
Supplementary Materials for “On the Convergence of Stochastic
Multi-Objective Gradient Manipulation and Beyond”

We organize the supplemental materials as follows. Section A provides a detailed comparison between
weak Pareto optimal and Pareto optimal. Section B provides the derivation of PCGrad with more than
two objectives to our general framework. Section C discusses more details of the convergence analysis
framework in Definition 3. Section D supplements the theoretical results on the non-convergence for
MOGM algorithms. Section E supplements the convergence results for both convex (Theorem 2) and
non-convex (Theorem 3) cases. In particular, we discuss the averaging scheme of the convergence
theorem in more detail, and provide a way to transform it to traditional convergence using a typical
uniformly sampling technique in stochastic convergence analysis [4, 24, 5, 20]. Section F provides the
convergence analysis for the cases with strongly convex functions. Section G introduces additional
details of the experiments, and provides an additional simulation result with Gaussian noises.

A Detailed Comparison between Weak Pareto Optimal and Pareto Optimal

In this section, we give a rigorous comparison between the definitions of Pareto optimal and weak
Pareto optimal, where the latter is defined as

Definition 4 (Weak Pareto optimal). A solution x⇤ 2 K is called weak Pareto optimal if there is not

x 2 K such that F (x) < F (x⇤), i.e. f i(x)  f i(x⇤) for all i = 1, . . . ,m.

By the Definition 1 and Definition 4, it can be easy to know that Pareto optimal points are always
weak Pareto optimal, and the converse is not always true. Take a two-objectives example, the minimal
points for f1 are all Pareto weak optimal, but only ones that are also optimal for f2 are Pareto optimal.
Furthermore, if we assume f1 has a unique minimizer, which is then Pareto optimal.

In rigorous words, we state below that relation among Pareto optimal and weak Pareto optimal, as a
rigorous version for Proposition 1 (b).

Proposition 3 (Theorem 5.13 and Lemma 5,14 in [15]). For MOO problem 1, the following statements

hold: (a) For convex objectives F (·). If there exists � 2 Sm such that x⇤ = argminx2K �TF (x),
then x⇤

is weak Pareto optimal. (b) Further if x⇤
is the unique minimizer, then x⇤

Pareto optimal.

For ease to understand, previous studies [9, 31, 28] do not distinguish the detailed difference between
the above definitions. This paper also follows this presentation trick.

B More Details of the General Framework for MOGM

PCGrad with more than 2 objectives. Specifically, the PCGrad is initialized by vPC
i

= rf i(xk).

When subtracting the conflicting component, i.e., vPC
i

= vPC
i

� vPC
i

>rf
j(xk)

krfj(xk)k2 rf j(xk), it is equivalent

to subtracting a weight vPC
i

>rf
j(xk)

krfj(xk)k2 rf j(xk) for gradient vj if using the framework 2. Provided
with such equivalence, dk = � 1

m

P
m

i=1 v
PC
i

is equivalent to dk = �rF (xk)�k using Algorithm 2
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Algorithm 2 Calculation for composite weight �k in PCGrad

1: Input: rf i(xk), i = 1, . . . ,m
2: Initialize: vi = rf i(xk), vPC

i
= vi,�i = 1 for i = 1, . . . ,m

3: for i 2 [m] do
4: for j

uniformly⇠ [m] \ i in random order do
5: if vPC

i

>rf j(xk) < 0 then
6: Set vPC

i
= vPC

i
� v

PC
i

>rf
j(xk)

krfj(xk)k2 rf j(xk)

7: Update �j = �j � v
PC
i

>rf
j(xk)

krfj(xk)k2

8: end if
9: end for

10: end for
11: return �

C More Details of the Convergence Analysis Framework

In this section, we provide more details about our stochastic convergence analysis framework. We
first offer proof details of the Proportion 1, and then generalize previous analysis based on it. Finally,
we give a discussion for Definition 3 that is the stochastic convergence framework based on the
previous full-batch setting.

C.1 Proof of Proportion 1

Proof. The Pareto criticality can be equivalently defined as: a x⇤ 2 K is Pareto critical,
if min�⇤2Sm k

P
m

i=1 �
⇤irf i(x⇤)k = 0, where Sm = {(�1, . . . ,�m)|

P
m

i=1 �
i = 1,� 2

[0, 1]} denotes the probability simplex. Therefore, if there exist a � 2 Sm, such that 0 
k
P

m

i=1 �
irf i(x⇤)k = 0, then min�⇤2Sm k

P
m

i=1 �
⇤irf i(x⇤)k  k

P
m

i=1 �
irf i(x⇤) = 0. We

thus prove Proposition (a), and Proposition (b) directly comes from Proposition 3.

C.2 More Details of Previous Convergence Analysis in Full-batch Gradient Setting

Previous convergence analyses in full-batch gradient setting, including MGDA [9, 40], PCGrad [46],
CAGrad [28] can be analyzed based on Proposition 1 that reflects Pareto optimality and criticality,
which induces the following convergence analysis framework.
Definition 5. (a) A sequence {xk}1k=1 asymptotically converges to Pareto critical points if

limk!1 min�⇤
k2Sm krF (xk)�

⇤
k
k ! 0.

(b) For convex multi-objective function F (·). A sequence {xk}1k=1 asymptotically converges to

Pareto optimal if limk!1 maxx⇤
k2K min�⇤

k2Sm(�⇤
k

>F (xk)� �⇤
k

>F (x⇤
k
)) ! 0.

(a) can be reviewed as the limit for attaining the criticality condition (the equivalent definition in
[28]). (b) is equivalent to that there exists a composite weight �⇤

k
2 Sm such that �⇤

k

>F (xk) �
minx⇤

k2K �⇤
k

>F (x⇤
k
) ! 0, which is essentially the limit for attaining Pareto optimal condition in

Proposition 1. It can be also reviewed the the convergence for multiobjective metric function [40].

We next briefly introduce the analysis of MGDA [9, 40] as an typical example that provides
both nonconvex and convex convergence. It proves that the norm of min-norm direction
min�⇤

k2Sm krF (xk)�
⇤
k
k is asymptotically convergent to zero with an order of O(1/

p
n), which is

reviewed as the convergence rate with non-convex functions.
Theorem 4 (Theorem 3.1 in [9]). For MGDA algorithm updating with stepsize ⌘  1/L

1

n

nX

k=1

min
�⇤

k2Sm

krF (xk)�
⇤
k
k  O(1/

p
n)

This result also implies that the composite gradient dk = krF (xk)�
⇤
k
k for MGDA asymptotically

vanishes, which indicates that the sequence xk iterated by gradient descent using dk limits to a
critical point x⇤.
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If the multi-objective function is convex for each objective, such a critical point x⇤ is also weak Pareto
optimal [41]. It is also not difficult to verify that if x⇤ is a Pareto stationary point, then it satisfies
rF (x⇤)�⇤ = 0 for one �⇤ 2 Sm. If the functions are convex, this meets the optimal condition of the
composite function �⇤>F (x⇤). And by Proposition 1, we then know that x is weak Pareto optimal.

It can prove that
P

n

k=1 �
⇤
k

>F (xk) �
P

n

k=1 �
⇤
k

>F (x⇤)  O(1). Since in the batch-gradient
setting, dk is the common descent direction such that F (xk) is decreasing with respect to k. Thus
it has

P
n

k=1 �
⇤
k

>F (xn) �
P

n

k=1 �
⇤
k

>F (x⇤) 
P

n

k=1 �
⇤
k

>F (xk) �
P

n

k=1 �
⇤
k

>F (x⇤)  O(1).
Therefore, we have the following theorem
Theorem 5 (Theorem 4.1 in [9]). For MGDA algorithm updating with stepsize ⌘  1/L

✓Pn

k=1 �
⇤
k

n

◆>

F (xn)�
✓Pn

k=1 �
⇤
k

n

◆>

F (x⇤)  O(1/k).

Where the averaging weight �
⇤
k
n

is also in Sm. Since in the proof, the comparing point x⇤ can be gener-

ated to arbitrarily chosen u 2 K [41]. We can further generate the result with
⇣Pn

k=1 �⇤
k

n

⌘>
F (xn)�

⇣Pn
k=1 �⇤

k

n

⌘>
F (u)  O(1/k). By letting u = argminx2K

⇣Pn
k=1 �⇤

k

n

⌘>
F (x), it finally has

max
x⇤

k2K
min

�⇤
k2Sm

(�⇤
k

>F (xk)� �⇤
k

>F (x⇤
k
))


✓Pn

k=1 �
⇤
k

n

◆>

F (xn)�
✓Pn

k=1 �
⇤
k

n

◆>

F (x⇤)  O(1/k).

Similarly, PCGrad [46] is proved to converge at a Pareto critical point (Theorem 1 in [46]). CA-
Grad [28] generalizes the analysis of MGDA, and shows that it converges to the Pareto critical point
that tends to be the critical point of the average loss when c 2 [0, 1). These convergence results can
all be analyzed under the Pareto convergence framework as Definition 5.

C.3 More Discussion for Definition 3

Definition 3. (a) A sequence {xk}1k=1 asymptotic converges to Pareto critical points if

limk!1 E[min�⇤
k2Sm krF (xk)�

⇤
k
k] ! 0.

(b) For convex multi-objective function F (·). A sequence {xk}1k=1 asymptotic converges to Pareto

optimal if limk!1 E[maxx⇤
k2K min�⇤

k2Sm(�⇤
k

>F (xk)� �⇤
k

>F (x⇤
k
))] ! 0.

Definition 3 is a stochastic version for Definition 5. Similarly, (a) can be reviewed as the expected
limit for attaining the criticality condition. (b) is equivalent to that there exists a composite weight
�⇤
k
2 Sm such that E[�⇤

k

>F (xk) � minx⇤
k2K �⇤

k

>F (x⇤
k
)] ! 0, which means �⇤

k

>E[F (xk)] !
minx⇤

k2K �⇤
k

>F (x⇤
k
), suggesting that the expected function value E[F (xk)] are optimal. Thus,

Definition 3 is indeed derived from Pareto optimality and criticality.

D Missing Proofs for the Non-convergence of MOGM

In this section, we give detailed proof for the non-convergence for MGDA, PCGrad, CAGrad with
the example introduced in Section 4. We then prove the non-Lipschitz of the composite weight for
the above MOGM algorithms.

D.1 Proof of Theorem 1

Proof. Recall the two-dimensional stochastic optimization setting over the domain K = {(x, y) |
x 2 [�1, 1], y � 0}

f̃1(x, y) =

(
(x+ 1)2 + (y � 2)2 p = 1/2

(x+ 5)2 + (y + 2)2 p = 1/2
, f̃2(x, y) =

(
(x� 1)2 + (y � 2)2 p = 1/2

(x� 5)2 + (y + 2)2 p = 1/2
.
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The expected function is f1(x, y) = (x+ 3)2 + y2 + 8, f2(x, y) = (x� 3)2 + y2 + 8. Therefore,
the optimization goal is to minimize the distance towards (�3, 0) and (3, 0) simultaneously. We can
easily know that the Pareto set is the line segment {(a, 0) | a 2 [�1, 1]}.

We can calculate the stochastic gradient in the above setting as

rf̃1(x, y) =

⇢
2(x+ 1, y � 2) p = 1/2

2(x+ 5, y + 2) p = 1/2
,rf̃2(x, y) =

⇢
2(x� 1, y � 2) p = 1/2

2(x� 5, y + 2) p = 1/2
.

Next, we prove that for all point in domain {(a, b)|a 2 [�1, 1], b 2 [0, 0.05]}, the expected composite
directions E[dk] = (d1

k
, d2

k
) of MGDA, PCGrad, CAGrad have positive value in y-axis, i.e. d2

k
> 0,

which forces the algorithms to move away from the Pareto set.

Lemma 3 (Sener et al. [38]). The min-norm solver has closed form solution for two-objective case.

Specifically, for g1, g2
, the composite weight � for g1

can be calculated as

argmin
�2[0,1]

k�g1 + (1� �)g2k = min

(
(g2 � g1)>g2

kg2 � g1k22

�

+

, 1

)
, (5)

where the operator [a]+ = max{a, 0}.

Lemma 4. For any point in domain {(a, b)|a 2 [�1, 1], b 2 [0, 0.05]}, MGDA has a expected

composite directions E[dk] = (d1
k
, d2

k
) such that d2

k
> 0.

Proof. We adopt simple enumeration method to calculate the expected direction.

Case 1: when the received gradients are

rf̃1(a, b) = 2(a+ 1, b� 2), rf̃2(a, b) = 2(a� 1, b� 2).

From 5, we can get � = (1� a)/2, then the direction for (a, b) is

dk = �2(0, b� 2).

Case 2: when the received gradients are

rf̃1(a, b) = 2(a+ 5, b+ 2), rf̃2(a, b) = 2(a� 5, b+ 2).

From 5, we can get � = (5� a)/10, then the direction for (a, b) is

dk = �2(0, b+ 2).

Case 3: when the received gradients are

rf̃1(a, b) = 2(a+ 1, b� 2), rf̃2(a, b) = 2(a� 5, b+ 2).

From 5, we can get � = (�3a+ 2b+ 19)/26, then the direction for (a, b) is

dk = �2(
4a+ 6b� 8

13
,
6a+ 9b� 12

13
).

Case 4: when the received gradients are

rf̃1(a, b) = �2(a+ 5, b+ 2), rf̃2(a, b) = 2(a� 1, b� 2).

From 5, we can get � = (�3a� 2b+ 7)/26, then the direction for (a, b) is

dk = �2(
4a� 6b+ 8

13
,
�6a+ 9b� 12

13
).

By summing up the above cases and multiply the probability, we have

E[dk] = (� 8

13a
,
24� 44b

13
).

Since we know that b  0.05, we then know d2
k
� 12�22⇤0.05

13 = 10.9
13 > 0. We thus prove the

Lemma.
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Lemma 5. For the point in domain {(a, b)|a 2 [�1, 1], b 2 [0, 0.05]}, PCGrad has a expected

composite directions E[dk] = (d1
k
, d2

k
) such that d2

k
> 0.

Proof. Similar with the proof of MGDA, we also adopt simple enumeration method to calculate the
expected direction.

Case 1: when the received gradients are

rf̃1(a, b) = 2(a+ 1, b� 2), rf̃2(a, b) = 2(a� 1, b� 2).

It is easy to verify that for {(a, b)|a 2 [�1, 1], b 2 [0, 0.05]}, the two gradients has not conflicting,
then we know the y-axis value of the composite gradient for (a, b) is 4� 2b.

Case 2: when the received gradients are

rf̃1(a, b) = 2(a+ 5, b+ 2), rf̃2(a, b) = 2(a� 5, b+ 2).

It is easy to verify that for {(a, b)|a 2 [�1, 1], b 2 [0, 0.05]}, the two gradients consistently conflict
with each other, then we know the y-axis value of the composite gradient for (a, b) is

�4(b+ 2) + 8(a2 + (b+ 2)2 � 25)(
b+ 2

(a+ 5)2 + (b+ 2)2
� b+ 2

(a� 5)2 + (b+ 2)2
).

Case 3: when the received gradients are

rf̃1(a, b) = 2(a+ 1, b� 2), rf̃2(a, b) = 2(a� 5, b+ 2).

It is easy to verify that for {(a, b)|a 2 [�1, 1], b 2 [0, 0.05]}, the two gradients consistently conflict
with each other, then we know the y-axis value of the composite gradient for (a, b) is

�4b+ 8(a2 � 4a+ b2 � 9)(
b� 2

(a+ 1)2 + (b� 2)2
� b+ 2

(a� 5)2 + (b+ 2)2
).

Case 4: when the received gradients are

rf̃1(a, b) = 2(a+ 5, b+ 2), rf̃2(a, b) = 2(a� 1, b� 2).

It is easy to verify that for {(a, b)|a 2 [�1, 1], b 2 [0, 0.05]}, the two gradients consistently conflict
with each other, then we know the y-axis value of the composite gradient for (a, b) is

�4b+ 8(a2 + 4a+ b2 � 9)(
b+ 2

(a+ 5)2 + (b+ 2)2
� b� 2

(a� 1)2 + (b� 2)2
).

Sum up the above, it is easy to know d2
k

is a increasing function for b, and is creasing for a 2 [�1, 0]
and decreasing for a 2 [0, 1]. Plug in a = ±1, b = 0.05, we can get d2

k
� 0.2 > 0.

Lemma 6. For the point in domain {(a, b)|a 2 [�1, 1], b 2 [0, 0.05]}, CAGrad with c 2 [0.8, 1] has

a expected composite directions E[dk] = (d1
k
, d2

k
) such that d2

k
> 0.

Proof. Similar with the proof of MGDA, we also adopt simple enumeration method to calculate the
expected direction.

Case 1: when the received gradients are

rf̃1(a, b) = 2(a+ 1, b� 2), rf̃2(a, b) = 2(a� 1, b� 2).

It is easy to verify that for {(a, b)|a 2 [�1, 1], b 2 [0, 0.05]}, the two gradients has not conflicting,
then we know the y-axis value of the composite gradient for (a, b) is �2b+4+2c

p
a2 + (b� 2)2 �

�2 ⇤ 0.05 + 4 + 2c
p
02 + (0.05� 2)2 = 3.8c+ 3.9 � 6.94.

Case 2: when the received gradients are

rf̃1(a, b) = 2(a+ 5, b+ 2), rf̃2(a, b) = 2(a� 5, b+ 2).
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(a) MGDA (b) PCGrad (c) CAGrad

Figure 3: Expected direction vector field for MGDA, PCGrad, CAGrad. We can observe that this
biased direction can move algorithms away from the Pareto optimal set, which resists the algorithm to
converge. Additionally, the stationary points for all three algorithms does not lies near the Pareto set.

It is easy to verify that for {(a, b)|a 2 [�1, 1], b 2 [0, 0.05]}, the two gradients consistently conflict
with each other, then we know the y-axis value of the composite gradient for (a, b) is �2b � 4 �
2c
p
a2 + (b+ 2)2 � �2 ⇤ 0.05� 4� 2c

p
12 + (0 + 2)2 = �4.1� c2

p
5 � �9.

Case 3: when the received gradients are

rf̃1(a, b) = 2(a+ 1, b� 2), rf̃2(a, b) = 2(a� 5, b+ 2).

It is easy to verify that for {(a, b)|a 2 [�1, 1], b 2 [0, 0.05]}, the two gradients consistently conflict
with each other, then we know the y-axis value of the composite gradient for (a, b) is �2b +
c
p
2

2

p
(a� 4)2 + b2 � �2 ⇤ 0.05 + c

p
2

2

p
(1� 4)2 + 02 = �0.1 + 3c  2.3.

Case 4: when the received gradients are

rf̃1(a, b) = 2(a+ 5, b+ 2), rf̃2(a, b) = 2(a� 1, b� 2).

It is easy to verify that for {(a, b)|a 2 [�1, 1], b 2 [0, 0.05]}, the two gradients consistently conflict
with each other, then we know the y-axis value of the composite gradient for (a, b) is �2b +
c
p
2

2

p
(a+ 4)2 + b2 � �2 ⇤ 0.05 + c

p
2

2

p
(�1 + 4)2 + 02 = �0.1 + 3c  2.3.

Sum up the above, we can get d2
k
� 2.5 > 0.

Figure 3 shows the vector field for the composite direction calculated by MGDA, PCGrad, CAGrad,
which aligns with the above Lemmas that indicate the expected direction is inverse to the Pareto
set. This problem implies that E[xk+1] is more away from Pareto optimal than E[xk] if xk lies
in domain {(a, b)|a 2 [�1, 1], b 2 [0, 0.05]}. Thus the expected suboptimality gap is always > 0,
which implies that MGDA, PCGrad, CAGrad do not converge to the optimal solution. In addition, we
could also infer from the figure that, the three MOGM algorithms are stationary around (0, 0.4 0.6),
which represents a large expected suboptimality gap in this case.

D.2 Proof of Proposition 2

Proof. The proposition can be proved by the following simple 2 objectives case, where we are
provided with g1 = (1, 0), g2 = (1 � ", 0), g02 = (1 + ", 0) where " << 1. For this function,
the min-norm direction is g2 for the first case, while is g1 for the second case, which means
�(g1, g2) = (0, 1) and �(g1, g02) = (1, 0). However, we know that g2, g02 only have 2" gap. When
" limits to 0, there exists no finite � to bound k�(g1, g2)� �(g1, g02)k/kg2 � g02k.

Generalize to PCGrad. This property can be generalized to PCGrad, we next provide another
counterexample to prove it.

Proof. Suppose we are provided with g1 = (1, 0), g2 = (�", 0), g02 = (", 0), " << 1. For this
function, g1 conflicts with g2 while aligned with g02. This makes �(g1, g2) = ( 12 + "

2 ,
1
2 + 1

2" ) and
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�(g1, g02) = ( 12 ,
1
2 ). However, we know that g2, g02 only have 2" gap. When " limits to 0, there

exists no finite � to bound k�(g1, g2)� �(g1, g02)k/kg2 � g02k =
q

1 + 1
"4
/4.

Generalize to CAGrad. This property can also be generalized to CAGrad with parameter c 2 (0, 1/4)
with the similar example with PCGrad. When c 2 [1/4,+1), CAGrad performs more like MGDA,
it is not difficult to generalize the example of MGDA.

Proof. The proposition can be proved by the following simple 2 objectives case, where we are
provided with g1 = (1, 0), g2 = (�", 0), g02 = (", 0), " << 1. For this function, g1 conflicts with
g2 while aligned with g02. This makes �(g1, g2) = ( 1�c(1�")

2 , 1
2 ) and �(g1, g02) = ( 1+c(1+")

2 , 1
2 ).

However, we know that g2, g02 only have 2" gap. When " limits to 0, there exists no finite � to bound
k�(g1, g2)� �(g1, g02)k/kg2 � g02k = c/".

E Missing Proofs for the Convergence of CRMOGM

We here give a rigorous convergence analysis of CRMOGM in the stochastic (mini-batch) gradient
setting. We first fulfill the proofs for Lemma 1 and Lemma 2. Before providing the final proof,
we would like to introduce some useful and insightful lemmas that reflect the algorithmic property
and can be used for the final proof. Specifically, Appendix E.4 and E.5 decompose the convex and
non-convex convergence bounds into sub-terms bounded by lemmas from Appendix E.3.

E.1 Proof of Lemma 1

Lemma 1. Under Assumption 1, 2. The correlation between �k and Gk can be bounded as

kE[Gk�k]� E[Gk]E[�k]k22  m�2V⇠k
(�k), where V⇠k

(�k) = E⇠k
[k�k � E⇠k

[�k]k22].

Proof. Denote gi(xk, ⇠
i

k
) = gi(xk), i 2 [m] for simplicity. By the unbiasness of each stochastic

gradient E[gi(xk)] = rf i(xk) for each objective, we have

kE[Gk�k]� E[Gk]E[�k]k22 =

�����E[
mX

i=1

�i

k
gi(xk)]� E[

mX

i=1

�i

k
rf i(xk)]

�����

2

2

=

�����E[
mX

i=1

�i

k
(rf i(xk)� gi(xk))]

�����

2

2

=

�����E[
mX

i=1

(�i

k
� E[�k]

i)(rf i(xk)� gi(xk))]

�����

2

2

.

The last equation is by the fact that

E[
mX

i=1

E[�k]
i(rf i(xk)� gi(xk))] =

mX

i=1

E[�k]
iE[rf i(xk)� gi(xk)] = 0,

where the first equation is by the linearity of expectation, and the second one is by the unbiasness of
each stochastic gradient. Further, by the fact that kE[a]k  E[kak] and the triangle inequality for the
l2 norm, we know that

kE[
mX

i=1

(�i

k
� E[�k]

i)(rf i(xk)� gi(xk))]k22  E[k
mX

i=1

(�i

k
� E[�k]

i)(rf i(xk)� gi(xk))k]2

 (E[
mX

i=1

k(�i

k
� E[�k]

i)(rf i(xk)� gi(xk))k])2.
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Where, since 2ab  �a2 + 1
�
b2 for � > 0, we can get

k(�i

k
� E[�i

k
])(rf i(xk)� gi(xk))k=|�i

k
� E[�i

k
]|k(rf i(xk)� gi(xk))k

 �k

2
(�i

k
� E[�i

k
])2 +

1

2�k

k(rf i(xk)� gi(xk))k2

Plug in, we obtain

(E[
mX

i=1

k(�i

k
� E[�k]

i)(rf i(xk)� gi(xk))k])2

 E
"

mX

i=1

�k

2
(�i

k
� E[�k]

i)2 +
mX

i=1

krf i(xk)� gi(xk)k
2�k

2
#2

= (
�k

2
V⇠k

(�k) +

P
m

i=1 V⇠k
(gi(xk))

2�k

)2.

The last equation is by the definition of V⇠k
. Here we let �k =

pPm
i=1 V⇠k

(gi(xk))p
V⇠k

(�k)
, and apply all the

above result, we finally get

kE[Gk�k]� E[Gk]E[�k]k22  V⇠k
(�k)(

mX

i=1

V⇠k
(gi(xk)))  m�2V⇠k

(�k).

We thus prove the Lemma.

Remark. Lemma 1 suggests that the correlation between the composite weights and stochastic
gradients is bounded by both the variance of composite weights �k and multiple stochastic gradients
gi(xk). Therefore, there are two effective ways to decrease this correlation: reduce the variance of
�k, or the variance of gi(xk). For the latter way, one can adopt variance reduction framework [18, 4]
for stochastic optimization. However, it [18] requires global gradients that may be computational
expensive, or slows down the convergence rate [4]. For the former one, the momentum mechanism
on �k is a simple and effective way, which enhances both theoretical and empirical results without
additional computational cost.

E.2 Proof of Lemma 2

Lemma 2. Under Assumption 1, �k variance for Algorithm 1 is bounded V⇠k
[�k]  m2B2(1�↵k)2.

Proof. By the definition of Algorithm 1, we know that

�k = ↵k�k�1 + (1� ↵k)�̂k.

From the fact that E[kX � E[X]k22]  E[kX � ak22] for any a, we can get

V⇠k
[�k] = E⇠k

[k�k � E⇠k
[�k]k22]  E⇠k

[k�k � �k�1k22]
= E⇠k

[k(1� ↵k)(�̂� �k�1)k22] = (1� ↵k)
2E⇠k

[k(�̂� �k�1)k22]  m2B2(1� ↵k)
2.

The last inequality is by the fact 0  �i

k
, �̂i

k
 B, i = 1, . . . ,m.

E.3 Lemmas needed for Proving Thm2/Thm3

This subsection presents several useful Lemmas for proving Theorem 2 and Theorem 3. Lemma 1
measures the expected gap between �

P
m

i=1�
i

k
rf i(xk) and dk. The following Lemma bounds the

dot production between them, which measures the local decrease of the composite functional value.
Lemma 7. Under Assumption 1, 2, 3, for any gradient descent algorithm updated with composite

gradient Gk�k, we have the following inequality

E⇠k

2

4
 

mX

i=1

�i

k
rf i(xk)

!>

dk

3

5  2mBH

vuutV⇠k
[�k]

mX

i=1

V⇠k
[gi(xk)]� E⇠k

2

4
�����

mX

i=1

�i

k
rf i(xk)

�����

2

2

3

5 .

8



Proof. We first decompose the term into

E⇠k

2

4
 

mX

i=1

�i

k
rf i(xk)

!>

dk

3

5 = E⇠k

2

4
 

mX

i=1

�i

k
rf i(xk)

!> 
dk +

mX

i=1

�i

k
rf i(xk)

!3

5

� E⇠k

2

4
�����

mX

i=1

�i

k
rf i(xk)

�����

2

2

3

5 .

The first term can potentially corrupt the effectiveness of optimization, and the second term measures
the descent value. We next bound the first term. By definitions and decomposition, we get

E⇠k

2

4
 

mX

i=1

�i

k
rf i(xk)

!> 
dk +

mX

i=1

�i

k
rf i(xk)

!3

5

= E⇠k

2

4
 

mX

i=1

�i

k
rf i(xk)

!> 
mX

i=1

�i

k
(rf i(xk)� gi(xk))

!3

5

= E⇠k

2

4
 

mX

i=1

�i

k
rf i(xk)

!> 
mX

i=1

(�i

k
� E[�i

k
])(rf i(xk)� gi(xk))

!3

5 (term A)

+ E⇠k

2

4
 

mX

i=1

(�i

k
� E[�i

k
])rf i(xk)

!> 
mX

i=1

E[�i

k
](rf i(xk)� gi(xk))

!3

5 (term B)

+ E⇠k

2

4
 

mX

i=1

E[�i

k
]rf i(xk)

!> 
mX

i=1

E[�i

k
](rf i(xk)� gi(xk))

!3

5 (term C).

We then bound each term individually. By Assumption 1 and Assumption 3, we know that �i

k
2

[0, B], krf i(xk)k  H, 8i = 1, . . . ,m. By Cauchy–Schwartz inequality, we further know that for
the term A

term A = E⇠k

2

4
 

mX

i=1

�i

k
rf i(xk)

!> 
mX

i=1

(�i

k
� E[�i

k
])(rf i(xk)� gi(xk))

!3

5

 E⇠k

"�����

mX

i=1

�i

k
rf i(xk)

�����
2

�����

mX

i=1

(�i

k
� E[�i

k
])(rf i(xk)� gi(xk))

�����
2

#

 E⇠k

" 
mX

i=1

�i

k

��rf i(xk)
��
2

!�����

mX

i=1

(�i

k
� E[�i

k
])(rf i(xk)� gi(xk))

�����
2

#

 E⇠k

" 
mX

i=1

BH

!�����

mX

i=1

(�i

k
� E[�i

k
])(rf i(xk)� gi(xk))

�����
2

#

 mBHE⇠k

"
mX

i=1

|�i

k
� E[�i

k
]|krf i(xk)� gi(xk)k2

#
.

Similar with the proof in Lemma 1, by the fact that ab  1
2�k

a2 + �k

2 b2 for any �k > 0, and by the
linearity of expectation, we can get

term A  mBH

2�k

mX

i=1

E⇠k

⇥
|�i

k
� E[�i

k
]|2
⇤
+

mBH�k

2

mX

i=1

E⇠k

⇥
krf i(xk)� gi(xk)k22

⇤

 mBH

2�k

V[�k] +
mBH�k

2

mX

i=1

V[gi(xk)].

9



By setting �k =
p
V⇠k

[�k]/
qP

m

i=1 V⇠k
[gi(xk)], we have

term A  mBH

vuutV[�k]
mX

i=1

V[gi(xk)].

With similar tricks, we have for the term B

term B = E⇠k

2

4
 

mX

i=1

(�i

k
� E[�i

k
])rf i(xk)

!> 
mX

i=1

E[�i

k
](rf i(xk)� gi(xk))

!3

5

 E⇠k

"�����

mX

i=1

(�i

k
� E[�i

k
])rf i(xk)

�����
2

�����

mX

i=1

E[�i

k
](rf i(xk)� gi(xk))

�����
2

#

 E⇠k

" 
mX

i=1

H|�i

k
� E[�i

k
]|
!�����

mX

i=1

E[�i

k
](rf i(xk)� gi(xk))

�����
2

#

= E⇠k

2

4
mX

i=1

H|�i

k
� E[�i

k
]|

������

mX

j=1

E[�j

k
](rf j(xk)� gj(xk))

������
2

3

5

 HE⇠k

2

4

0

@
mX

i=1

1

2�k

|�i

k
� E[�i

k
]|2 + �k

2

�����

mX

i=1

E[�i

k
](rf i(xk)� gi(xk))

�����

2

2

1

A

3

5

 HE⇠k

" 
mX

i=1

1

2�k

|�i

k
� E[�i

k
]|2 + �k

2
(

mX

i=1

E[�i

k
]2)(

mX

i=1

��rf i(xk)� gi(xk)
��2
2
)

!#

 H

2�k

mX

i=1

E⇠k

⇥
|�i

k
� E[�i

k
]|2
⇤
+

mB2H�k

2

mX

i=1

E⇠k

⇥
krf i(xk)� gi(xk)k22

⇤

=
H

2�k

V[�k] +
mB2H�k

2

mX

i=1

V[gi(xk)].

The first inequality is by Cauchy–Schwarz inequality. The second one is by the triangle inequality of
l2 norm, we have k

P
m

i=1(�
i

k
�E[�i

k
])rf i(xk)k2 

P
m

i=1 k(�i

k
�E[�i

k
])rf i(xk)k2 =

P
m

i=1 |�i

k
�

E[�i

k
]|krf i(xk)k2. With Assumption 3, we know

P
m

i=1 |�i

k
�E[�i

k
]|krf i(xk)k2  H

P
m

i=1 |�i

k
�

E[�i

k
]|. The third one is from the fact that ab  1

2�k
a2 + �k

2 b2. The forth one is also from Cauchy-
Schwartz inequality. The last one is from Assumption 1 that states E[�i

k
]  B. Further by setting

�k =
p
V[�k]/B

pP
m

i=1 V[gi(xk)], we have

term B  (m+ 1)BH

2

vuutV[�k]
mX

i=1

V[gi(xk)]  mBH

vuutV[�k]
mX

i=1

V[gi(xk)].

For term C, by the fact that only gi(xk) has randomness, we get

term C = E⇠k

2

4
 

mX

i=1

E[�i

k
]rf i(xk)

!> 
mX

i=1

E[�i

k
](rf i(xk)� gi(xk))

!3

5

=

 
mX

i=1

E[�i

k
]rf i(xk)

!> 
mX

i=1

E[�i

k
]
�
rf i(xk)� E⇠k

[gi(xk)]
�
!

= 0.

By summing up the above results, we obtain

E⇠k

2

4
 

mX

i=1

�i

k
rf i(xk)

!> 
dk +

mX

i=1

�i

k
rf i(xk)

!3

5  2mBH

vuutV[�k]
mX

i=1

V[gi(xk)].
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Plug in the first decomposition in the beginning, we finally get

E⇠k

2

4
 

mX

i=1

�i

k
rf i(xk)

!>

dk

3

5  2mBH

vuutV⇠k
[�k]

mX

i=1

V⇠k
[gi(xk)]� E⇠k

2

4
�����

mX

i=1

�i

k
rf i(xk)

�����

2

2

3

5 .

Remark. The result from Lemma 7 indicates that the local decrease for expected composite loss
E[�k]TF (x) is bounded by 2mBH

q
V⇠k

[�k]
P

m

i=1 V⇠k
[gi(xk)] � E⇠k

h��Pm

i=1 �
i

k
rf i(xk)

��2
2

i
.

The first term consists of the variances for composite weights and multiple gradients, and the second
term is the negative norm of the effective direction. When the solution approximates the optimal,
the second term would be smaller than the former term when the variances are large, then the value
of the composite loss will increase, leading to the non-convergence. This result is aligned with the
non-convergence for MOGM algorithms.

We next give a second-order bias analysis of the composite gradient dk by the following lemma.

Lemma 8. Under Assumption 1, 2, 3, for any gradient descent algorithm updated with composite

gradient Gk�k, we have the following inequality

E⇠k

"
kdkk22 � k

mX

i=1

�i

k
rf i(xk)k22

#
 mB2

mX

i=1

V⇠k
(g

i
) + 4mBH

vuutV⇠k
[�k]

mX

i=1

V⇠k
[gi(xk)].

Proof. We first decompose the expectation into

E⇠k

"
kdkk22 � k

mX

i=1

�i

k
rf i(xk)k22

#

= E⇠k

"
kdk +

mX

i=1

�i

k
rf i(xk)�

mX

i=1

�i

k
rf i(xk)k22 � k

mX

i=1

�i

k
rf i(xk)k22

#

= E⇠k

"
kdk +

mX

i=1

�i

k
rf i(xk)k22

#

| {z }
term A

� 2E⇠k

2

4
 

mX

i=1

�i

k
rf i(xk)

!> 
dk +

mX

i=1

�i

k
rf i(xk)

!3

5

| {z }
term B

.

We next analyze the term A. By the triangle inequality of the l2 norm, we have

term A = E⇠k

2

4
�����

mX

i=1

�i

k
rf i(xk) + dk

�����

2

2

3

5 = E⇠k

2

4
�����

mX

i=1

�i

k
(rf i(xk)� gi(xk))

�����

2

2

3

5

 E⇠k

2

4
 

mX

i=1

�i

k

��(rf i(xk)� gi(xk))
��
2

!2
3

5 ,

Further, by the fact that �i

k
2 [0, B], i = 1, . . . ,m, we know that

term A  E⇠k

" 
mX

i=1

�i

k

2

! 
mX

i=1

��rf i(xk)� gi(xk)
��2
2

!#

 E⇠k

"
mB2

mX

i=1

��(rf i(xk)� gi(xk))
��2
#
= mB2

mX

i=1

V⇠k
(g

i
).

11



We then analyze the term B. Similar with the proof in Lemma 7, and by the fact that the minus sign
does not affect the inequality, we know that

term B = �2E⇠k

2

4
 

mX

i=1

�i

k
rf i(xk)

!> 
dk +

mX

i=1

�i

k
rf i(xk)

!3

5

 4mBH

vuutV⇠k
[�k]

mX

i=1

V⇠k
[gi(xk)].

Combining all the results, we obtain

E⇠k

"
kdkk22 � k

mX

i=1

�i

k
rf i(xk)k22

#
 mB2

mX

i=1

V⇠k
(g

i
) + 4mBH

vuutV⇠k
[�k]

mX

i=1

V⇠k
[gi(xk)].

Remark. In the single-objective stochastic optimization, the second term is zero, leaving only the
gradient variance in the bound. While in the multi-objective stochastic optimization, the second
term is non-zero and related to the number of objectives, the variance of composite weight, and the
gradient variance, which makes it significantly different.

E.4 Proof for Theorem 2 (Convex Convergence)

Theorem 2. Under Assumption 1, 2, 3. For the sequence x0,x1, . . . ,xn generated by Algorithm 1,

we assume objective functions f1(x), . . . , fm(x) are all convex with bounded optimal values as

f1(x⇤), . . . , fm(x⇤)  F for x⇤
in Pareto set, and the distance from sequence to Pareto set is

bounded, i.e., kxk � x⇤k  D. Set 0  ⌘n  . . .  ⌘1  1/mLB,↵k 2 (0, 1] for k = 1, . . . , n in

Algorithm 1, it achieves

1

n

nX

k=1

E

max
x⇤

k2K
min

�⇤
k2Sm

(�⇤
k

>F (xk)� �⇤
k

>F (x⇤
k
))

�
 D2

⌘nn
+

m2B2(�2 + �H +H2)

n

nX

k=1

⌘k

+
DB�m3/2

n

nX

k=1

(1� ↵k) +
6m5/2B2H�

n

nX

k=1

(1� ↵k)⌘k +
2F

n

nX

l=1

l(1� ↵l+1)
mX

i=1

|�i

l
� �̂i

l+1|.

To prove Theorem 2, it is sufficient to prove the bound for

1

n

nX

k=1

E[
mX

i=1

�i

k
f i(xk)� min

x⇤
k2K

mX

i=1

�i

k
f i(x⇤

k
)]. (6)

We next provide the reason. Specifically, from Assumption 1, we have
P

m

i=1 �
i

k
� 1 for k = 1, . . . , n.

Therefore, we know that

1

n

nX

k=1

E[
P

m

i=1 �
i

k
f i(xk+1)P

m

j=1 �
j

k

�
minx⇤

k2K
P

m

i=1 �
i

k
f i(x⇤)

P
m

i=1 �
i

k

]  1

n

nX

k=1

E[
mX

i=1

�i

k
f i(xk)� min

x⇤
k2K

mX

i=1

�i

k
f i(x⇤

k
)].

Furthermore, denote �̄k = �k/
P

m

j=1 �
j

k
. By the property for the max-min operator, the left side of

the above inequality can upper bound what we need to bound in Theorem 2 as

1

n

nX

k=1

E

max
x⇤

k2K
min

�⇤
k2Sm

(�⇤
k

>F (xk)� �⇤
k

>F (x⇤
k
))

�
 1

n

nX

k=1

E[
mX

i=1

�̄
>
k
F (xk)� min

x⇤
k2K

�̄
>
k
F (x⇤

k
)].

Therefore, the rest of the proof is to bound 6. Before the final proof, we first introduce several
Lemmas. The following Lemma give an induction as

12



Lemma 9. Under the same assumption as Theorem 2, for any gradient descent algorithm updated

with composite gradient Gk�k, and any x⇤
in Pareto set, we have the following inequality

E⇠k
[
mX

i=1

�i

k
f i(xk)�

mX

i=1

�i

k
f i(x⇤)]  1

2⌘k
E⇠k

⇥
kxk � x⇤k22 � kxk+1 � x⇤k22

⇤

+D

vuutV⇠k
(�k)

 
mX

i=1

V⇠k
(gi(xk))

!
+ 6⌘kmBH

vuutV⇠k
[�k]

mX

i=1

V⇠k
[gi(xk)]

+ ⌘kmB2
mX

i=1

V⇠k
(g

i
) + ⌘kmB2H

0

@mH +

vuutm
mX

i=1

V[gi(xk]

1

A .

Proof. From the L-smoothness of each objective function, we have

�i

k
f i(xk+1)  �i

k

✓
f i(xk) + ⌘krf i(xk)

>(xk+1 � xk) +
L

2
kxk+1 � xkk22

◆
.

By the iterative rule, we know that xk+1 = xk + ⌘kdk. Further, by the convexity of f i, and denote
x⇤ as any point in the feasible set, we have f i(xk)  f i(x⇤) +rf i(xk)>(xk � x⇤). Then we can
get

�i

k
f i(xk+1)  �i

k
f i(xk) + ⌘k�

i

k
rf i(xk)

>dk +
L⌘2

k

2
�i

k
kdkk22

 �i

k
f i(x⇤) + �i

k
rf i(xk)

>(xk � x⇤) + ⌘k�
i

k
rf i(xk)

>dk +
L⌘2

k

2
�i

k
kdkk22.

Summing up above for i = 1, . . . ,m, we have
mX

i=1

�i

k
f i(xk+1)�

mX

i=1

�i

k
f i(x⇤)


 

mX

i=1

�i

k
rf i(xk)

!>

(xk � x⇤) + ⌘k

 
mX

i=1

�i

k
rf i(xk)

!>

dk +
L⌘2

k

2

 
mX

i=1

�i

k

!
kdkk22.

By setting ⌘k  1/mLB, we can know that L⌘k
�P

m

i=1 �
i

k

�
 L⌘kmB  1. Then, the third term

can be bounded as L⌘
2
k

2

�P
m

i=1 �
i

k

�
kdkk22  ⌘k

2 kdkk22. Plugging such a bound for the third term, and
take the expectation on random variable ⇠

k
, we then obtain
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3

5 .

By the linearity of expectation, we rearrange the above term into
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dk

3
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2
E⇠k

⇥
kdkk22

⇤
.

We next to bound the first term. By rearranging the equation, we get
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�i

k
rf i(xk)

!>

(xk � x⇤)
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2
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3

5 ,
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where the last equation is by the fact that xk+1 = xk + ⌘kdk. Since we know that
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"
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i=1
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k
rf i(xk) + dk

#>
(xk � x⇤) 

�����E⇠k
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#�����
2

kxk � x⇤k2

 D

�����E⇠k
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#�����
2

= D
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�����E⇠k
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#�����

2

2

 D

vuutV⇠k
(�k)

 
mX

i=1

V⇠k
(gi(xk))

!
.

The second inequality is by the assumption that the set {xk, k = 1, . . . ,K} is a subset of a bounded
set with diagram D, and the third one is from Lemma 1. By combining all the above results, we have
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[
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�i

k
f i(xk+1)�
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k
f i(x⇤)]
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⇤
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!
+ ⌘kE⇠k

⇥
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dk

3
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"
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mX

i=1
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#
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mX
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V⇠k
[gi(xk)] (from Lemma 7)
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⇤
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!
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i=1

V⇠k
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i=1

V⇠k
(g

i
) (from Lemma 8).

In addition, there is a slight different with the Lemma that we aim to prove: the left side is xk+1 not
xk. The following we fix this issue. By the H-Lipschitz continuous for each objective, we know that
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mX
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By the triangle inequality of norm and the definition for the composite gradient dk, we have
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[kdk +
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mX
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k
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�i
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k
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k
H]

 E⇠k
[
mX

i=1

�i

k
krf i(xk)� gi(xk)k] +mBH.

The third inequality is from the H-Lipschitz, and the last one is from Assumption 1. By the fact that
ab  1

2�k
a2 + �k

2 b2 for any �k > 0, we can have

E⇠k
[kdkk]  E⇠k

[
mX

i=1

1

2�k

(�i

k
)2 +

mX
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�k

2
krf i(xk)� gi(xkk2] +mBH

 mB2

2�k

+
�k

2

mX

i=1

V[gi(xk] +mBH.

Let �k = B
p
m/
pP

m

i=1 V[gi(xk], we have E⇠k
[kdkk]  B

p
m
P

m

i=1 V[gi(xk] +mBH . Plug
in the result, we can get
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k
f i(xk+1)]  ⌘kmB2H(mH +

vuutm
mX

i=1

V[gi(xk]).

Combining all the above, we prove the lemma.

By summing up the above lemma, we get the following one

Lemma 10. Under the same assumption as Theorem 2, for any x⇤
in Pareto set, we have the

following inequality for CRMOGM algorithm

nX

k=1

E[
mX

i=1

�i

k
f i(xk+1)�

mX

i=1

�i

k
f i(x⇤)] 
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Proof of Theorem 2. From Lemma 2, we know that V⇠k
[�k]  m2B2(1�↵k)2. From Assumption 2,

we know that V⇠k
(gi(xk))  �2. Then plug into Lemma 9, we get
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⇤

+mDB�
p
m(1� ↵k) + 6m2B2H�

p
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Sum up the above inequality from k = 1 to k = n, we have
nX

k=1

mX

i=1

E⇠k
[�i

k
f i(xk+1)� �i

k
f i(x⇤)] 
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1
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+
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m(1� ↵k) + 6m2B2H�

p
m(1� ↵k)⌘k +m2B2(�2 + �H +H2)
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k=1

⌘k).

Take expectation of ⇠1, ⇠2, . . . , ⇠n on the both sides, we can get
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k
f i(x⇤)] 
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k=1

1

2⌘k
E
⇥
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m
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p
m
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(1� ↵k)⌘k +m2B2(�2 + �H +H2)
nX
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⌘k.

By the fact that ⌘k � ⌘k+1, we then bound the first term as
nX

k=1

1

2⌘k
E
⇥
kxk � x⇤k22 � kxk+1 � x⇤k22

⇤

=
nX

k=2
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1

2⌘k
� 1

2⌘k�1
)E
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kxk � x⇤k22

⇤
+

1
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E
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⇤
� 1

2⌘n
E
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kxn+1 � x⇤k22

⇤


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(
1

2⌘k
� 1

2⌘k�1
)D2 +

1

2⌘1
D2 
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2⌘n
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1
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◆
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Plug in the above result, we have
nX

k=1

E[
mX

i=1
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k
f i(xk+1)�

mX

i=1

�i

k
f i(x⇤)] 
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1
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⌘k.

We thus prove the lemma.

By observing Lemma 10 and the final version we need to proof, the only different is the compared
optimum is x⇤ for all k not the adaptive one x⇤

k
= argminx2K

P
m

i=1 �
i

k
f i(x), the following lemma

measures such a gap.
Lemma 11. Under the same assumption as Theorem 2, for any x⇤

in Pareto set, we have the

following inequality for CRMOGM algorithm

E
"
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x⇤2K

nX
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mX

i=1

�i

k
f i(x⇤)�
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x⇤
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f i(x⇤

k
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#
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|�i

l
� �̂i
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Proof. Denote �̄i =
P

n

k=1 �
i

k
/n. Denote x⇤ = argminx⇤2K

P
n

k=1

P
m

i=1 �
i

k
f i(x⇤) and x⇤

k
=

argminx⇤
k2K

P
m

i=1 �
i

k
f i(x⇤

k
), k = 1, . . . , n. We first rearrange into

E
"
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#
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k
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#
.

Since x⇤ is the minimum for �̄i

k
f i(x), we then have
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#
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.
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By the assumption that objective functions f1(xk), . . . , fm(xk)  F are all bounded for k =
1, . . . , n, we get
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As we know that
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The last two equation is by the definition of Algorithm 1

We are now ready to proof Theorem 2. Combine Lemma 10 and Lemma 11, we have
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By averaging the above, and the fact that ⌘n  ⌘1, we prove the theorem.

E.5 Proof for Theorem 3 (Non-convex Convergence)

Theorem 3. Under Assumption 1, 2, 3. For the sequence x0,x1, . . . ,xn generated by Algorithm 1,

we assume objective functions f1(xk), . . . , fm(xk)  F are all bounded for k = 1, . . . , n. Set

0  ⌘n  . . .  ⌘1  1/mLB and ↵k 2 (0, 1] in Algorithm 1, it achieves
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Similar to the convex case, to prove Theorem 3, it is sufficient to prove the bound for
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E
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, (7)
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where �k is generated by MOGM or CRMOGM algorithms. The reason is also similar to the convex
case, which is that 7 upper bounds the left side in Theorem 3 because
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where �̄k = �k/(
P

m

i=1 �
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k
)2 2 Sm. The first inequality of the above is due to Assumption 1 thatP

m

i=1 �
i

k
� 1. We next present necessary lemmas.

Lemma 12. Under the same assumption as Theorem 3, for any gradient descent algorithm updated

with composite gradient Gk�k, we have the following inequality
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Proof. From the L-smoothness of each objective function, we have
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Sum up both side for i = 1, . . . ,m, and take the expectation on random variable ⇠
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Then, adopting the result from Lemma 8, we know that
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By the fact that ⌘k  1/LmB, we further have
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By rearrangement, we therefore have
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Take expectation of ⇠1, ⇠2, . . . , ⇠n on the both sides, we finally get
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Lemma 13. For CRMOGM algorithm, and under the same assumption with Theorem 3, we have
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Combining the above, and by the assumption that |f i(xk)|  F,�i
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k
2 [0, B] as well as the

nonincreasing for ⌘k, we therefore have
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Now, we can present the final proof. From Lemma 2, we know that V⇠k
[�k]  m2B2(1 � ↵k)2.

From Assumption 2, we know that V⇠k
(gi(xk))  �2. Then plug into Lemma 12, we get
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The above is divided with ⌘k/2 for the both side. Then, sum up the above inequality from k = 1 to
k = n and take the result from Lemma 13, we have
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By averaging the above inequality, we prove the theorem.

E.6 Proof of Corollary 1

Corollary 1. (a) Set 1/mLB � ⌘k = O(1/
p
k),↵k = max{1�⌘k/⌘1, 1�⌘k/(⌘1k
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Proof. For the convex case (a), ↵k = max{1� ⌘k/⌘1, 1� ⌘k/(⌘1k
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For the non-convex case (b), ↵k = max{1� ⌘k/⌘1, 1� ⌘k/(⌘1
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Remark 1. Also, it is not difficult to verify that setting ↵k = max{1 � ⌘k/⌘1, 1 �
⌘k/(⌘1k

P
i2[m] |�i

k�1 � �̂i

k
|)} also lead to the same convergence in the non-convex case. For

simplicity, we present the unified version in the main text, and provide the complete version in the
Appendix.

Remark 2. Since multi-objective optimization could reduce to single-objective optimization if the
multiple objectives are the same, the convergence rate of stochastic MOO will be no better than
single-objective SGD. Note that our convergence rates align with those in single-objective SGD
[5, 2], which suggests that our bounds are tight in order. In comparison with stochastic MOGM, we
have demonstrated clearly in this paper that stochastic MOGM algorithms fail to converge to the
Pareto optimal/critical points in Section 4, so it would be less meaningful to compare them. As for
comparing with full-batch MOGM, the comparison is similar with GD and SGD.

E.7 Discussion on Theorem 2 and Theorem 3

Average scheme. The averaging scheme for Theorem 2 and Theorem 3 can be transformed to
traditional ones. It just needs to use a typical uniform sampling technique in stochastic optimization
[4, 24, 5, 20] to modify the algorithmic output. Specifically, the output is changed from xn to x̄n that
is uniformly sampled in {x1,x2, . . . ,xn}. Then, by this randomness and the linearity of expectation,
we can know that
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and
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Therefore, we recover the traditional convergence bound for x̄n.

Assumptions of bounded gradient. The assumption of bounded gradients appears very widely in
related literature on stochastic optimization. Specifically, in the convex setting, the bounded gradient
assumption is used to derive the convergence bound for various famous optimizers, such as Adam
(Theorem 4.1 in [22]), Adagrad (Theorem 5 in [6]), AMSGrad (Theorem 4 in [36]), etc. In the
non-convex setting, it helps to analyze the stochastic convergence of momentum (Theorem 1 & 2
in [44], Assumption 3 in [4], Assumption 2 in [45], and Assumption 1(ii) in [21]). Additionally, in
practice with deep learning, there are many techniques that are designed to avoid gradient explosion,
such as weight regularization [35] and gradient clipping [47]. These techniques ensure the boundness
of the gradient in practice, which validates this assumption. Furthermore, our theoretical results
only require that krf i(xk)k  H for i = 1, . . . ,m and k = 1, . . . , n, i.e., the gradients along the
optimization path are bounded, which is also supported by our experiments.

Assumptions of bounded function. The assumption of bounded functions has been used in recent
studies on non-convex stochastic optimization, such as analyzing SGD (Assumption 2 in [7]), and
analyzing SGD+momentum (Assumption in Section 3 of [25]). Actually, this assumption can be
further relaxed in our analysis. Specifically, in the convex setting, it can be relaxed to that the function
values of Pareto optimal solutions are bounded, i.e., |f i(x⇤)|  F, i = 1, . . . ,m, if x⇤ is Pareto
optimal. The reason is that we only require this condition in Lemma 11. The relaxed assumption is
surely satisfied since the optimal solutions naturally have bounded function values. In the non-convex
setting, note that in the related papers analyzing SGD (Remark 2 in the analysis of SGD [5]) as well
as MOGM (Theorem 3.1 in the analysis of MGDA [9]) with non-convex functions, it is commonly
assumed that the initial function values f i(x1), i = 1, . . . ,m are bounded. Essentially, our analysis
only requires that f i(xk), i = 1, . . . ,m are bounded for k = 1, . . . , n, since we only use it in Lemma
13. This assumption is mild in practice as long as the function values of iterates along the practical
training path are bounded. In fact, all our experiments indicate that the function values are well
located in a bounded regime.

F Convergence Analysis for Strongly Convex Functions

Theorem 6. Under Assumption 1, 2, 3. For the sequence x0,x1, . . . ,xn generated by Algo-

rithm 1, we assume objective functions f1(x), . . . , fm(x) are all µ-strongly convex and bounded

as f1(x), . . . , fm(x)  F , and the distance from sequence to Pareto set is bounded, i.e.,
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By rearranging the inequality, we further have
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From Lemma 2, we know that V⇠k
[�k]  m2B2(1 � ↵k)2. From Assumption 2, we know that
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Taking total expectations, this yields
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We now are able to provide the convergence analysis for Algorithm 1 with fixed stepsizes.

Corollary 2. Set 0 < ⌘k = ⌘  min{ 1
mLB

, 1
L
} and ↵k = max{1�⌘, 1�⌘2/(

P
m

i=1 |�i

k�1� �̂i

k
|)}

in Theorem 6. Algorithm 1 linearly converges to a solution near the Pareto optimal, and the expected
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we obtain
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Observe that the above is a contraction inequality, by the fact that

0 < ⌘µ  µ

L
 1.
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The second inequality is by the range of ⌘. The result thus follows by applying the above contraction
inequality repeatedly through iteration k = 1, . . . , n.
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If n ! 1, then the suboptimal gap for the solution will limit to ⌘M

µ
.

Remark. Here, the algorithm does not converge to Pareto optimal but is a suboptimal solution near an
optimal solution. This result aligns with the one in single-objective stochastic optimization, and thus
is tight in order. Note that this gap is unavoidable, as is the case in single-objective SGD, because the
stepsize needs to tradeoff the stochastic variance and the convergence rate (the discussion of Theorem
4.6 in [2]). Additionally, the suboptimal gap is related to the scale of the stepsize ⌘, and hence we can
set sufficiently small ⌘ to get better convergence.

To guarantee the convergence to Pareto optimal solutions, we can use a diminishing stepsize as the
case in single-objective stochastic optimization [2]. The result is as follows.
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Proof. Specifically, we prove the following result for k = 1, . . . , n
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for simplicity. The
last inequality is by the fact that ⌘k � ⌘k+1. We then prove the corollary by mathematical induction.
First, the parameter setting here ensures the result holds for k = 1. Next, we assume the inequality of
the theorem holds for k, which holds
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Then by the parameter setting, for the case of k + 1, we have
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where the last inequality is by the condition of v. By the fact that (a � 1)(a + 1)  a2 for a > 0,
we have k+��1

(k+�)2  k+��1
(k+��1)(k+1+�) =

1
k+1+�

. Plug in the above, we can prove the result for k + 1.
Thus, we theorem holds for k = 1, . . . , n, which suggests an O(1/n) convergence.

Remark 1. The result from Corollary 3 shows the convergence rate is aligned with single-objective
SGD with adaptive stepsize, suggesting that Algorithm 1 is tight in order with strongly convex
functions.

Remark 2. The bounded function assumption in Theorem 6 can be relaxed to the combination of
the assumptions in the convex and non-convex settings. Specifically, the function values of Pareto
optimal solutions are bounded, i.e., |f i(x⇤)|  F, i = 1, . . . ,m, and the function values of iterates
along the practical training path are bounded, i.e., f1(xk), . . . , fm(xk)  F for k = 1, . . . , n.

G Additional Experiments and More Details

G.1 More Insights of CR-MOGM

How the non-convergence reflects in practice. In fact, the similar situation reflected by the counter-
example is not rare in practice, especially when the stochastic noises are large. For example, we
have added an additional experiment of MultiMNIST by setting batch size from 8 to 2, representing
increasing levels of stochastic noises (a smaller batch size introduces a larger stochastic noise in the
mini-batch gradient). We report the training losses for the final outputs of MGDA and CR-MGDA
as follows, representing the comparison of MOGM and CR-MOGM. From results of Table 2, we
observe that the loss of vanilla MGDA becomes significantly larger when the batch size is smaller,
while CR-MGDA appears not sensitive to the batch size. This possible reason is that the convergence
issue of MOGM becomes more severe with larger stochastic noise, which severely degrades the
performance of MOGM. Since CR-MOGM is proven to converge to the Pareto optimal/critical, it
is much more robust to stochastic noises. Thus, in this regard, our method is more practical for
real-world applications.

Comparison with the full-batch MOGM. Although there are no guarantees for the closeness
between � calculated by CR-MOGM and the actual � calculated by MOGM with full-batch gradients.
As shown in Figure 4, we empirically observe that the �k of CR-MOGM is very close to the actual
�⇤
k

yielded by the MOGM with full batch gradients. Specifically, the gaps between �k of CR-MOGM
and actual �⇤

k
are below 0.01 with low error bars in the toy example, while the gaps of vanilla MOGM

algorithms are all averagely larger than 0.10 with large error bars.
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Figure 4: Experiments on the illustrative example in Section 4. We measure the bias between �
calculated by CR-MOGM and the actual � calculated by MOGM with full-batch gradients. We report
the mean and std.

Figure 5: Simulation with Gaussian noise.

G.2 Additional Stochastic Convex Simulation

In this simulation, we establish a similar setting with Section 4, where we aim to optimize x 2 R2

to attain smaller distances to two fixed points a = [�3, 0], b = [3, 0]. The first objective is
f1(x) = kx � ak22, and the second one is f2(x) = kx � bk22. The stochastic gradient for each
objective can be represented as g1(x) = x� a+ ⇠1 and g2(x) = x� b+ ⇠2. The stochastic noises
⇠1, ⇠2 are two dimensional random noise with zero-mean Gaussian distribution, where the covariance
matrix for ⇠1 is [[3, 2], [2, 3]] and for ⇠2 is [[3,�2], [�2, 3]].

Figure 5 demonstrates the distance to Pareto set. We observe that all three MOGM algorithms can
not converge to the Pareto optimal points, while all CRMOGM algorithms can approach the Pareto
set. This result is aligned with the result in Section 4, and the more general Gaussian noise shows
that the non-convergence is not special in stochastic multiobjective optimization.
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G.3 Implementation Details of Experiments

The implementation for CRMOGM is very simple, just by adding one additional line that exponen-
tially smoothes the composite weights to MOGM algorithms. Note that this mechanism does not
require additional computational cost and is flexible to be implemented in MOGM algorithms.
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