., 2024), or leveraging the
invariance of typical signal distributions to rotations and/or translations (Chen et al., 2021; 2022).

Approximate Message Passing The approximate message-passing framework (Donoho et al.,
2009) for compressed sensing inverse problems relies on an Onsager correction term, which results
in divergence-free denoisers in the large system limit (Xue et al., 2016; Ma & Ping, 2017; Skuratovs
& Davies, 2021). However, different from the current study, the purpose of the Onsager correction is
to ensure that the output error at each iteration appears uncorrelated in subsequent iterations. In this
work, we show that optimal self-supervised denoisers that are blind to noise level are divergence-free
in expectation.

2 SURE AND CROSS-VALIDATION

We first consider the Gaussian denoising problems of the form

y = x+ σϵ (1)

where y ∈ Rn are the observed measurements, x ∈ Rn is the image that we want to recover,
ϵ ∼ N (0, I) is the Gaussian noise affecting the measurements. This problem can be solved by
learning an estimator from a dataset of supervised data pairs (x,y) and minimizing the following
supervised loss

argmin
f

Ex,y∥f(y)− x∥2 (2)

whose minimizer is the minimum mean squared error (MMSE) estimator f(y) = E{x|y}. How-
ever, in many real-world applications, we do not have access to ground-truth data x for training, and
instead only a dataset of noisy measurements y. SURE (Stein, 1981) provides a way to bypass the
need for ground-truth references since we have that1

Ex,y∥f(y)− x∥2 = Ey

[
∥f(y)− y∥2 + 2σ2 divf(y)− nσ2

]
. (3)

where the divergence is defined as divf(y) :=
∑

i=1
∂fi
∂yi

(y). Thus, we can optimize the following
self-supervised loss

argmin
f∈L1

Ey

[
∥f(y)− y∥2 + 2σ2 divf(y)

]
(SURE)

where L1 is the space of weakly differentiable functions, and whose solution is given by Tweedie’s
formula, i.e.,

E{x|y} = y + σ2∇ log py(y) (4)

where py is the distribution of the noise data y. While this approach removes the requirement of
ground-truth data, it still requires knowledge about the noise level σ2, which is unknown in many
applications.

Noise2Void (Krull et al., 2019), Noise2Self (Batson & Royer, 2019) and similar cross-
validation (CV) approaches do not require knowledge about the noise level σ by using estimators
whose ith output fi(y) does not depend on the ith input yi, which in turns implies that ∂fi

∂yi
(y) = 0

for all pixels i = 1, . . . , n and all y ∈ Rn. These estimators have thus zero divergence divf(y) = 0
for all y ∈ Rn, and thus can be learned by simply minimizing a data consistency term

fCV = argmin
f∈SCV

Ey ∥f(y)− y∥2 (5)

1In practice, we replace the expectations over y by a sum over a finite dataset {yi}Ni=1, obtaining empir-
ical estimators. The theoretical analysis focuses on the asymptotic case of N → ∞ to provide a stronger
characterization of the resulting estimators.
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Figure 1: The expressivity-robustness trade-off in self-supervised denoising. If the noise dis-
tribution is fully known, SURE provides the most expressive estimator, matching the performance
of supervised learning. As the assumptions on the noise are relaxed, the learned estimator needs
to be less expressive to avoid over-fitting the noise. In this work, we show that popular ’Noise2x’
strategies impose too restrictive conditions on the learned denoiser, and propose an alternative that
strikes a better trade-off.

where the function is restricted to the space

SCV = {f ∈ L1 :
∂fi
∂yi

(y) = 0 for almost every y ∈ Rn}.

Using the SURE identity in (3), we have the equivalence with the following constrained supervised
loss

fCV = argmin
f∈SCV

Ex,y∥f(y)− x∥2

whose solution is fCV
i (y) = E{yi|y−i} = E{xi|y−i} for i = 1, . . . , n where y−i denotes y

excluding the ith entry yi. The constraint can be enforced in the architecture using convolutional
networks whose receptive field does not look at the center pixel (Laine et al., 2019), or via training,
by choosing a random set of pixels at each training iteration, setting random values (or the value of
one of their neighbors) at the input of the network and computing the loss only at those pixels (Krull
et al., 2019).

The zero derivative constraint results in suboptimal estimators, since the ith measurement yi gener-
ally carries significant information about the value of xi. The expected mean squared error of the
cross-validation estimator is

Ex,y
1

n
∥fCV(y)− x∥2 =

1

n

n∑
i=1

Ey−i V{xi|y−i} (6)

with V the variance operator and the performance of this estimator can be arbitrarily bad if there is
little correlation between pixels, ie. V{xi|y−i} ≈ V{xi}, in which case the mean squared error is
simply the average variance of the ground-truth data Ex,y

1
n∥f

CV(y)− x∥2 = 1
n

∑n
i=1 V{xi}.

3 UNSURE

In this work, we propose to relax the zero-derivative constraint of cross-validation, by only requiring
that the estimator has zero expected divergence (ZED), ie. Ey divf(y) = 0. We can then minimize
the following problem:

fZED = argmin
f∈SZED

Ey∥f(y)− y∥2 (7)

where SZED = {f ∈ L1 : Ey divf(y) = 0}. Since we have that SCV ⊂ SZED, the estimator that is
divergence-free in expectation is more expressive than the cross-validation counterpart. Again due
to SURE, (7) is equivalent to the following constrained supervised loss

fZED = argmin
f∈SZED

Ex,y∥f(y)− x∥2 (8)

The constrained self-supervised loss in (7) can be formulated using a Lagrange multiplier η ∈ R as

min
f

max
η

Ey

[
∥f(y)− y∥2 + 2η divf(y)

]
(UNSURE)

which has a simple closed-form solution:
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Proposition 1. The solution of (UNSURE) is given by

fZED(y) = y + η̂∇ log py(y) (9)

where η̂ = ( 1nEy∥∇ log py(y)∥2)−1 ∈ R+ is the optimal multiplier.

A natural question at this point is, how good can a ZED denoiser be? The theoretical performance
of an optimal ZED denoiser is provided by the following result:
Proposition 2. The mean squared error of the optimal divergence-free in expectation denoiser is
given by

Ex,y
1

n
∥fZED(y)− x∥2 = σ2(

1

1− MMSE
σ2

− 1) (10)

where MMSE = Ex,y
1
n∥E{x|y} − x∥2 is the minimum mean squared error.

The proofs of both propositions are included in Appendix A.

We can derive several important observations from these propositions:

1. As with Tweedie’s formula, the optimal divergence-free in expectation estimator in (9) can
also be interpreted as doing a gradient descent step on log py , but the formula is agnostic to
the noise level σ, as one only requires knowledge of∇ log py(y) to compute the estimator.

2. The step size η̂ is a conservative estimate of the noise level, as we have that

η̂ =
σ2

1− MMSE
σ2

≥ σ2 (11)

3. As we have that Ey∥∇ log py(y)∥2 = −
∑

i Ey
∂2 log py(y)

∂y2
i

, (9) ressembles the natural
gradient descent algorithm (Amari, 2016).

4. Combining (4) and (9), we can write fZED as the convex combination2 of the MMSE esti-
mator and the noisy input:

fZED(y) = ωE{x|y}+ (1− ω)y (12)

where ω = nσ2

Ey∥E{x|y}−y∥2 ∈ [0, 1].

5. We can expand the formula in (10) as a geometric series since MMSE
σ2 < 1 to obtain

Ex,y
1

n
∥fZED(y)− x∥2 = MMSE + σ2

∞∑
j=2

(
MMSE
σ2

)j . (13)

If the support of the signal distribution p(x) has dimension k ≪ n, we have that MMSE ≈
σ2k/n (Chandrasekaran & Jordan, 2013), and thus i) the estimation of the noise level is accurate as
η̂ ≈ σ2 + (σkn )2, and ii) the ZED estimator performs similarly to the minimum mean squared one,
Ex,y

1
n∥f

ZED(y)−x∥2 ≈ MMSE + (σkn )2. Perhaps surprisingly, in this case, the ZED estimator is
close to optimal without adding any explicit constraints about the low-dimensional nature of px.

The ZED estimator fails with high-entropy distributions, for example px = N (0, Iσ2
x). In this

case, we have η̂ = σ2 + σ2
x, as the noise level estimator cannot tell apart the variance coming from

the ground truth distribution σ2
x from that coming from the noise σ2, and the ZED estimator is the

trivial guess fZED(y) = 0. Fortunately, this worst-case setting is not encountered in practice as most
natural signal distributions are low-dimensional. To illustrate this, we evaluate the performance of a
pretrained deep denoiser in comparison with its ZED version on the DIV2K dataset (see Figure 2).
Remarkably, the ZED denoiser performs very similarly to the original denoiser (less than 1 dB
difference across most noise levels), and its error is very well approximated by Proposition 2.

Appendix D presents the ZED estimators associated to popular separable signal distributions: spike-
and-slab, Gaussian, and two deltas, illustrating the differences with MMSE and cross-validation
estimators.

2The cross-validation estimator can be written as a convex combination of MMSE evaluations, as we have
that fCV

i (y) =
∫
yi

E{x|y}pyi(yi)dyi for i = 1, . . . , n.
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ZED
ZED

Figure 2: Removing the expected divergence of pretrained MMSE denoisers. Considering the
DRUNet as an approximate MMSE denoiser, we use the formula in (12) to evaluate its ZED version
and plot the expected theoretical error according to (10). The ZED correction only results in a loss
of less than 1 dB for most noise levels. Moreover, the theoretical error follows very closely the
empirical one.

3.1 BEYOND ISOTROPIC GAUSSIAN NOISE

Correlated Gaussian noise In many applications, the noise might be correlated across different
pixels. For example, the most popular noise model is

y|x ∼ N (x,Σ)

where Σ is the covariance matrix capturing the correlations, which is often partially unknown. This
setting is particularly challenging where most self-supervised methods fail. If the noise covariance
is known, the SURE formula in (3) is generalized as

Ex,y∥f(y)− x∥2 = Ey

[
∥f(y)− y∥2 + 2 tr

(
Σ
∂f

∂y
(y)

)
− n tr (Σ)

]
.

If the exact form of the noise covariance is unknown, we can consider an s-dimensional set of
plausible covariance matrices

R = {Ση ∈ Rn×n : Ση =

s∑
j=1

ηjΨj ,η ∈ Rs}

for some basis matrices {Ψj ∈ Rn×n}sj=1, with the hope that the true covariance belongs to
this set, that is Σ ∈ R. This is equivalent to restricting the learning to estimators in the set
{f ∈ L1 : Ey tr

(
Ψi

∂f
∂y (y)

)
= 0, i = 1, . . . , s}. Here, the dimension s ≥ 1 offers a trade-

off between optimality of the resulting estimator and robustness to a misspecified covariance. We
can thus generalize (UNSURE) as

min
f

max
η

Ey ∥f(y)− y∥2 + 2 tr
(
Ση

∂f

∂y
(y)

)
. (14)

with Lagrange multipliers η ∈ Rs. The following theorem provides the solution for this learning
problem:
Theorem 3. Let py = px ∗ N (0,Σ) and assume that {Ψj ∈ Rn×n}sj=1 are linearly independent.
The optimal solution of problem (14) is given by

f(y) = y +Ση̂∇ log py(y) (15)

where η̂ = Q−1v, with Qi,j = tr
(
ΨiEy

[
∇ log py(y)∇ log py(y)

⊤]Ψ⊤
j

)
and vi = tr (Ψi) for

i, j = 1, . . . , s.

The proof is included in Appendix A. Proposition 1 is a special case with s = 1 and Ψ1 = I .

For example, an interesting family of estimators that are more flexible than fCV and can handle a
different unknown noise level per pixel, is obtained by considering the diagonal parameterization
Ση = diag(η). In this case, we have η̂i = (Ey

∂ log py

∂yi
(y)2)−1 for i = 1, . . . , n, and thus

fi(y) = yi + (Ey
∂ log py
∂yi

(y)2)−1 ∂ log py
∂yi

(y)
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for i = 1, . . . , n. The estimator verifies the constraint Eyi

∂f
∂yi

(y) = 0 for all i = 1, . . . , n, and thus
is still more flexible than cross-validation, as the gradients are zero only in expectation.

Another important family is related to spatially correlated noise, which is generally modeled as

y = x+ σ ∗ ϵ
where ∗ denotes the convolution operator, σ ∈ Rp is a vector-valued and ϵ ∼ N (0, I). If we don’t
know the exact noise correlation, we can consider the set of covariances with correlations up to ±r
taps/pixels3, we can minimize

min
f∈SC

Ey∥f(y)− y∥2 (16)

with SC = {f ∈ L1 : Ey

∑n
i=1

∂fi
∂y(i+j) mod n

(y) = 0, j ∈ {−r, . . . , r}}, or equivalently

min
f

max
η

Ey ∥f(y)− y∥2 +
r∑

j=−r

ηj

n∑
i=1

∂fi
∂y(i+j) mod n

(y) (C-UNSURE)

whose solution is f(y) = y + η̂ ∗ ∇ log py(y) where the optimal multipliers are given by η̂ =
F−1(1/Fh) where the division is performed elementwise, h ∈ R2r+1 is the±r tap autocorrelation
of the score and F ∈ C(2r+1)×(2r+1) is the discrete Fourier transform (see Appendix A for more
details).

Poisson-Gaussian noise In many applications, the noise has a multiplicative nature due to the dis-
crete nature of photon-counting detectors. The Poisson-Gaussian noise model is stated as (Le Mon-
tagner et al., 2014)

y = γP(x
γ
) + σϵ (17)

where P denotes the Poisson distribution, and the variance of the noise is dependent on the signal
level, since V{yi|xi} = xiγ + σ2. In this case, we minimize

min
f∈SPG

Ey ∥f(y)− y∥2 (18)

with SPG = {f ∈ L1 : Ey divf(y) = 0, Ey y⊤∇f(y) = 0}, or equivalently

min
f

max
η,γ

Ey

[
∥f(y)− y∥2 +

n∑
i=1

2(η + yiγ)
∂fi
∂yi

(y)

]
(PG-UNSURE)

whose solution is f(y) = y + (1η̂ + yγ̂) ◦ ∇ log py(y) + 1γ̂ where η̂ and γ̂ are included in Ap-
pendix C.

Exponential family noise distributions We can generalize UNSURE to other noise distributions
with unknown variance by considering a generalization of Stein’s lemma, introduced by Hudson
(1978). In this case, we consider the constrained set {f ∈ L1 : Ey

∑n
i=1 a(yi)

∂fi
∂yi

(y) = 0} for
some function a : R 7→ R which depends on the noise distribution. For example, the isotropic
Gaussian noise case is recovered with a(yi) = 1. See Appendix B for more details.

General inverse problems We consider problems beyond denoising y = Ax + ϵ, where y, ϵ ∈
Rm, x ∈ Rn and A ∈ Rm×n where generally we have fewer measurements than pixels, ie. m < n.
We can adapt UNSURE to learn in the range space of A⊤ via

min
f

max
η

Ey∥A† (Af(y)− y) ∥2 + 2η div
[
(A†)⊤A†Af

]
(y) (General UNSURE)

where A† ∈ Rn×m is the linear pseudoinverse of A (Eldar, 2009), or a stable approximation thereof.
As with SURE, the proposed loss only provides an estimate of the error in the nullspace of A. To
learn in the nullspace of A, we use (General UNSURE) with the equivariant imaging (EI) loss (Chen
et al., 2021), which leverages the invariance of natural image distributions to geometrical transfor-
mations (shifts, rotations, etc.), please see Appendix F for more details. A theoretical analysis about
learning in incomplete problems can be found in Tachella et al. (2023a).

3Here we consider 1-dimensional signals for simplicity but the result extends trivially to the 2-dimensional
case.
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4 METHOD

We propose two alternatives for learning the optimal ZED estimators: the first solves the Lagrange
problem in (14), whereas the second one approximates the score during training, and uses the for-
mula in Theorem 3 for inference.

UNSURE We can solve the optimization problem in (14) by parametrizing the estimator fθ us-
ing a deep neural network with weights θ ∈ Rp, and approximating the expectation over y by a
sum over a dataset of noisy images {yj}Nj=1. During training, we search for a saddle point of the
loss on θ and η by alternating between a gradient descent step on θ and a gradient ascent step
on η. The gradient with respect to η does not require additional backpropagation through fθ and
thus adds a minimal computational overhead. We approximate the divergence using a Monte Carlo
approximation (Ramani et al., 2008)

tr
(
M

∂fθ
∂y

(y)

)
≈ (M b)⊤

τ
(fθ(y + τb)− fθ(y)) (19)

where M ∈ Rn×n, b ∼ N (0, I) and τ = 0.01 is a small constant, and for computing the divergence
in (UNSURE) we choose M = I , and for computing the second term in (PG-UNSURE) we choose
M = diag(η1+ γy). A pseudocode for computing the loss is presented in Appendix F.

UNSURE via score Alternatively, we can approximate the score of the measurement data with a
deep network sθ(y) ≈ ∇ log py(y) using the AR-DAE loss proposed in Lim et al. (2020); Kim &
Ye (2021),

argmin
θ

E(y,b,τ) ∥b+ τsθ(y + τb)∥2 (20)

where b ∼ N (0, I) and τ ∼ N (0, δ2). Following Lim et al. (2020), we start with a large standard
deviation by setting δmax and anneal it to a smaller value δmin during training4. At inference time,
we reconstruct the measurements y using Theorem 3, as it only requires access to the score:

fθ(y) = y +Ση̂ sθ(y)

where Ση̂ is computed using Theorem 3 with H ≈ Ey sθ(y)sθ(y)
⊤. The expectation can be

computed over the whole dataset or a single noisy image if the noise varies across the dataset. As
we will see in the following section, this approach requires a single model evaluation per gradient
descent step, compared to two evaluations when learning fθ for computing (19), but it requires more
epochs to converge and obtained slightly worse reconstruction results in our experiments.

5 EXPERIMENTS

We show the performance of the proposed loss in various inverse problems and compare it with
state-of-the-art self-supervised methods. All our experiments are performed using the deep inverse
library (Tachella et al., 2023b). We use the AdamW optimizer for optimizing network weights θ
with step size 5× 10−4 and default momentum parameters and set α = 0.01, µ = 0.9 and τ = 0.01
for computing the UNSURE loss in Algorithm 1. Examples of reconstructed images are shown
in Figure 4. Results on real Cryo-EM data (Bepler et al., 2020) are included in Appendix E.

Gaussian denoising on MNIST We evaluate the proposed loss for different noise lev-
els σ ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5} of Gaussian noise on the MNIST dataset. We com-
pare with Noise2Score (Kim et al., 2022), Neighbor2Neighbor (Huang et al., 2021), recor-
rupted2recorrupted (Pang et al., 2021) and SURE (Metzler et al., 2020) and use the same U-Net
architecture for all experiments (see Appendix F for more details). The results are shown in Fig-
ure 3. The Lagrange multiplier η converges in a few epochs to a slightly larger value of σ for all
evaluated noise levels. SURE and R2R are highly sensitive to the choice of σ, providing large errors
when the noise level is wrongly specified. The proposed UNSURE loss and UNSURE via score
do not require knowledge about the noise level and perform only slightly worse than the supervised
case. We also evaluate the UNSURE via score approach using image-wise noise level estimations,
obtaining a similar performance than averaging over the whole dataset. As the best results are ob-
tained by the UNSURE loss, we use this variant in the rest of our experiments.

4In our Gaussian denoising experiments, we set δmax = 0.1 and δmin = 0.001 as in Kim et al. (2022).
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blind

Figure 3: MNIST denoising experiments. From left to right: i) evolution of the Lagrange multiplier
η for the case with σ = 0.2, ii) test PSNR during training for UNSURE and UNSURE via score with
σ = 0.1, iii) estimated Lagrange multiplier as a function of σ, iv) average test PSNR for various
methods and various noise levels σ.

Colored Gaussian noise on DIV2K We evaluate the performance of the proposed method on
correlated noise on the DIV2K dataset (Zhang et al., 2017), by adding Gaussian noise convolved
with a box blur kernel of 3× 3 pixels. To capture the spatial structure of noise, we parameterize Ση

in (14) as a circulant (convolution) matrix, as explained in Section 3.1. It is worth noting that only
a bound on the support of the blur is needed for the proposed method, while the specific variance in
each direction is not necessary. We train all the models on 900 noisy patches of 128 × 128 pixels
extracted from the training set and test on the full validation set which contains images of more than
512× 512 pixels.

Table 1 shows the test results for the different evaluated methods (Neighbor2Neighbor, Noise2Void
and SURE). The proposed method significantly outperforms other self-supervised baselines which
fail to capture correlation, performing≈ 1 dB below the SURE method with known noise covariance
and supervised learning. Table 2 shows the impact of the choice of the kernel size in the proposed
method, where overspecifying the kernel size provides a significant improvement over underspeci-
fication, and a mild performance reduction compared to choosing the exact kernel size.

Method Noise2Void Neighbor2Neighbor UNSURE
(unknown Σ)

SURE
(known Σ) Supervised

PSNR [dB] 19.09± 1.79 23.61± 0.13 28.72± 1.03 29.77± 1.22 29.91± 1.26

Table 1: Average test PSNR of learning methods for correlated Gaussian noise.

Kernel size η 1× 1 3× 3 5× 5
PSNR [dB] 23.62 28.72± 1.03 27.38± 0.88

Table 2: Average test PSNR of the proposed method as a function of the chosen blur kernel size,
where the ground-truth kernel had size 3× 3.

Computed tomography with Poisson-Gaussian noise on LIDC We evaluate a tomography prob-
lem where (resized) images of 128 × 128 pixels taken from the LIDC dataset, are measured using
a parallel beam tomography operator with 128 equispaced angles (thus A does not have a signifi-
cant nullspace). The measurements are corrupted by Poisson-Gaussian noise distribution in (17) of
levels γ = σ = 0.005. We compare our method with the Poisson-Gaussian SURE loss proposed
in (Le Montagner et al., 2014), and a cross-validation approach similar to Noise2Inverse (Hendriksen
et al., 2020). In this case, we use the loss in (PG-UNSURE) with η and γ as Lagrange multipliers,
together with the pseudoinverse correction in (General UNSURE). We evaluate all methods using an
unrolled network with a U-Net denoiser backbone (see Appendix F for details). Table 3 presents the
test PSNR of the compared methods. The proposed loss outperforms the cross-validation approach
while being close to SURE with known noise levels.

Accelerated magnetic resonance imaging with FastMRI We evaluate a single-coil 2×-
accelerated MRI problem using a subset of 900 images of the FastMRI dataset for training and

9
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Method Noise2Inverse PG-UNSURE
(unknown σ, γ)

PG-SURE
(known σ, γ) Supervised

PSNR [dB] 32.54± 0.71 33.31± 0.57 33.76± 0.61 34.67± 0.68

Table 3: Average test PSNR of learning methods for computed tomography with Poisson-Gaussian
noise.

Ground-truth

Ground-truth

Ground-truth

Measurement

Measurement

Measurement

Noise2Void Neighbor2Neighbor UNSURE 

UNSURE+EI SURE+EI Supervised

Supervised

SURE known Supervised

PG-UNSURE PG-SURE

EINoise2Inverse

Noise2Inverse

Figure 4: Image reconstruction results for various imaging problems. Top: colored Gaussian
noise on DIV2K. Middle: Accelerated magnetic resonance imaging with FastMRI. Bottom: com-
puted tomography with Poisson-Gaussian noise on LIDC

100 for testing (Chen et al., 2021), and adding Gaussian noise with σ = 0.03 to the k-space mea-
surements. We evaluate all methods using an unrolled network with a U-Net denoiser backbone
(see appendix for more details). We compare with cross-validation, simple measurement consis-
tency (∥f(y) − y∥2) and SURE with slightly wrong noise level σ = 0.05. The cross-validation
method is equivalent to the SSDU method (Yaman et al., 2020). We add the EI loss with rotations as
proposed in (Chen et al., 2021) to all methods since this problem has non-trivial nullspace. Table 4
shows the test PSNR for the compared methods. The proposed method performs better than all other
self-supervised methods, and around 1 dB worse than supervised learning.

Method CV + EI EI
(assumes σ = 0)

UNSURE + EI
(unknown σ)

SURE + EI
(assumes σ = 0.05) Supervised

PSNR [dB] 33.25± 1.14 34.32± 0.91 35.73± 1.45 28.05± 4.73 36.63± 1.38

Table 4: Average test PSNR of learning methods for accelerated MRI with noise level σ = 0.03.

6 LIMITATIONS

The analysis in this paper is restricted to the ℓ2 loss, which is linked to minimum squared error dis-
tortion. In certain applications, more perceptual reconstructions might be desired (Blau & Michaeli,
2018), and we do not address this goal here. Both SURE and the proposed UNSURE method re-
quire an additional evaluation of the estimator during training than supervised learning, and thus the
training is more computationally intensive than supervised learning.

7 CONCLUSION

We present a new framework to understand the robustness-expressivity trade-off of self-supervised
learning methods, which characterizes different families of estimators according to the constraints
in their (expected) derivatives. This analysis results in a new family of estimators which we call
UNSURE, which do not require prior knowledge about the noise level, and are more expressive than
cross-validation methods.
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A PROOFS

We start by proving Theorem 3, as Propositions 1 and 2 can be then derived as simple corollaries.

Proof. We want to find the solution of the max-min problem

min
f

max
η

Ey

[
∥f(y)− y∥2 + 2 tr

(
Ση

∂f

∂y
(y)

)]
Since the problem is convex with respect to f and has affine equality constraints, it verifies strong
duality (Luenberger, 1969, page 236, Problem 7, Chapter 8), and thus we can rewrite it as a max-min
problem, that is

max
η

min
f

Ey

[
∥f(y)− y∥2 + 2 tr

(
Ση

∂f

∂y
(y)

)]
.

Choosing f(y) = y + f̃(y), we can rewrite the problem as

max
η

min
f̃

Ey ∥f̃(y)∥2 + 2 tr

(
Ση

∂f̃

∂y
(y)

)
+ 2 tr (Ση) . (21)
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Using integration by parts and the facts that i) py = px ∗N (0,Σ) is differentiable and supported on
Rn, and ii) ∂py

∂yi
/py =

∂ log py

∂yi
, we have that

Ey
∂f̃i(y)

∂yj
=

∫
py(y)

∂f̃i
∂yj

(y) dy (22)

= −
∫
f̃i(y)

∂py
∂yj

(y) dy (23)

= −
∫
f̃i(y)

∂py

∂yj
(y)

py(y)
py(y) dy (24)

= −Ey f̃i(y)
∂ log py
∂yj

(y). (25)

and thus Ey
∂f̃
∂y (y) = Ey f̃(y)∇ log py(y)

⊤. Plugging this result into (21), we obtain

max
η

min
f̃1,...,f̃n

Ey

[
∥f̃(y)∥2 − 2 tr

(
Ση f̃(y)∇ log py(y)

⊤
)]

+ 2 tr (Ση) (26)

max
η

min
f̃1,...,f̃n

Ey

[
∥f̃(y)∥2 − 2f̃(y)⊤Σ⊤

η∇ log py(y)
]
+ 2 tr (Ση) (27)

where the first term can be rewritten in a quadratic form as

max
η

min
f̃

Ey ∥f̃(y)−Ση∇ log py(y)∥2 − tr
(
ΣηHΣ⊤

η

)
+ 2 tr (Ση) (28)

with H = Ey∇ log py(y)∇ log py(y)
⊤. Since the density py(y) > 0 for all y ∈ Rn (as it is the

convolution of px with a Gaussian density), the minimum of (28) with respect to f̃ is

f̃(y) = Ση∇ log py(y). (29)

Replacing this solution in (28), we get

max
η
− tr

(
ΣηHΣ⊤

η

)
+ 2 tr (Ση)

which can be rewritten as
min
η

tr
(
ΣηHΣ⊤

η

)
− 2 tr (Ση) (30)

In particular, if we have Ση =
∑s

j=0 ηjΨj for some matrices {Ψj ∈ Rn×n}sj=1, then the problem
simplifies to

min
η

∑
i,j

ηiηj tr
(
ΨiHΨ⊤

j

)
− 2ηi tr (Ψi) .

Setting the gradient with respect to η to zero results in the quadratic problem Qη̂ = v where
Qi,j := tr

(
ΨiHΨ⊤

j

)
and vi := tr (Ψi) for i, j = 1, . . . , s. The matrix Q can be seen as Gram

matrix since its entries can be written as inner products ⟨Ψi,Ψj⟩H where H is positive definite due
to the assumption that py = px ∗ N (0,Σ). Thus, since by assumption the set {Ψj}sj=1 is linearly
independent, Q is invertible and the optimal η̂ is given by

η̂ = Q−1v. (31)

We now analyze the mean squared error of ZED estimators: We can replace the solution f(y) =
y +Ση∇ log py(y) in SURE’s formula to obtain

Ex,y∥f(y)− x∥2 = Ey∥Ση∇ log py(y)∥2 + 2 tr
(
Σ(I +Ση

∂2 log py
∂y2

(y))

)
− tr (Σ)

which can be written as

Ex,y∥f(y)−x∥2 = tr
(
ΣηΣ

⊤
ηEy∇ log py(y)∇ log py(y)

⊤)+2 tr
(
Σ(I +Ση

∂2 log py
∂y2

)

)
− tr (Σ)
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Using the fact that Ey
∂2 log py

∂y2 (y) = −Ey∇ log py(y)∇ log py(y)
⊤ = −H , we have

Ex,y∥f(y)− x∥2 = tr
(
ΣηΣ

⊤
ηH

)
− 2 tr (ΣΣηH) + tr (Σ)

Proof of Propositions 1 and 2:

Proof. In this case, we have Ση = ηI , and thus (31) reduces to

η̂ =
tr (I)
tr (H)

=
n

Ey∥∇ log py(y)∥2
(32)

and the mean squared error is given by

Ex,y∥f(y)− x∥2 = η̂ − σ2

which can be rewritten as
η̂ = Ex,y∥f(y)− x∥2 + σ2 (33)

Noting that MMSE = σ2 − σ4 1
nEy∥∇ log py(y)∥2 = σ2 − σ4

η̂ , we have that

η̂ =
σ4

σ2 −MMSE
(34)

Combining (33) and (12), we have

Ex,y∥f(y)− x∥2 =
σ4

σ2 −MMSE
− σ2 (35)

= σ2(
1

1− MMSE
σ2

− 1). (36)

Anisotropic noise In this case, we have Ση = diag(η) =
∑n

j=1 ηjeje
⊤
j , and thus we have

Q = diag(H) and v = n1 in (31), giving the solution

η̂i =
1

1
nEy[

∂ log py

∂yi
(y)]2

(37)

for i = 1, . . . , n.

Correlated noise If we consider the 1-dimensional signal setting, we have Ση = circ(η) =∑2r+1
j=1 ηjTj−r is a circulant matrix, where Tj is the j-tap shift matrix, and thus v = n er+1 and

Q = n circ(h) where h ∈ R2r+1 is the autocorrelation of ∇ log py(y) (considering up to ±j taps)
, that is

hj =
1

n

n∑
i=1

Ey
∂ log py
∂yi

∂ log py
∂y(i+j−r) mod n

(y)

for j = 1, . . . , 2r + 1, and er+1 denotes the (r + 1)th canonical vector. Thus, we have η̂ =
circ(h)−1er+1, or equivalently

η̂ = F−1(1/Fh)

where the division is performed elementwise and F ∈ C(2r+1)×(2r+1) is the discrete Fourier trans-
form.

B EXPONENTIAL FAMILY

We now consider separable noise distributions p(y|x) =
∏n

i=1 q(yi|xi), where q(x|y) belongs to
the exponential family

q(y|x) = h(y) exp(r(x)b(y)− ψ(x))
where ψ(x) = log

∫
h(y) exp(r(x)b(y)) is the normalization function.
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Lemma 4. Let y ∼ p(y|x) =
∏n

i=1 q(yi|xi) be a random variable with mean Ey|xy = x, where
the distribution q belongs to the set C whose definition is included in Appendix A. Then,

Ey|x(y − x)⊤f(y) = σ2
n∑

i=1

Ey|xa(yi)
∂fi
∂yi

(y) (38)

where a : R 7→ [0,∞) is a non-negative scalar function and σ2 = 1
nEy|x∥y − x∥2 is the noise

variance.

Stein’s lemma can be seen as a special case of Lemma 4 by setting a(y) = 1, which corresponds to
the case of Gaussian noise. If the noise variance σ2 is unknown, we can minimize

min
f∈SH

Ey ∥f(y)− y∥2 (39)

where SH = {f ∈ L1 :
∑n

i=1 Eya(yi)
∂fi
∂yi

(y) = 0}. Again, we consider the Lagrange formulation
of the problem:

max
η

min
f

Ey

[
∥f(y)− y∥2 + 2η

n∑
i=1

a(yi)
∂fi
∂yi

(y)

]
(40)

where we only need to know a(·) up to a proportionality constant. The solution to this problem is
given by

f(y) = y + η̂ (a(y) ◦ ∇ log py(y) +∇a(y)) .
where η̂ is also available in closed form (see Appendix A for details). Note that when a(y) = 1,
(40) boils down to the isotropic Gaussian noise case (UNSURE).

Lemma 4 (Hudson, 1978) applies to a subset C of the exponential family where r(x) = x, h(y) =
∂b
∂y (y) exp(b(y)y −

∫
b(u)du) and ∂b

∂y (y) = 1/a(y), with
∫
b(u)du interpreted as an indefinite

integral. In this case, we aim to minimize the following problem:

max
η

min
f

Ey∥y − f(y)∥2 + 2η

n∑
i=1

a(yi)
∂fi
∂yi

(y) (41)

for some non-negative function a : R 7→ [0,∞). As with the Gaussian case, we can look for a
solution f(y) = y + f̃(y), that is

max
η

min
f̃

Ey∥f̃(y)∥2 + 2η

n∑
i=1

(
a(yi) + a(yi)

∂f̃i
∂yi

(y)

)
(42)

and follow the same steps, using the following generalization of (22):

Ey a(yi)
∂f̃i(y)

∂yi
=

∫
py(y)a(yi)

∂f̃i
∂yi

(y) dy (43)

= −
∫
f̃i(y)[a(yi)

∂py
∂yi

(y) +
∂a

∂yi
(yi)py(y)] dy (44)

= −
∫
f̃i(y)[a(yi)

∂py

∂yj
(y)

py(y)
+
∂a

∂yi
(yi)]py(y) dy (45)

= −Ey f̃i(y)[a(yi)
∂ log py
∂yj

(y) +
∂a

∂yi
(yi)] (46)

to obtain the solution f̃(y) = ηs(y) with s(y) = a(y) ◦ ∇ log py(y) + ∇a(y). Replacing the
optimal f̃ in (41), we have the following problem for η:

max
η

η2Ey∥s(y)∥2 + 2η

n∑
i=1

Eyi
a(yi) + 2η2

n∑
i=1

Eya(yi)
∂si
∂yi

(y) (47)

which is a quadratic problem whose solution is

η̂ =

∑n
i=1 Eyi

a(yi)∑n
i=1−Eysi(y)2 − 2Eya(yi)

∂si
∂yi

(y)
(48)

Thus, the minimizer of (41) is
f(y) = y + η̂ (a(y) ◦ ∇ log py(y) +∇a(y)) .
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C POISSON-GAUSSIAN NOISE

The PG-SURE estimator for the Poisson-Gaussian noise model in (17) is given by (Le Montagner
et al., 2014)

Ey

[
∥f(y)∥2 + ∥y∥2 +

n∑
i=1

2σ2 ∂fi
∂yi

(y − eiγ)− 2yifi(y − eiγ)− γyi

]
− σ2 (49)

where ei denotes the ith canonical vector. Following Le Montagner et al. (2014), we use the ap-
proximation

fi(y − eiγ) ≈ fi(y)− γ
∂fi
∂yi

(y)

and
∂fi
∂yi

(y − eiγ) ≈
∂fi
∂yi

(y)− γ ∂
2fi
∂yi2

(y)

to obtain

Ey

[
∥f(y)− y∥2 +

n∑
i=1

(2σ2 + 2yiγ)
∂fi
∂yi

(y) + 2σ2γ
∂2fi
∂yi2

(y)− γyi

]
− σ2 (50)

We can obtain the PG-UNSURE estimator by replacing (γ, σ2) for the Lagrange multipliers (γ, σ)
to obtain

max
η,γ

min
f

Ey

[
∥f(y)− y∥2 +

n∑
i=1

(2η + 2yiγ)
∂fi
∂yi

(y)

]
(51)

where we drop the second order derivative, since we observe that in practice we have |∂
2fi

∂yi
2 (y)| ≪

|∂fi∂yi
(y)|. Note that this problem is equivalent to

argmin
f∈SPG

max
η,γ

Ey ∥f(y)− y∥2 (52)

where SPG = {f : Eydivf(y) = 0, Eyy
⊤∇f(y) = 0} and thus we have that SCV ⊂ SPG ⊂ SZED.

Setting f(y) = y + f̃(y), we can rewrite problem (51) as

max
η,γ

argmin
f

n∑
i=1

Ey f̃i(y)
2 + (2η + 2yiγ)

∂f̃i
∂yi

(y) + 2η + 2γyi (53)

Using integration by parts as in (22), we get

max
η,γ

argmin
f

n∑
i=1

Ey f̃i(y)
2 − 2f̃i(y)

(
(η + yiγ)

∂ log py
∂yi

(y) + γ

)2

+ 2η + 2γyi

After completing squares, we obtain

max
η,γ

argmin
f

n∑
i=1

Ey

(
f̃i(y)− (η + yiγ)

∂ log py
∂yi

(y)− γ
)2

−
(
(η + yiγ)

∂ log py
∂yi

(y)− γ
)2

+2η+2γyi

thus we have
f̃(y) = (1η + yγ) ◦ ∇ log py(y) + 1γ

and
f(y) = y + (1η + yγ) ◦ ∇ log py(y) + 1γ

where (η, γ) are given by

max
η,γ

n∑
i=1

Ey −
(
η
∂ log py
∂yi

(y) + yiγ
∂ log py
∂yi

(y)− γ
)2

+ 2η + 2γyi.
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Defining the expectations ha,b :=
∑n

i=1 Eyy
a
i
∂ log py

∂yi
(y)b for a, b ∈ {0, 1, 2}, we have

max
η,γ
−η2h0,2 − γ2h2,2 − nγ2 − 2γηh1,2 + 2ηγh0,1 + 2γ2h1,1 + 2nη + 2γh1,0.

We can take derivatives with respect to (η, γ) to obtain the optimality conditions{
0 = −ηh0,2 − γh1,2 + γh0,1 + n

0 = −γh2,2 − nγ − ηh1,2 + ηh0,1 + 2γh1,1 + h1,0
(54)

which are equivalent to{
n = ηh0,2 + γ(h1,2 − h0,1)
h1,0 = η(h1,2 − h0,1) + γ(h2,2 + n+ h1,2 − 2h1,1)

. (55)

The solution to this system of equations is

η =
n

h0,2
− γ(h1,2 − h0,1)

h0,2
(56)

where

γ =
h1,0h0,2 − n(h1,2 − h0,1)

h0,2(h2,2 + n− 2h1,1)− (h1,2 − h0,1)2
. (57)

In particular, if we remove the γ-constraint (γ = 0), we obtain the UNSURE formula in Proposi-
tion 1, ie. η = n

h0,2
= ( 1nEy∥∇ log py(y)∥2)−1.

D EXAMPLES

To gain some intuition about optimal ZED estimators and their differences with cross-validation,
we consider various popular signal distributions that admit an elementwise decomposition px(x) =∏n

i=1 qx(xi) where qx is a one-dimensional probability distribution. Since the noise distribution is
also separable, we have that py(y) =

∏n
i=1 qy(yi) where qy = qx ∗ N (0, 1). All estimators are

applied in an element-wise fashion, since there is no correlation between entries, ie. g(yi) = fi(yi)
for all i = 1, . . . , n, where g : R 7→ R is a one-dimensional function. The cross-validation-based
estimator cannot exploit any neighbouring information, and will just return a constant value for all
inputs, ie. g(yi) = Eyi

{yi}, the observed mean. In contrast, both the MMSE and ZED estimators
use the input yi to improve the estimation. In particular, the optimal ZED estimator is

g(yi) = yi +
∇ log qy(yi)

Eyi
[∇ log qy(yi)]2

where qy = qx ∗ N (0, 1). Table 5 summarizes the distributions, and Figure 5 shows the estima-
tors for each case. In all cases, we have that the cross-validation estimator is trivial fCV(y) = 0
where the mean squared error is simply the signal variance, whereas the ZED estimator depends on
y, except for the (non-sparse) Gaussian signal distribution. Interestingly, while the MMSE estima-
tor always has non-negative derivatives (Gribonval, 2011), the optimal ZED estimator can have a
negative slope.

Two Deltas Gaussian Spike & Slab
qx

1
2δ−1 +

1
2δ1 N (0, 1) 1

2N (0, 1) + 1
2δ0

qy
1
2N (−1, σ2) + 1

2N (1, σ2) N (0, 1 + σ2) 1
2N (0, 1 + σ2) + 1

2N (0, σ2)
MMSE 0.017 0.059 0.043
MSE CV 0.250 1 0.500
MSE ZED 0.024 1 0.135

Table 5: Examples of popular signal distributions, and the mean squared errors (MSE) for different
estimators.
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cross-validation
ZED estimator
MMSE estimator

Figure 5: Comparison between MMSE, ZED, and cross-validation estimators for different toy signal
distributions.

E REAL CRYO-EM DATA EXPERIMENT

We evaluate the proposed UNSURE method on real Cryo-EM data (provided by the Topaz-EM
open-source library (Bepler et al., 2020)) whose noise distribution is unknown. The dataset con-
sists of 5 images of 7676 × 7420 pixels. We applied the Poisson-Gaussian noise variant of our
method (PG-UNSURE). For comparison, we included results using the Noise2Noise approach in-
troduced by Bepler et al. (2020), which leverages videos of static images to obtain pairs of noisy
images of the same underlying clean image. Both methods are evaluated using a U-Net architecture
of the deep inverse library (Tachella et al., 2023b) with 4 scales and no biases. Training is done
using random crops of 512 × 512 pixels the Adam optimizer with a learning rate of 5 × 10−4 and
standard hyperparameters. Our method receives as input the whole video averaged over time, and
thus benefits from a higher signal-to-noise ratio input image than the Noise2Noise variant, whose
input only averages over half of the video frames to obtain the pairs. Figure 6 shows the raw noisy
image and the denoised counterparts. The proposed method produces good visual results, with fewer
artifacts than the Noise2Noise approach.

Figure 6: Blind denoising results of Cryo-EM data using the PG-UNSURE method and
Noise2Noise (Bepler et al., 2020). Since the image is very large 7676 × 7420 pixels, is recom-
mended to zoom in to observe the details.
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F EXPERIMENTAL DETAILS

We use the U-Net architecture of the deep inverse library (Tachella et al., 2023b) with no biases and
an overall skip-connection as a backbone network in all our experiments, only varying the number
of scales of the network across experiments.

MNIST denoising We use the U-Net architecture with 3 scales.

DIV2K denoising We use the U-Net architecture with 4 scales.

Computed Tomography on LIDC We use an unrolled proximal gradient algorithm with 4 iter-
ations and no weight-tying across iterations. The denoiser is set as the U-Net architecture with 2
scales.

Accelerated MRI on FastMRI We use an unrolled half-quadratic splitting algorithm with 7 it-
erations and no weight-tying across iterations. The denoiser is set as the U-Net architecture with 2
scales.

Algorithm 1 UNSURE loss. The standard SURE loss is recovered by setting α = 0, Ση = Σ.

Require: step size α, momentum µ, Monte Carlo approximation constant τ
residual← ∥fθ(y)− y∥2
b ∼ N (0, I)

div← (Σηb)
⊤

τ (fθ(y + τb)− fθ(y))
loss← residual + div
g ← µg + (1− µ) ∂div

∂η # average stochastic gradients w.r.t. η
η ← η + αg # gradient ascent Lagrange multipliers
return loss(θ)
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